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ABSTRACT
Against the backdrop of ever-growing data volumes and trends like
the Internet of �ings (IoT) or Industry 4.0, Data Stream Processing
Systems (DSPSs) or data stream processing architectures in general
receive a greater interest. Continuously analyzing streams of data
allows immediate responses to environmental changes. A challeng-
ing task in that context is assessing and comparing data stream
processing architectures in order to identify the most suitable one
for certain se�ings.

�e present paper provides an overview about performance
benchmarks that can be used for analyzing data stream processing
applications. By describing shortcomings of these benchmarks, the
need for a new application benchmark in this area, especially for a
benchmark covering enterprise architectures, is highlighted. A key
role in such an enterprise context is the combination of streaming
data and business data, which is barely covered in current data
stream processing benchmarks. Furthermore, �rst ideas towards
the development of a solution, i.e., a new application benchmark
that is able to �ll the existing gap, are depicted.
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1 INTRODUCTION
�e ever increasing amount of data that is being produced nowa-
days, from smart factories to the Internet of �ings (IoT) or Industry
4.0, gives rise to completely new challenges and opportunities.

A particularly interesting business domain in this context is in-
dustrial manufacturing. In a GE ba�ery production plant in New
York (state), for example, 10,000 di�erent data a�ributes are cap-
tured, some as o�en as every 250ms [14]. Furthermore, modern
manufacturing equipment, e.g., injection molding machines, gen-
erate multiple gigabytes or even up to terabytes of sensor data,
daily [7]. �is data provides a detailed overview of the current
state of machines. It allows timely reactions to events, such as
failures. By enriching gathered data with context information, e.g.,
information about suppliers of certain goods or machine operators,
a be�er understanding of the holistic value chain can be reached.
Up-to-date information on product status allows reacting as soon as
possible to changing environments, both, locally at machine level,
as well as globally, e.g., concerning production order management.

An especially interesting, though not completely new, type of
applications that focusses on analyzing high frequency data sources,
e.g., sensor data, are Data Stream Processing Systems (DSPSs). In
recent years, due to the high demand for Big Data analysis, a multi-
tude of new DSPSs were developed. Examples for these are Apache
Flink, Apache Storm, Apache Spark Streaming, Apache Samza,
Twi�er Heron and Apache Apex [5, 6, 9]. Contrary to such recently
developed systems, Aurora [1] and STREAM [3], for instance, were
already presented in the early 2000’s.

Although a broad variety of systems allows for more choice,
picking the system or architecture that best suits a given use case
becomes more of an issue. Due to the lack of satisfying real-world
application benchmarks for analyzing data streams, alone as well
as together with corresponding business data, this is currently a
particularly challenging task. We aim to tackle this issue by provid-
ing an application benchmark focussed on data stream processing
in an enterprise context.

�e remainder of this paper is structured as follows: Section 2
presents related work in the area of performance benchmarking for
data stream processing and Section 3 highlights the need for a new
data stream processing benchmark. Section 4 introduces the idea
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for an architecture for the new enterprise streaming benchmark.
Section 5 concludes, giving a brief summary and illustrating areas
for future work.

2 RELATEDWORK
Although Data Stream Processing Systems or data stream process-
ing in general are not a recent development, compared to the area
of Database Management Systems, only few benchmarks are avail-
able. An overall comparison of the benchmarks presented in the
following is shown in Table 1. �e mentioned term system under test
(SUT) stands for ”the system to be evaluated” [11], so the system
that is responsible for processing incoming data and for responding
according to the de�ned queries.

One of the most, if not the most popular application benchmark
focussing on data stream processing is the Linear Road Benchmark
by Arasu et al. [4]. �e benchmark contains a toolkit comprising
a data generator, a data sender as well as a result validator. With
an execution of a Linear Road implementation, a variable tolling
system for a metropolitan area covering multiple expressways is
simulated. �e amount of tolls is thereby dependent on multiple
aspects of the tra�c situation on highways.

�e data sender emits data records of four di�erent types. Car
position reports represent the data type with, by far, most of the
input data. �e minor part of remaining data records is spread
across the other three input types and, contrary to car position
reports, express explicit user requests that always expect an answer
from the system. Depending on the overall situation on highways,
car position reports might require the system to create an output
or not.

Overall, the benchmark authors de�ned four di�erent queries or
output types. Due to complexity, the implementation of the lastly
presented query was even skipped in the two implementations
described in [4]. Besides live data, historical data covering ten
weeks of tolling history is generated and partly has to be used in
order to produce the correct answer.

With regard to benchmark result metrics, Linear Road de�nes
one overall metric called the L-Rating. �e L-Rating indicates how
many expressways, a con�gurable parameter for the data genera-
tion step, a system can handle without violating the de�ned maxi-
mum response times for each query.

