
Conceptual Survey on Data Stream Processing
Systems

Guenter Hesse∗ and Martin Lorenz †

Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
e-mail: ∗guenter.hesse@hpi.uni-potsdam.de, †martin.lorenz@hpi.uni-potsdam.de

(Accepted at IEEE 21st International Conference on Parallel and Distributed Systems 2015, http://dx.doi.org/10.1109/ICPADS.2015.106) Copyright c© 2015
IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. DOI: https://doi.org/10.1109/ICPADS.2015.106

Abstract—The present paper gives an overview about the state
of the art technology within the area of data stream processing
systems. Although the area of stream processing systems is not
new, it is receiving a greater interest in the light of current
business trends like the Internet of Things (IoT). The comparison
of systems thereby includes several aspects such as a look into
their architectures as well as into the responsibilities of the cor-
responding system components. A ranking or recommendations
for one or more system(s) is not part of the work.

Keywords—Stream Processing; Storm; Flink; Spark; Samza

I. INTRODUCTION

Current trends like IoT comprise various aspects that affect
the way of doing business as well as the requirements on
software systems. One of the first projects that is related
to the IoT idea is the work on a cross-company radio-
frequency identification (RFID) infrastructure. It took place at
the Massachusetts Institute of Technology (MIT). Additionally,
the former executive director of the responsible MIT center,
Kevin Ashton, used the term Internet of Things at first in a
presentation he conducted in 1999 [1], [2].

No matter which business area we look at in the context
of IoT, they all have fundamental ideas in common. Be it the
field of predictive maintenance, which describes the continuous
condition monitoring in order to predict when maintenance
should be done to avoid failures, or smart manufacturing,
which describes the improvements of production through IoT,
one central part is connected things that collect data.

Using sensors or similar technologies enables to send those
data about things or their environment to different destinations.
Through collecting and analyzing this data new ways of doing
business emerge. Having such comprehensive data allows to
act faster and better on certain situations and so to be more
flexible, assuming working with real time data.

The mentioned business trends moreover lead to changed
and new requirements with regard to information systems.
One of those is handling data streams, wherefore data stream
management systems can be used. Although systems for man-
aging data streams is not a recently developed concept, it is
becoming more important in the mentioned context of IoT.
Hence, research and development in that area is going on and
of great interest against the backdrop of the challenges related
to the above-described business trends.

The objective of this paper is to analyze and compare cer-
tain data stream processing systems regarding their architecture
and certain aspects that are presented later on. The results
shall allow a better assessment and improved comparability of
those systems and can be used for further research within that
domain. Moreover, it might help choosing a suitable system for
IoT application developers that are dealing with data streams.

After giving a short introduction into the area of data
stream processing systems, a certain set of actual systems of
this type is analyzed in detail. Afterwards, the comparison
results, conclusions and an outlook are presented.

II. DATA STREAM PROCESSING SYSTEMS

Stream processing systems or data stream management
systems (DSMS), which is used synonymously within this
paper, are supposed to handle data streams. Such a stream
is a continuous flow of incoming data records, comparable
to a data feed. The data might be, for example, sensor data,
network data, stock prices or postings in social networks.

Contrary to database management systems (DBMS), data is
usually not persisted before query execution, but could be done
afterwards. This processing model in DSMSs has an impact on
the executed queries. Particularly, so called continuous queries
are used. Those are defined and persisted queries that are
continually executed using a certain data set [3], [4].

Those data sets, on which a stored query is executed on,
are defined by a trigger function. That function specifies when
a query processing is supposed to happen. Concretely, a query
can be triggered based on factors such as time or the number of
newly approached data tuples. Although executing queries on
sliding windows of data might give fewer insights compared
to an evaluation of a database table with more data, there are
advantages of using this technique. Since only the newest data
is considered, there is an emphasis on those recently collected
values, which makes it easier discovering appearing trends
earlier. Additionally, working on a relatively narrow data set
reduces the needed amount of memory and hence, it can help
preventing memory overflows and saves costs [3], [5].

