
GPU-Accelerated Constraint-Based Causal Structure Learning for

Discrete Data

Christopher Hagedorn∗ Johannes Huegle∗

Abstract

Learning the causal structures from high-dimensional
observational data is an omnipresent challenge in data
science. State-of-the-art methods for constraint-based
Causal Structure Learning (CSL) apply conditional
independence (CI) tests to determine the underlying
causal structures. In the context of discrete data,
each CI test requires calculating the marginals over
contingency tables based on the respective observations.
This calculation leads to long overall execution times.

In our work, we propose a parallel execution strat-
egy tailored for constraint-based CSL on a Graphics
Processing Unit (GPU) to accelerate the execution for
discrete data. Hence, we introduce the gpuPC algorithm
that performs all CI tests on a GPU and extends the
existing parallel execution strategy for constraint-based
CSL by calculating the marginals over contingency ta-
bles within units of threads. Further, gpuPC implements
explicit memory management to handle the correspond-
ing auxiliary data structures in GPU memory.

An experimental evaluation shows that gpuPC scales
well even for higher-dimensional settings, with auxiliary
data structures exceeding on-chip memory. In partic-
ular, running on NVIDIA Tesla V100 hardware gpuPC

outperforms a GPU baseline by factors of up to 45.6 and
further outperforms existing parallel CPU-based imple-
mentations running on 40 cores by a factor of 62.1.
Keywords: Causal structure learning, GPU, Bayesian
Networks, PC algorithm, Discrete data

1 Introduction

Learning the causal structures from observational data
is a ubiquitous challenge in data science. In particular,
in high-dimensional settings in which the complexity of
underlying causal structures impede a dedicated exam-
ination of single direct cause and effect relationships,
e.g., via randomized control trials [19]. For example in
car manufacturing, where causal structure learning has
the goal to derive the interaction mechanisms between

∗Chair for Enterprise Platform and Integration Concepts,

Hasso Plattner Institute, University of Potsdam, Potsdam, Ger-
many,{firstname.lastname}@hpi.de

thousands of factors involved in the production process
to add decision support for the production operator [7].

In the context of CSL, causal relationships are
encoded in a Directed Acyclic Graph (DAG), a causal
graphical model that defines the basis of a theoretical
framework for causal reasoning [6, 15, 18, 27]. Methods
for learning causal structures from observational data,
i.e., the estimation of the DAG, build upon score-based
and constraint-based, as well as, hybrid approaches.
In this work, we focus on constraint-based approaches,
which utilize CI tests to determine the undirected
skeleton of the DAG, which is also called adjacency
search, in a first step. In a subsequent step, the
undirected edges are oriented through the repeated
application of deterministic orientation rules.

The PC algorithm proposed by Spirtes et al. [27] is
a well-known constraint-based approach that provides
the basis for several extensions each tackling different
- sometimes domain-specific constraints, e.g., for order-
independence of variables [5] or under the incorporation
of latent variables [4]. The algorithm’s long execution,
which is polynomial under the assumption of a sparse
DAG, has raised interest in parallel execution on mod-
ern multi-core CPUs [13, 14, 21, 25]. Furthermore, ex-
tensions utilizing GPUs have been proposed for addi-
tional speedup [20, 22, 29]. One major limitation of the
GPU-based algorithms for constraint-based CSL is their
restriction to multivariate normal distributed data. In
these settings, the algorithms leverage characteristics
of the particular CI test to achieve significant speedup
compared to CPU-based versions and tailor specific op-
timizations, such as, sharing of intermediate data struc-
tures, e.g., see cuPC-S [29]. For multivariate normal dis-
tributed data, the necessary calculations are built upon
a pre-calculated correlation matrix to avoid access to
the observational data within each CI test.

In contrast, constraint-based CSL from discrete
distributed data requires the calculation of the specific
contingency table and corresponding marginals from the
observational data for each CI test. Pre-calculation of
the corresponding auxiliary data structures for all CI
tests is impractical given the limited available memory
on a GPU. Hence, the application of existing GPU-

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

based approaches in the context of discrete distributed
data is not straightforward.

Therefore, we propose gpuPC, an extension of the
order-independent version of the PC algorithm, PC-
stable [5], under the consideration of the in-level par-
allelization strategies for constraint-based CSL [9, 25].
gpuPC extends the existing parallel execution strat-
egy for GPU-based CSL [20, 29] by calculating the
marginals over contingency tables within units of
threads, according to the Single Instruction Multiple
Threads (SIMT) execution model. Using explicit mem-
ory management gpuPC switches between the use of
shared and global memory and even reduces parallelism
if required, to handle the auxiliary data structures,
which temporarily reside in GPU memory.

The remainder of the paper is organized as follows.
Section 2 reviews preliminaries on constraint-based CSL
and parallel execution strategies for the PC algorithm,
both on Central Processing Unit (CPU) and GPU.
We provide detail on our proposed gpuPC algorithm
and its implementation in Section 3, which is followed
by an experimental evaluation, comparing a GPU-
accelerated baseline and existing CPU-based parallel
implementations in Section 4. In Section 5, we discuss
related work on parallel execution of constraint-based
CSL. We conclude our work in Section 6.

2 Causal Structure Learning

In this section, we introduce the concepts that define the
basis of constraint-based CSL, the PC algorithm, and
details on its parallel execution. Further, we describe
the requirements implied by the discrete data setting.