StreamBench [10] aims at benchmarking distributed DSPSs. It
can be categorized as a micro benchmark, i.e., it measures atomic
operations, such as the execution of a projection rather than those
of more complex applications as in Linear Road. �us, when a
system’s performance for real-world scenarios or applications is to
be evaluated, micro benchmark results only have limited validity.
However, if, e.g., two distinct �lter operator implementations are to
be compared, micro benchmarks have advantages over application
benchmarks due to their simplicity and the fact that measurements
only contain the relevant parts without much overhead.

StreamBench de�nes seven benchmark queries or programs in
total. Six of these work with textual data, one uses numerical data
as input. Moreover, four out of seven queries contain a single
computation step, such as extracting a certain �eld out of a data
record, and three queries comprise multiple computation steps.
Four out of seven are stateless and three queries have to maintain a

state. Although seven di�erent queries are presented, some typical
streaming operations like window functions are not taken into
account.

Next to query de�nition, StreamBench de�nes four workload
suites. �ose suites impact the way the benchmark is executed.
In particular, the workload suites vary by, e.g., input data scales,
executed queries, the existence of an intentional node failure or
employed benchmark result metrics.

As input data, StreamBench utilizes two real-world data sets, one
with textual and one with numerical data. Although real-world data
sets are always desirable since they help increase the benchmark’s
relevance, the two data sets used in StreamBench only serve as
seeds for data generation and thus do not entirely represent reality.

In contrast to Linear Road, StreamBench employs a message
broker, which is used for decoupling data generation and consump-
tion. �is approach is similar to the one proposed in this paper, as
described in Section 4. For the results presented in [10], Apache
Ka�a [8] is used as broker, which is again similar the benchmark
described in the present paper. A tool for data ingestion released in
the context of StreamBench was not described by the authors.

Dependent on the workload suite, StreamBench de�nes the met-
rics throughput, the average count per second and the data size
in bytes per second, both in total and per node, as well as latency.
Additionally, the authors introduce three new metrics: a durability
index (uptime), a throughput penalty factor (assessing throughput
change for node failure), and a latency penalty factor (assessing
latency change for node failure). To the best of our knowledge,
result validation with respect to query outcome is not supported
by a dedicated tool.

RIoTBench, a benchmark by Shukla et al. [12], focuses on bench-
marking distributed DSPS. It de�nes several micro benchmark sce-
narios as well as four application benchmark use cases, which
represent combined micro benchmarks. In particular, these cover
Extract, Transform and Load (ETL) processes, statistics generation,
model training as well as a predictive analytics scenarios.

With respect to data, RIoTBench uses scaled real-world data sets
from di�erent IoT domains, namely, smart city, smart energy and
health. A dedicated data sender for ingesting data into the system
or a query result validation tool are not provided.

Next to latency, throughput as well as CPU and memory utiliza-
tion, RIoTBench measures ji�er as a metric, which is de�ned as
the di�erence between expected and actual output rate during a
certain interval.

3 SHORTCOMINGS IN EXISTING
BENCHMARKS

In summary, we see the need for a new streaming benchmark
for several reasons. First, currently only two major application
benchmarks for data stream processing exist and only one of them
considers the distribution of systems in its metrics.

Second, historical and transactional data is not or only barely
taken into account in all of the presented benchmarks, which we
believe is a crucial aspect in many enterprise contexts in order to
achieve the greatest added value. Only when combining streaming
data, e.g., sensor measurements from manufacturing equipment,
with its corresponding business information, one is able to not only
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Table 1: Overview of Data Stream Processing System Benchmarks

Criteria
Benchmark Linear Road StreamBench RIoTBench

Benchmark Type Application benchmark Micro benchmark Micro benchmark and
application benchmark

Considered System Under
Test DSPS or DBMS Distributed DSPS Distributed DSPS

Domain Smart City (variable tolling) Log processing and network
tra�c monitoring

Smart City, Smart Energy,
Health (in general - IoT)

Data Synthetic data (including
historical data)

Synthetic data (real-world data
used as seed) Scaled real-world data sets

Metrics

One self-de�ned metric
(throughput under latency

restriction;
hardware-independent):

L-Rating

�roughput or
throughput-related (di�erent

forms), latency or
latency-related (di�erent forms),

system availability

Latency, throughput, ji�er
(di�erence between expected

and actual output rate),
resource utilization

�ery Result Validation Validation tool provided Not considered Not considered

Data Sender System Under Test 
(SUT) Result Validator

Figure 1: Simpli�ed Benchmark Architecture in Fundamen-
tal Modeling Concepts (FMC)

react locally, but also globally, as mentioned in Section 1. As such,
questions relating to business use cases, including interfaces or
e�cient combination of live and historical data, are currently chal-
lenging to answer. Additionally, the majority of current streaming
benchmarks lack tool support, e.g., for result validation or data
ingestion, which complicates implementing these benchmarks and
retrieving objective results.