A challenge for DSMS is the order of the incoming data
tuples, which can not be controlled. Of course, there is a
natural order, simply by the time of arrival, but that order
does not necessarily correspond to the chronological order of
the value occurrences. Due to varying factors such as latency
or network connection for moving sensors, the data sequence
could be upset or values could get lost, which is overall

https://doi.org/10.1109/ICPADS.2015.106

referred to as a noisy data stream [6], [4]. Consequently, there
is a trade-off for certain scenarios between performance and
correctness as one can either wait for missing values for an
undefined time or execute the query without the missing values
or with unintended values.

With respect to the performance-related area of bench-
marks, there are no well-established ones for the analyzed
group of distributed data stream processing yet, though the
work presented in [7] describes itself as ”an early step” [7]
towards that direction.

III. COMPARISON OF STREAM PROCESSING SYSTEMS

The existing stream processing systems include older and
discontinued projects as well as newer ones. Moreover, there
are many open-source projects and several commercial sys-
tems. The present work only considers projects belonging to
the group of open-sourced projects with an active group of
researchers and developers. That is done in order to guarantee
as much as possible transparency, comparability as well as
relevance to the current state of the art. Particularly, the
group of compared systems includes Apache Storm, Apache
Spark with its streaming functionality, Apache Samza and
Apache Flink. The group of older DSMS with discontinued
development contains projects such as Aurora [8], STREAM
[9] and Apache S4 [10].

The dimensions that are used for comparison are, next to
the general architecture of each system, the used programming
languages, message treatment, latency, throughput as well as
the kind of message processing assurance.

The programming language can be of interest for IoT
application developers as running the system might require
additional software installed on the corresponding server(s)
such as Java. Furthermore, it becomes relevant if adaptions
to a DSMS itself are intended. The kind of message treatment
can gather interest since a batch processing model might come
at the cost of a decreased latency or restrictions to a limited
set of usable operators [11], [12].

Throughput in the context of stream processing systems
is defined ”as the number of external input messages that are
completed per time unit” [13]. In contrast, latency is the time
difference between consuming a message and the end of its
processing [13]. So all in all low latency and high throughput
are desirable. Both attributes are especially relevant for time-
critical IoT applications as they determine the performance of
stream processing.

The message processing assurance is an important aspect
for as it can impact the overall results and so their correctness.
So if each message must not be processed more than once,
applications may have to think of how to realize that in case
the used system does not assure exactly-once-processing [14].

A. Apache Storm

Nathan Marz originally developed Apache Storm at Back-
Type. In 2011, Twitter acquired BackType and in 2012 the
project was open-sourced [15]. Storm can be characterized as
”real-time fault-tolerant and distributed” according to [15]. It is
mainly written in Java as well as Closure [16], treats messages
as streams and it uses ZeroMQ, which is also known as

∅MQ, 0MQ or zmq. This component is an open-sourced and
comparatively lightweight messaging framework [15], [17].

Persistent queries in the context of Storm are called topolo-
gies. A topology is defined as ”a directed graph where the
vertices represent computation and the edges represent the
data flow between computation components” [15]. There are
two distinct kinds of vertices. One type is named spout and
represents a source of data tuples that is used within the
topology. Such a spout could, for example, pull data from a
message queue that is forwarding sensor data. The other vertex
type is named bold and responsible for processing incoming
data. The resulting tuples can be passed to a following set of
bolds and so be processed further [15].

A schematic overview of Storm is displayed in figure 1.
A Storm system contains three different node types. One of
those is the single master node, which is named after the
daemon that is running on it - Nimbus. It receives topologies
from connecting clients and manages their execution. That
includes the distribution and scheduling of execution on the
cluster nodes as well as an overall progress monitoring with
regard to the throughput. Besides, its architecture follows a
fail-fast approach. In case a node gets killed, Storm uses
a mechanism that allows its restart without interrupting any
topology execution [15].

Master
(Nimbus)

ZooKeeper

ZooKeeper

Supervisor

Supervisor

Supervisor

Fig. 1. Architecture of a Storm System (own figure based on [15])

Next to a single master node, Storm contains a cluster
of Apache ZooKeeper nodes. ZooKeeper can be seen as ”a
service or coordinating processes of distributed applications”
[18]. In the context of Storm, ZooKeeper knows, next to the
local disk(s), about the state of a topology as well as of the
master node and the Supervisor nodes, which are described
later on. Additionally, as shown in figure 1, ZooKeeper acts
as a transmitter of all communication between the other two
stateless node types [15].