2.1 Preliminaries In the framework of causal infer-
ence, a direct causal relationship between two variables
Vi to Vj is represented trough a direct edge Vi → Vj
within a Causal Graphical Model (CGM) [18, 27]. In
this sense, let a graph G be defined as a pair G = (V,E),
with a finite vertex set V = (V1, . . . , VN) correspond-
ing to variables Vi, i = 1, . . . , N , and an edge set
E ⊆ V×V. An edge (Vi, Vj) ∈ E is called directed,
i.e., Vi → Vj , if (Vi, Vj) ∈ E but (Vj , Vi) /∈ E. If both
(Vi, Vj) ∈ E and (Vj , Vi) ∈ E the edge is called undi-
rected, i.e., Vi − Vj . In this context, a graph G where
all directed edges are replaced by undirected edges is
called the skeleton C of G. Further, if there exists an
edge (Vi, Vj) within the skeleton C of G, then the two
vertices Vi and Vj , are called adjacent. The adjacency
set adj(G, Vi) of the vertex Vi ∈ V in G are all ver-
tices Vj ∈ V that are directly connected to Vi by an
edge in the skeleton of G. We speak of a DAG if all
edges E of G are directed and G does not contain any
cycle. Besides its information on direct causal relation-

ships depicted in Vi → Vj , a DAG entails information
about the conditional independencies of the variables
through the application of the d-separation criterion
on the vertices [18]. Using the d-separation criterion,
two variables Vi, Vj ∈ V are conditionally independent
given a set of variables S ⊂ V \{Vi, Vj}, denoted by
Vi ⊥⊥ Vj | S if and only if the vertices Vi and Vj are
d-separated by the set S in the corresponding DAG.
Methods for CSL are built upon this relation to con-
ditional independencies in the probability distribution
P . Therefore, it needs to be assumed that causal suffi-
ciency, i.e., the incorporation of all relevant variables in
the DAG, and causal faithfulness, i.e., that the proba-
bility distribution P satisfies the d-separation criterion
for the DAG, hold. Note, that the same conditional
independence information can be described by multi-
ple DAGs that form a Markov equivalent class that
can be described uniquely by a Complete Partially Di-
rected Acyclic Graph (CPDAG) [2, 3]. Thus, the goal
of CSL is to estimate the equivalence class of the DAG
G based on the information about conditional indepen-
dencies in the probability distribution P of the involved
variables [5, 8, 26].

2.2 Constraint-based CSL Methods for
constraint-based CSL build upon the previously
addressed concept of d-separation to estimate the
skeleton C by an adjacency search of the involved
variables as a common first step that is then extended
to the CPDAG through the repeated application of
deterministic orientation rules [5, 8, 10, 26]. Our
work focuses on the GPU-accelerated execution of the
PC algorithm under the consideration of the GPU
hardware characteristics, where the parallel execution
of threads follows the SIMT execution model [11].
To introduce the parallel computing paradigm of
constraint-based CSL, we sketch the adjacency search
of the order-independent version of the PC algorithm [5]
in Algorithm 1, which sets the foundation for parallel
versions on the CPU and GPU.

Starting with a complete undirected skeleton C the
PC algorithm conducts CI tests with an increasing size
l of the separation set S of adjacent vertices to subse-
quently remove edges Vi − Vj from the skeleton C for
which the variables Vi and Vj are determined as being
independent given S. Hence, the algorithm only needs
to query CI tests of vertices Vi and Vj given separation
sets S with size l = 0 up to the maximum size of the
adjacency sets of the vertices in the underlying DAG G,
i.e., up to maxVi∈V |adj(G, Vi) \ {Vj}|. This results in a
polynomial complexity for sparse underlying true DAGs
G which makes the algorithm computationally feasible
even in high-dimensional settings [8].

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1 Adjacency search of PC algorithm
Input: V
Output: C, Sepset

1: Start with fully connected skeleton C and l = −1;
2: repeat
3: l = l + 1;
4: for all Variables Vi in C do
5: Let a(Vi) = adj(C, Vi);
6: end for
7: repeat
8: Select adjacent pair Vi, Vj in C

with |a(Vi) \ {Vj}| ≥ l;
9: repeat

10: Choose S ⊆ a(Vi) \ {Vj} with |S | = l;
11: Perform T (Vi, Vj |S);
12: if p(Vi, Vj |S) ≥ α then
13: Delete edge Vi − Vj from C;
14: Save S in Sepset;
15: end if
16: until edge Vi − Vj is deleted in C or all

S ⊆ a(Vi) \ {Vj} with |S | = l were chosen
17: until all adjacent vertices Vi and Vj in C such

that |a(Vi) \ {Vj}| ≥ l were considered
18: until each adjacent pair Vi, Vj in C satisfy |a(Vi) \
{Vj}| ≤ l

19: return C, Sepset

For every level l = 0, . . . ,maxVi∈V |adj(G, Vi)\{Vj}|
the adjacency sets a(Vi) = adj(C, Vi) of variables Vi
with respect to the current skeleton C are computed
and stored to allow for order-independence (see lines
4–6). This enables parallel execution within each level
l, without synchronization while processing the current
level l [10]. Hence, existing CPU-based approaches pro-
cess the adjacent pairs Vi, Vj in C within each level (see
lines 7–17) in parallel [10, 25]. Based on the GPU hard-
ware characteristics GPU-accelerated versions extend
the parallel execution strategy through nested paral-
lelism [20, 29]. In detail, while processing each adja-
cent pair Vi, Vj in parallel, the corresponding CI tests
(see lines 9–16) are executed in parallel, too. This
parallel execution strategy is mapped to the GPU ex-
ecution model, by processing adjacent pairs Vi, Vj in
separate thread blocks, and using groups of threads
within each thread block to perform the corresponding
CI tests. The returned skeleton C and the separation
sets Sepset are the basis for the application of deter-
ministic orientation rules to extend C to the correspond-
ing CPDAG [5, 8, 10, 26].