4 AN ARCHITECTURE FOR AN ENTERPRISE
STREAMING BENCHMARK

Figure 1 depicts a simpli�ed overview of a general architecture for
benchmarks with focus on data stream processing, which helps
ge�ing an understanding of the general benchmark process. It
shows three main components: the data sender, system under test
(SUT) and the result validator.

�e data sender is responsible for ingesting data into the SUT.
�e SUT is processes incoming data and responds according to
the de�ned queries. Produced results are evaluated by the result
validator. �is component could also calculate benchmark metrics,
e.g., related to performance, which might already be monitored
when running the benchmark.

A more detailed overview of the proposed architecture for an
enterprise streaming benchmark is illustrated in Figure 2.

�e input data as the �rst component, i.e., one or more �les in
CSV or similar format containing sensor data from a manufacturing
context, are the input for the system with respect to streaming data.
�is data will be, in the best case, entirely real-world data. If no
suitable data set can be identi�ed, a data generator will be needed
that takes care of creating the input data. �e preferred way of

System Under Test

Message Broker
(Apache Kafka)

Data Sender 
(Toolkit)

Input Data 

DBMS 
(Business Data)

Benchmark  Query 
Implementation 

Result Validator 
and Metric 

Calculator (Toolkit)

Data and Workload 
Generator (Toolkit)

Figure 2: Architecture of the Enterprise Streaming Bench-
mark in FMC

doing so is the generation based on an existing real-world data set
in order to keep characteristics.

�e input data is read and forwarded by the data sender. Sending
rate, i.e., the number of messages that are forwarded per second,
shall be con�gurable. �at allows analyzing di�erent scenarios and
environments with respect to the input rate the SUT has to handle.
Although it is closer to reality to send all records according to the
timestamp they may contain, this behavior might not be su�cient
to satisfy con�gured data ingestion rates. When solely relying on
existing timestamps, it might not be possible to test, e.g., how much
throughput a system can reach or how a system would behave with
a doubled number of input records per second.

�e message broker acts as interface between data sender and
SUT and as storage for query results in the de�ned setup. In the
presented benchmark architecture, Apache Ka�a [8] in particular
shall act as message broker. One reason for using Apache Ka�a is
its usage in enterprise so�ware architectures. An existing �eld of
application for Ka�a is, e.g., as interface to a DSPS. �us, it re�ects
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reality and so adds relevance to the benchmark. Such usages of
Ka�a in combination with a DSPS were presented by, e.g., Bouygues
Telecom [2] and Zalando [13].

Additional reasons for choosing Ka�a are related to scalability
and benchmark metrics calculations, i.e., we aim to leverage Ka�a
timestamp functionality for calculating processing times. Using
Ka�a timestamps allows to stay independent from implementations
of SUTs and thus, system-dependent di�erences in terms of time
measurements can be preempted. Moreover, Ka�a already provides
further con�guration parameters, which can be used by the data
sender, e.g., for adjusting the mentioned throughput. So it is possible
to send data records in batches with con�gurable size or to adjust
the level of acknowledgements used when sending data.

�e SUT comprises two main components: the query implemen-
tation and a DBMS. �e implementation represents the queries
de�ned by the benchmark and can be done using any technology,
e.g., a DSPS or DBMS features such as stored procedures. �e only
requirement is the ability to communicate with a DBMS and with
the message broker, i.e., with Apache Ka�a. Historical or busi-
ness data is consumed from a DBMS on demand, i.e., whenever a
query requires this data. As the speed of DBMS can in�uence the
responsive time of queries, it is part of the SUT. Some queries might
require updating one or multiple historical data records, which is
why a bi-directional connection between the query implementation
and the historical data store exists. Except for such business data
updates, query results are returned to the message broker.

�e data and workload generator simulates realistic usage
through inserting business data and executing analytical queries on
the DBMS containing the historical data. By doing so, a real-world
environments can be simulated.

�e last component illustrated in Figure 2 is the result validator
and benchmark metrics calculator. It reads the query output from
the message broker as well as from the DBMS containing the busi-
ness data and checks the correctness of results. Additionally, the
benchmark results, i.e., the scores for the benchmark metrics, are
calculated.

5 CONCLUSIONS
Within the present paper, related work and the need for a new
application benchmark for data stream processing in an enterprise
context is presented. Furthermore, the concept for such a new
benchmark is illustrated. �e proposed benchmark focusses on
industrial manufacturing as domain and provides a toolkit for data
ingestion into the SUT as well as query result validation and bench-
mark metrics calculation. While some queries can be answered
solely using streaming data, other queries require access to histori-
cal or business data in order to produce correct results.

By developing the benchmark, we aim to �ll the gap that exists
in the area of benchmarking enterprise architectures with focus on
data stream processing.

�e next steps are to validate the presented architecture by dis-
cussing it with industry partners as well as to create a �rst minimal
viable benchmark implementation. �at includes the development
of an initial query list. Moreover, a set of benchmark metrics shall
be de�ned that are able to assess relevant aspects, especially for
the enterprise context.
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