2.3 Discrete Distribution Model In this work, we
consider discrete distributed data where the hypotheses
on conditional independence need to be examined be-

tween random variables Vi and Vj given a set of vari-
ables S with respective discrete domains Vi , Vj , and
S. In this context, Vi ⊥⊥ Vj | S holds true if for all
(vi, vj , s) ∈ Vi × Vj × S we have that P (Vi = vi, Vj =
vj |S = s) = P (Vi = vi|S = s)·P (Vj = vj |S = s), where
vi, vj and s are the corresponding realization values and
vector of realization values, respectively. Classically, re-
lated statistical hypothesis testing for CI for this dis-
crete distribution model, e.g., the well-known Pearson’s
χ2 test of independence is based upon the properties of
marginals over contingency tables [1, 15].

Hence, we consider a statistical hypothesis test
T (Vi, Vj |S) for conditional independence Vi ⊥⊥ Vj | S
and denote T (Vi, Vj) if S = ∅, i.e., in case of testing for
Vi ⊥⊥ Vj . Furthermore, let Nvivjs denote the frequency
of samples where Vi = vi, Vj = vj and S = s in the data
such that Nvivjs reflects the corresponding entry in the
contingency table. Moreover, let Nvi+s =

∑
Vj Nvivjs

denote the marginal with respect to Vi and similarly
for N+vjs, Nvivj+, N++s, such that N+++ is equal to
the total sample size n. Finally, let |Vi|, |Vj |, and
|S| denote the size of the domains of Vi, Vj , and S,
respectively. Under the null hypothesis of conditional
independence, i.e., Vi ⊥⊥ Vj | S the expected frequency
where Vi = vi, Vj = vj , and S = s is given by

Evivjs =
Nvi+s·N+vjs

N++s
and the actual frequency is Nvivjs.

CI tests T (Vi, Vj |S) build upon the examination of an
overall discrepancy between these two quantities for all
cells of the contingency tables. For example, Pearson’s
χ2 test of independence is based upon the test statistic

χ2 (Vi, Vj |S) =
∑
ViVjS

(
Nvivjs − Evivjs

)2
Evivjs

,

which is equal to zero whenever Evivjs is equal to
zero. Under the null hypothesis, the test statistic
χ2 (Vi, Vj |S) is asymptotically distributed as χ2

df with
df = (|Vi| − 1)(|Vj | − 1) · |S| degrees of freedom. Hence,
the corresponding p-value p(Vi, Vj |S) can be calculated
as 1 − F(χ̂2) where F is the cumulative distribution
function of χ2

df and χ̂2 the calculated statistic derived
of the marginals over the observed frequencies in the
corresponding contingency table. Hence, given the
significance level α, we reject the null-hypothesis Vi ⊥⊥
Vj |S against the two sided alternative Vi 6⊥⊥ Vj |S if for
the corresponding p-value it holds that p(Vi, Vj |S) ≤ α.

Besides the previously introduced Pearson’s χ2 test,
a number of methods for CI testing in the discrete dis-
tribution model have been proposed, e.g., permutation
testing [28] or methods based on the stochastic com-
plexity [16]. These methods incorporate, in one way or
another, the examination of an overall discrepancy be-
tween the marginals over contingency tables [1, 15], the
contribution of this work applies to those settings, too.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

3 gpuPC: GPU-Accelerated Causal Structure
Learning for Discrete Distributed Data

In the following, we describe the gpuPC algorithmand its
implementation using the parallel computing platform
and programming model CUDA [17].

3.1 CUDA Programming Model Within CUDA,
the code of functions to be executed on a GPU is or-
ganized in kernels. These kernels are launched speci-
fying the number of threads, each executing the code
sequentially. The threads operate in units, so-called
warps, with each thread performing the same oper-
ation. Warps commonly have a size of 32 threads.
Diverging branches within warps are executed by all
threads, using no-ops for masking threads of different
branches. Further, threads are grouped into blocks.
Each block is mapped onto a Streaming Multiprocessor
(SM) of the GPU. Thus, allowing for threads within a
block to access on-chip shared memory and fast synchro-
nization. For referencing threads inside CUDA code,
each thread and each block have a three-dimensional id,
threadIdx.(x,y,z) and blockIdx.(x,y,z), which we
abbreviate with tx or bx. In addition to on-chip shared
memory, accessible within blocks only, GPUs also pro-
vide global memory accessible across all blocks. For ex-
ample, recent NVIDIA GPU generations provide High
Bandwidth Memory (HBM) with of up to 32 GB of size,
as global memory. Thus, limiting the amount of data
that can be accessed during kernel execution.

3.2 Implementation of gpuPC The proposed
gpuPC algorithm follows the general outline of the cupc

algorithm [29]. Hence, gpuPC starts a separate kernel
for each level l, that requires different concepts for level
l = 0 and for higher level l ≥ 1. Before a kernel for a
higher level l ≥ 1 is invoked, the current skeleton C is
compacted to Cc [29] and an explicit memory manage-
ment step is executed.

Due to the discrete distribution model gpuPC adopts
a fine-grained parallel execution strategy. In partic-
ular, while processing each CI test of adjacent pairs
Vi, Vj in parallel, the calculation of the marginals over
contingency tables is done in parallel, too. In prac-
tice, gpuPC uses threads, in multiples of warps, within
a thread block to jointly calculate the marginals over
contingency tables. Further, gpuPC the warps within a
thread block are split to operate on multiple CI tests in
parallel. Lastly, each block operates on an adjacent pair
Vi, Vj . While gpuPC targets the execution on a single
GPU, an extension to run on multiple GPUs is future
work, e.g., using a block-based approach [22].

3.3 Kernel for Level Zero In level l = 0, the sep-
aration set is empty and for each adjacent pair of vari-
ables Vi, Vj , only a single independence test T (Vi, Vj)
is performed. Hence, parallel execution is straight-
forward performing all independence tests in parallel.
In contrast to existing GPU-accelerated implementa-
tions [20, 22, 29], which map the independence tests
to threads and blocks, gpuPC performs each single inde-
pendence test in a separate block and uses the threads
within each block, denoted by δ, to jointly calculate the
marginals over contingency tables, see Algorithm 2.

Algorithm 2 Kernel for level zero using shared memory
Input: D, α, V , C, Sepset, Category Counts ∪V|Vi|
Output: C, Sepset
of blocks: N ×N
of threads per block: δ

1: i = bx, j = by
2: if bx < by then
3: Initialize Nvivj ,N+vj ,Nvi+ in shared memory
4: for k = tx; k < n; k = k + δ do
5: atomicAdd(Nvivj [D[Vi][k]× |Vi|+D[Vj][k]], 1)
6: end for
7: syncthreads
8: if tx == 0 then
9: Calculate N+vj ,Nvi+

10: Perform T (Vi, Vj)
11: if p(Vi, Vj) ≤ α then
12: Delete edge Vi − Vj from C
13: Sepset(Vi, Vj) = −1
14: end if
15: end if
16: end if

The kernel is launched with # of blocks set to # of
pairs of Vi, Vj , and # of threads per block determined
by δ. At first, the indices of the pair of variables Vi, Vj
are determined (see line 1). Under the assumption
of reasonable small category counts |Vi| × |Vj |, the
contingency table Nvivj and marginals N+vj , Nvi+ are
stored in shared memory (see line 3). Otherwise, these
auxiliary data structures are allocated in global memory
by a primary thread tx = 0. All threads within
a block jointly calculate the contingency table Nvivj ,
required to perform T (Vi, Vj) (see lines 4-6). Note,
gpuPC assumes no missing observations, hence n is the
same for all Vi. After synchronizing the threads (see
line 7), a primary thread with tx = 0 calculates the
marginalsN+vj , Nvi+, and performs T (Vi, Vj) according
to the method described in Section 2. In the case of
p(Vi, Vj) ≤ α, the edge between Vi, Vj is deleted in C and
the corresponding Sepset entry is marked (see lines 11-
14). Note, that the kernel implementation presented in

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2 assumes that enough memory is available
to process all pairs of Vi, Vj in parallel within separate
blocks. Further, data D is assumed to be organized in
a columnar fashion, allowing for aligned access of the
threads within a warp, while calculating Nvivj .

3.4 Kernel for Arbitrary Level l ≥ 1 Algorithm 3
outlines the implementation of the kernel for arbitrary
level l ≥ 1. When launched, the kernel receives a prede-
termined amount of scratch space in global memory to
store the auxiliary data structures. In detail, the algo-
rithm uses cudaMallocManaged to allocate memory for
the scratch space, which is used within kernels for level
l ≥ 1. With recent GPU generations that allow to over-
allocate memory, exceeding the amount provided on-
chip, processing of datasets that require auxiliary data
structures exceeding on-chip memory is enabled. Yet,
for high-dimensional data, the explicit memory man-
agement step determines a factor z that limits the par-
allel execution of the kernel, to constrain the memory
demand. Hence, the kernel is launched with N

z ×
N
β

blocks, and the code shown in Algorithm 3 is executed
z times for each block. In the regular setting, the ker-
nel is launched with # of blocks set to N × N

β blocks
and # of threads set to δ×γ×β. In detail, within each
thread block β pair of variables Vi, Vj are processed. For
each of the pairs of variables Vi, Vj , γ CI tests are con-
ducted in parallel using δ threads to jointly calculate
the marginals over contingency tables.

At the beginning of the kernel, the indices i, j
are determined and the frequently accessed adjacencies
adj(Cc, Vi) are copied into shared memory as(Vi) (see
lines 1–4). Next, all possible combinations of separation
sets are iterated (see lines 5 – 37). At first, a parallel
combination function is called to determine the current
separation set separation S1..l, see [29]. Next, the mem-
ory for the auxiliary data structures in the scratch space
is set to 0 by a primary thread. After synchronization,
δ threads jointly calculate the contingency tables from
data D. In this step, all variables Vk in S1..l have to
be considered (see lines 14–17). Using the calculated
contingency table Nvivjs, the δ threads jointly calculate
the marginals N+vjs,Nvi+s and N++s (see lines 20–22).
In a subsequent step, each thread calculates a part of
the statistic derived from the marginals of the corre-
sponding contingency table, which is stored in the array
local statistic in shared memory (see lines 24–26). In
a final step, the primary thread tx = 0 performs the
CI test for the pair of adjacent variables Vi, Vj given
S1..l, based on the sum over local statistic. In the case
of p(Vi, Vj |S1..l) ≤ α, the edge between Vi, Vj is deleted
and the corresponding Sepset entry is marked (see lines
31–34). Additionally, a flag is set to enable an early ter-

Algorithm 3 Kernel for arbitrary level l ≥ 1
Input: D, α, V, C, Cc, Sepset, ∪V|Vi|
Output: C, Sepset
of blocks: N × N

β
of threads per block: δ × γ × β

1: i = bx
2: Let as(Vi) = adj(Cc, Vi) in shared memory
3: pos = by × β + tz
4: j = as[pos]

5: for k = ty; t <
(|as(Vi)|−1

l

)
; t = t+ γ do

6: Pos1..l = parallel comb(|as(Vi)| − 1, l, k)
7: S1..l = as[Pos1..l]
8: if tx == 0 then
9: set memory for Nvivjs,N+vjs,Nvi+s,N++s

to 0 in scratch space
10: end if
11: syncthreads
12: for g = tx; g < n; g = g + δ do
13: sum sep = 0, cat sep = 1
14: for all s in S1..l do
15: sum sep = sum sep+ (D[s][g]× cat sep)
16: cat sep = cat sep× |Vs|
17: end for
18: atomicAdd(Nvivjs[sum sep× |Vi| × |Vj |+

D[Vi][g]× |Vj |+D[Vj][g]], 1)
19: syncthreads
20: for g = tx; g < |Vi| × |Vj | × |S|; g = g + θ do
21: Calculate N+vjs,Nvi+s,N++s

22: end for
23: syncthreads
24: for g = tx; g < |S|; g = g + θ do
25: Calculate local statistic[tx]
26: end for
27: syncthreads
28: if tx == 0 then
29: Sum(local statistic)
30: Perform T (Vi, Vj |S1..l)
31: if p(Vi, Vj |S1..l) ≤ α then
32: Delete edge Vi − Vj from C
33: Sepset(Vi, Vj) = S1..l

34: end if
35: end if
36: end for
37: end for

mination of the loop over the possible separation sets.
Note, in case of small values of maxV (|Vi|), i.e., 2, the
auxiliary data structures could be kept in shared mem-
ory, or thread local memory for faster execution times.
Yet, for larger values of maxV (|Vi|) the auxiliary data
structures exceed the available space of these memory
fast memory options.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

4 Experimental Evaluation

In this section, we evaluate the proposed gpuPC al-
gorithm for discrete data within two sets of experi-
ments. The first experiments compare gpuPC to a GPU-
accelerated baseline implementation that follows the
parallel execution strategy proposed by cupc [29]. In
the second experiments compare gpuPC and the GPU-
accelerated baseline to existing parallel implementations
of the PC algorithm executed on a CPU.

4.1 Experimental Setup The experiments are con-
ducted on an enterprise-grade server with 2 Intel R©

Xeon R© Gold 6148 CPU with 20 cores each, which is
equipped with an NVIDIA V100 card, with 32 GB of
HBM. The GPU card is connected via PCI-E 4.0. Fur-
thermore, the server is equipped with 1.5 TB of RAM,
allowing to keep all data in memory during the execu-
tion of the experiments. The operating system is an
Ubuntu 18.04 and the NVIDIA driver version 410.79 is
installed with CUDA version 9.1.

For the experiments, we compare gpuPC to a GPU-
accelerated baseline using the same implementation of
the CI test and follows the parallel execution strategy
proposed by cupc-E [29], which we call disc-cupc.
Similar to cuPC, disc-cupc uses the threads within
a thread block to process γ CI tests for β edges.
Further, starting N × N

β blocks ensures that each edge
is processed. In contrast to gpuPC, the implementation
of disc-cupc does not support any explicit memory
management and each thread allocates global memory
for the auxiliary data structures inside the kernel. For
both GPU-accelerated implementations configuration
parameters for the parallel execution have been tuned
on several synthetic settings. The parameters for
disc-cupc are in accordance to the parameters of
cupc-E [29]. Hence, we set γ = 32 and β = 2. For
gpuPC we set δ = 64, γ = 2 and β = 1.

Further gpuPC is compared to CPU imple-
mentations from the R-packages bnlearn [23] and
parallelPC [9]. The package bnlearn provides an
implementation of the CI test written in C. Yet, the
adjacency search is parallelized using the R library
parallel, which results in the launch of multiple R
processes. The package parallelPC provides a paral-
lel implementation using the R library parallel and is
entirely written in R. Thus, it avoids the overhead of
mapping R data structures to C data structures.

Measurements comparing GPU- and CPU-based
versions include all data transfer between devices. Fur-
thermore, all implementations are called from their R
interface. Thus, measurements include times for data
copies from R to C or CUDA. If not stated differently,
we repeat each experiment run at least 10 times and

present the median runtime. Further, we set the tuning
parameter α to 0.01, which is common in application [5].

For the first set of experiments, we investigate the
performance under the dimensions relevant to the PC
algorithm considering the characteristics of a CI test
for discrete data and its execution on a GPU. Thus, we
examine the number of vertices N , the number of ob-
servations n, the maximum category count maxV (|Vi|),
the number of CI tests per edge T , and a decay factor
d. The decay factor d describes the percentage of edges
that are removed equally distributed from skeleton C
within each level l of the adjacency search. We consider
T and d as a proxy for the impact of edge deletion from
the underlying C to ensure reproducibility and trace-
ability of experiments over levels. Furthermore, varying
the number of T allows to investigating how the imple-
mentations cope with load imbalance due to a different
number of CI tests per edge [21].

In the second set of experiments, we consider dis-
crete distributed datasets, sampled from benchmark
Bayesian networks from the bnlearn repository [24]
with varying characteristics, see Table 1. In addition to
high-dimensional datasets, e.g., LINK and MUNIN, that
provide ample opportunity for parallel execution, we
also consider small-dimensional datasets, e.g., ALARM

and ANDES with varying sample size.

Dataset N n maxV (|Vi|)
ALARM 37 200,000 4
ANDES 223 20,000 2
LINK 724 20,000 4
MUNIN 1,041 20,000 21

Table 1: Characteristics of datasets, generated based
on benchmark Bayesian networks from the bnlearn
repository. N - number of vertices, n - number of
observations, maxV (|Vi|) - maximal category count.

4.2 Comparing GPU-based Implementations
in Synthetic Settings We investigate the scalability
of gpuPC in five different dimensions. We report the
measured speedup compared to the baseline disc-cupc

for the different experiment runs in Table 2.
For a varying N , which corresponds to a varying

number of CI tests, i.e., larger N imply more CI tests,
the performance difference remains fairly steady. As
the number of vertices N doubles, the actual execution
times quadruple, which follows the polynomial complex-
ity [8]. For a varying maxV (|Vi|), larger values lead
to higher memory demand of the auxiliary data struc-
tures. Correspondingly, the measured execution times
increase with larger maxV (|Vi|). Yet, the speedup re-
mains similar, with an exception for maxV (|Vi|) = 2.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

Dimensions Parameter settings
Speedup measurements

N 1K 2K 4K 8K
4.2 4.38 4.1 2.97

maxV (|Vi|) 2 4 8 10 20
3.6 7.67 7.5 6.4 ∞

n 10K 50K 100K 500K 1M
8.4 29.1 37.7 45.5 45.6

T 1 4 16 32 128
9.4 9.7 6.25 4.25 4.36

d 0.9 0.75 0.5
8.2 12.0 ∞

Table 2: Speedup of gpuPC compared to disc-cupc,
based on median execution times of 10 runs. For
each experiment all dimensions except the one of in-
terest are fixed, with the following values N = 1, 000,
maxV (|Vi|) = 4, n = 10, 000, T = 32, d = 0.9. Note,
that ∞ indicates that disc-cupc ran out of memory.

For maxV (|Vi|) > 10, disc-cupc fails due to memory
requirements exceeding available on-chip memory, while
gpuPC remains operating. Yet, the measured execution
times of gpuPC degrade; due to a limited parallel execu-
tion and poorer caching behavior given large auxiliary
data structures. For a varying n, the difference in the
parallel execution strategies yields the largest perfor-
mance gap between the two implementations. gpuPC is
up to factors of 45 faster than disc-cupc for n ≥ 500K,
while it is only a factor of 8.4 faster for n = 10K. The
measured execution times for gpuPC increase linear with
n for n ≥ 500K. For smaller n the increase is sublinear.
For a varying T , which reflects settings of load imbal-
ance, the speedup is fairly constant for T ≥ 32. Yet,
for T < 32 the speedup is higher for smaller values of
T . The results are in line with the fine-granular execu-
tion strategy of gpuPC, which is better suited for situ-
ations of load imbalance. In particular, in disc-cupc

at least 32 CI tests per edge are conducted in parallel
due to γ and the warp size of 32, which explains the
overhead for T < 32. For a varying d, a smaller decay
factor d indicates more remaining edges after each level.
Hence, more CI tests are conducted per level. Besides,
a higher level may be reached leading to larger separa-
tion sets with higher memory demand for the auxiliary
data structures. Therefore, disc-cupc fails for d = 0.5.
Further, we observe that the performance gap increases
with smaller d, as gpuPC better handles both a larger
number of CI tests, as well as, higher-order CI tests.

In summary, gpuPC is faster compared to disc-cupc
in all considered dimensions. In particular, when con-

sidering the number of observations n, gpuPC is faster
by over an order of magnitude. Furthermore, gpuPC

scales for datasets with high memory demand for aux-
iliary data structures, while disc-cupc result in errors.
Yet, to handle datasets with a high memory demand for
auxiliary data structures, e.g., with maxV (|Vi|) of 20,
gpuPC restricts the degree of parallelism, leading to re-
duced execution time performance. Note, the restriction
of the degree of parallelism occurs with a lower memory
demand, in case of a GPU with lower available memory.

4.3 Comparing GPU-based and CPU-based
Implementations on Benchmark Bayesian Net-
works In this experiment, we compare the measured
execution times of the adjacency search for all four im-
plementations, see Table 3. Note, we executed the CPU-
based implementations running on 40 cores to achieve
a fairer comparison.

Dataset parallelPC bnlearn disc-cupc gpuPC

ALARM 579.54 s 14.71 s 0.95 s 0.26 s
ANDES 187.24 s 20.78 s 1.41 s 0.38 s
LINK 16,510.31 s 141.65 s 12.93 s 2.28 s

MUNIN 110,740.5 s 273.79 s 97.45 s 14.99 s

Table 3: Execution time in seconds for the adjacency
search of bnlearn and parallelPC running on 40 cores
on CPU, disc-cupc and gpuPC running on GPU using
different benchmark datasets.

Comparing the two CPU-based implementations, a
significant difference in execution times becomes visible.
The implementation from bnlearn is faster by a factor
of up to 400 compared to parallelPC. We assume the
difference of execution is a result of the efficient C im-
plementation in bnlearn and overhead in the R imple-
mentation of parallelPC. Both GPU-accelerated im-
plementations are faster than the CPU-based implemen-
tations. disc-cupc achieves a speedup ranging between
2.8 to 15.5 compared to bnlearn. gpuPC has the fastest
execution times on all datasets, achieving a speedup of
18.3 to 62.1 compared to bnlearn and is faster by a
factor of up to 6.5 compared to disc-cupc. There is
no difference in the observed pattern of the measured
execution times for small- or high-dimensional data, as
well as for data with a larger number of observations.

5 Related Work

In high-dimensional settings, the large number of CI
tests performed during the adjacency search within
the PC algorithm has raised a significant interest in a
parallel , e.g., see [9, 13, 14, 20, 21, 22, 25, 29].

The R-package bnlearn implements several

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

constraint-based CSL algorithms, including the PC
algorithm and its extensions. All implementations
follow a generalized framework for parallel execution
introduced by Scutari [25] that proposes to process the
pairs of variables to be tested for independence within
each level in parallel. In contrast to bnlearn, gpuPC

targets a GPU as an execution device. While gpuPC

also parallelize over the pairs of variables, it extends
to have threads within units jointly compute the
contingency tables, adding a layer of parallel execution.

Madsen et al. [14] propose two parallel implementa-
tions for discrete distributions. One implementation is
based on the concept of Balanced Incomplete Block De-
signs [12] to distribute the computations of CI tests to
threads in a shared memory system. The second version
is designed for datasets with a large number of observa-
tions. In this case, the contingency tables are computed
in parallel. Furthermore, their implementation handles
higher-order CI tests through the ranking of edges ac-
cording to a test score to perform the most promising
CI tests first. Also, they limit higher-order CI tests to a
separation set size of three. In contrast gpuPC runs on
a GPU and uses a combination of the proposed parallel
execution scheme. While threads within units jointly
compute the contingency tables, multiple of these are
executed in parallel on the SMs of the GPU.

Further, Thuc et al. [9] propose a parallel version
implemented in the R-Package ParallelPC, showing
performance improvements on multivariate normal dis-
tributed gene expression data. Schmidt et al. [21] study
the impact of load balancing mechanisms in a similar
setting. They apply a dynamic task distribution mecha-
nism to achieve speed-up compared to static task distri-
bution approaches. Despite potential performance gain,
gpuPC does not include dynamic task distribution, given
that this mechanism is costly to implement on a GPU
and the impact of load imbalance for discrete distribu-
tions is small [25]. Further, the finer-grained parallel
execution strategy copes better with load imbalance.

Existing GPU-accelerated approaches focus on mul-
tivariate normal distributed data. Schmidt et al. [20]
provide an implementation with GPU kernels perform-
ing unconditioned independence tests and CI tests with
a separation set of size 1, only. Arguing that only a
few higher-order tests for independence have to be con-
ducted in the gene expression data, used in their eval-
uation. They extend their work, with an out-of-core
approach that works beyond GPU device memory lim-
itations [22]. They split data into smaller chunks and
use CUDA streams to overlap data transfer, kernel ex-
ecution on the GPU, and splitting of the data on the
CPU reducing overhead. In contrast gpuPC focuses on
discrete data distributions and is not limited by a sep-

aration set size. Currently, it is limited by the device
memory, with regards to vertices N and data D. Yet, to
overcome this shortcoming the out-of-core approach [22]
could be integrated into gpuPC in future work.

Zarebavani et al. propose cupc, a generalized im-
plementation conducting all CI tests on the GPU paral-
lelizing over pairs of variables and separation sets re-
spectively [29]. Further, they share intermediate re-
sults within the CI tests, i.e., the pseudo-inverse, to
reduce computation. Within their evaluation, they re-
port a speedup of several orders of magnitude com-
pared to CPU-based implementations. Yet, they com-
pare to a parallel version written entirely in the R-
language, which showed similar runtimes as a single-
threaded C++ version. Within gpuPC, we utilize a sim-
ilar scheme for parallel execution as cupc, yet, units of
threads jointly work on the computation of the contin-
gency table and marginal. Furthermore, in our eval-
uation we compare to a parallel implementation com-
pletely written in C++ using up to 40 cores, providing
ample opportunity for fast parallel execution on a CPU.

6 Summary

In this work, we propose a parallel execution strategy
tailored for constraint-based CSL on a GPU to acceler-
ate the execution for discrete data. Therefore, we in-
troduce the gpuPC algorithm, which performs the adja-
cency search of the PC algorithm and the CI tests in
parallel on the GPU. In particular, gpuPC incorporates
the data access characteristics a of CI test for discrete
data through a fine-grained parallel execution strategy,
which calculates the marginals over contingency tables
within units of threads. Further, gpuPC implements ex-
plicit memory management to handle the corresponding
auxiliary data structures in GPU memory, even in cases
that exceed on-chip memory.

We demonstrate the performance gain of gpuPC

compared to a GPU baseline implementation and ex-
isting parallel CPU-based implementations, using dis-
crete data sampled from benchmark Bayesian networks.
Running the experiments on a multi-core system with
40 cores provide ample opportunity for parallel execu-
tion on the CPU. Nevertheless, gpuPC outperforms the
CPU-based implementations by factors of up to 62.1.
Moreover, due to the more fine-granular parallel execu-
tion strategy in combination with the explicit memory
management, gpuPC remains operating in situations, in
which auxiliary data structures exceed on-chip memory,
and is up to 6.5 times faster on common benchmark
datasets compared to a GPU baseline implementation.

In settings of CSL that require access to the obser-
vational data within each CI test, e.g., for discrete data,
the proposed parallel execution strategy implemented

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

in gpuPC outperforms existing parallel execution strate-
gies. In the future, we are going to examine the trans-
ferability of the introduced parallel execution strategy
to data distribution models that require more complex
statistical methods with CI tests that, generally, follow
the access patterns considered in this work.

References

[1] A. Agresti, A Survey of Exact Inference for Contin-
gency Tables, Statistical Science, 7 (1992), pp. 131–153.

[2] S. A. Andersson et al., A Characterization of
Markov Equivalence Classes for Acyclic Digraphs, An-
nals of Statistics, 25 (1997), pp. 505–541.

[3] D. M. Chickering, Learning Equivalence Classes
of Bayesian-Network Structures, Journal of Machine
Learning Research, 2 (2002), pp. 445–498.

[4] D. Colombo et al., Learning High-Dimensional Di-
rected Acyclic Graphs with Latent and Selection Vari-
ables, Annals of Statistics, 40 (2012), pp. 294–321.

[5] D. Colombo and M. H. Maathuis, Order-
Independent Constraint-Based Causal Structure Learn-
ing, Journal of Machine Learning Research, 15 (2014),
pp. 3921–3962.

[6] D. Heckerman et al., Learning Bayesian Networks:
The Combination of Knowledge and Statistical Data,
Machine Learning, 20 (1995), pp. 197–243.

[7] J. Huegle et al., How Causal Structural Knowl-
edge Adds Decision-Support in Monitoring of Automo-
tive Body Shop Assembly Lines, in Proceedings of the
Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI Organization, 7 2020, pp. 5246–
5248. Demos.

[8] M. Kalisch and P. Bühlmann, Estimating High-
Dimensional Directed Acyclic Graphs with the PC-
Algorithm, Journal of Machine Learning Research, 8
(2007), pp. 613–636.

[9] T. D. Le et al., ParallelPC: An R Package for Effi-
cient Causal Exploration in Genomic Data, in Pacific-
Asia Conference on Knowledge Discovery and Data
Mining, Cham, 2018, Springer International Publish-
ing, pp. 207–218.

[10] , A Fast PC Algorithm for High Dimensional
Causal Discovery with Multi-Core PCs, IEEE/ACM
Transactions on Computational Biology and Bioinfor-
matics, 16 (2019), pp. 1483–1495.

[11] E. Lindholm et al., NVIDIA Tesla: A Unified
Graphics and Computing Architecture, IEEE Micro, 28
(2008), pp. 39–55.

[12] A. L. Madsen et al., A New Method for Vertical
Parallelisation of TAN Learning Based on Balanced
Incomplete Block Designs, in Probabilistic Graphical
Models, Cham, 2014, Springer International Publish-
ing, pp. 302–317.

[13] , Parallelisation of the PC Algorithm, in Ad-
vances in Artificial Intelligence, New York, NY, USA,
2015, Springer-Verlag New York, Inc., pp. 14–24.

[14] , A Parallel Algorithm for Bayesian Network
Structure Learning from Large Data Sets, Knowledge-
Based Systems, 117 (2017), pp. 46–55.

[15] D. Margaritis, Learning Bayesian Network Model
Structure From Data, PhD thesis, School of Computer
Science, Carnegie-Mellon University, 5 2003.

[16] A. Marx and J. Vreeken, Testing Conditional In-
dependence on Discrete Data using Stochastic Com-
plexity, in Proceedings of Machine Learning Research,
vol. 89, PMLR, 2019, pp. 496–505.

[17] J. Nickolls et al., Scalable Parallel Programming
with CUDA, Queue, 6 (2008), pp. 40–53.

[18] J. Pearl, Causality: Models, Reasoning, and Infer-
ence, Cambridge University Press, USA, 2nd ed., 2009.

[19] D. B. Rubin, The design versus the analysis of obser-
vational studies for causal effects: Parallels with the
design of randomized trials, Statistics in Medicine, 26
(2007), pp. 20–36.

[20] C. Schmidt et al., Order-independent Constraint-
based Causal Structure Learning for Gaussian Distri-
bution Models Using GPUs, in Proceedings of the 30th
International Conference on Scientific and Statistical
Database Management, SSDBM ’18, New York, NY,
USA, 2018, ACM, pp. 19:1–19:10.

[21] , Load-Balanced Parallel Constraint-Based
Causal Structure Learning on Multi-Core Systems for
High-Dimensional Data, in Proceedings of Machine
Learning Research, vol. 104, Anchorage, Alaska, USA,
dec 2019, PMLR, pp. 59–77.

[22] , Out-of-Core GPU-Accelerated Causal Structure
Learning, in Algorithms and Architectures for Parallel
Processing, Cham, 2020, Springer International Pub-
lishing, pp. 89–104.

[23] M. Scutari, Learning Bayesian Networks with the
bnlearn R Package, Journal of Statistical Software, 35
(2010), pp. 1–22.

[24] , Bayesian Network Repository, 2012.
http://www.bnlearn.com/bnrepository.

[25] , Bayesian Network Constraint-Based Structure
Learning Algorithms: Parallel and Optimized Imple-
mentations in the bnlearn R Package, Journal of Sta-
tistical Software, Articles, 77 (2017), pp. 1–20.

[26] P. Spirtes, Introduction to Causal Inference, Journal
of Machine Learning Research, 11 (2010), pp. 1643–
1662.

[27] P. Spirtes et al., Causation, Prediction, and Search,
Second Edition, Adaptive Computation and Machine
Learning, MIT Press, Cambridge, MA, USA, 2000.

[28] I. Tsamardinos and G. Borboudakis, Permutation
Testing Improves Bayesian Network Learning, in Ma-
chine Learning and Knowledge Discovery in Databases,
Berlin, Heidelberg, 2010, Springer-Verlag, pp. 322–337.

[29] B. Zarebavani et al., cuPC: CUDA-Based parallel
PC algorithm for causal structure learning on GPU,
IEEE Transactions on Parallel and Distributed Sys-
tems, 31 (2020), pp. 530–542.

Copyright c© 2021 by SIAM
Unauthorized reproduction of this article is prohibited