The mentioned Supervisor or worker node represents the
third node type. In order to keep an overview about the state
of all Supervisor daemons, a heartbeat mechanism is used.
Concretely, each Supervisor periodically sends a heartbeat
signal to the master node as well as information about possibly
free resources [15]. The main task of a Supervisor is spawn-
ing worker processes based on the instructions it gets from
Nimbus. That covers checking the condition of the created
workers using again a heartbeat mechanism. In case a worker
process terminates unexpectedly, the Supervisor restarts the
corresponding worker [15], [19]. The overall structure of a
worker is conceptually shown in figure 2.

Each worker runs a Java Virtual Machine (JVM) on the its
Supervisor and performs a defined part of exactly one topology.
That is done by running at least one executor, whereby each
executor again consists of one or more task(s) as it can be
seen in figure 2. These tasks eventually perform the actions

defined by a spout or bold. In addition to creating stateful
worker processes, a Supervisor monitors those and regenerates
workers if necessary [15], [19].

ExecutorWorker
Process

Task

Fig. 2. Architecture of a Worker Process (own figure based on [15], [20])

Storm only assures an at-least-once processing of each
message. When restarting a failed spout instance, it continues
from its lastly saved state, which is stored in Zookeeper.
Through Trident, an abstraction on top of Storm that works on
transactions, a stateful stream processing as well as an exactly-
once processing can be achieved [11], [15], [21].

With respect to performance aspects, Storm usually has
a lower throughput as well as a lower latency compared to
Spark Streaming, which is presented later on. Depending on
the versions and the used algorithms the results may differ [7].

B. Apache Flink

The root of Apache Flink is Stratosphere, an open-source
research project or system for big data analytics. Flink supports
batch processing as well as the processing of data streams and
can guarantee an exactly-once-processing. It is mainly written
in Java as well as Scala and has client APIs for these two
programming languages [22], [23], [24], [25].

A Flink Runtime is conceptually presented in figure 3.
Similar to the previously presented Storm, the Flink Runtime
makes use of the master-worker pattern. Concretely, it consists
of two different element types, a Job Manager, the master, and
one or more Task Manager(s), the worker(s). So contrary to
Storm’s architecture displayed in figure 1, there is no layer in
between like ZooKeeper [15], [22].

Job Manager

Task Manager

Task Manager

Task Manager

Fig. 3. Architecture of a Flink Runtime (own figure based on [22], [26])

The Job Manager is the interface to client applications
and has similar responsibilities as Storm’s master node. In
particular, those include receiving assignments from clients,
scheduling of work for Task Managers as well as keeping
track of the overall execution status and the state of every
worker. The lastly mentioned task is again, compared to Storm,
realized using a heartbeat mechanism. The Task Manager
instances execute the assigned tasks or subtasks and exchange
information among workers in case that is needed [22].

Each Task Manager provides a certain number of pro-
cessing slots to the cluster, which are used for parallelizing

tasks. The number of slots can be configured, whereby it is
recommended to use as many slots as there are CPU cores
in every Task Manager node. The degree of parallelism a job
eventually uses can be defined in multiple ways [27].

With regard to performance, Flink is considered to have a
very low latency that is as low as Storm’s according to [25].
Moreover, its throughput is described as high [25], [28].

C. Apache Spark

Similar to Flink, Spark also started as a research project
and later on acquired the Apache incubator status. Concretely,
Spark originates at the University of California Berkeley (UC
Berkeley) and can be seen as a framework for distributed data
processing [29], [30]. For covering special scenarios, Spark
supports several libraries that are built on top of it. One of those
is Spark Streaming [31], a library for data stream processing.
ilidistributedmem(The Spark project mainly contains Scala,
Java as well as Python code and provides APIs for these
languages [32]. A fundamental pattern that is used within
Spark is resilient distributed dataset (RDD), which is a memory
abstraction. Particularly, an RDD is a read-only ”collection of
Java or Python objects partitioned across a cluster” [30], [33].

The structure of Spark in cluster mode is displayed in
figure 4. The focus within the present paper is on this cluster
deployment mode, since it is seen as the most suitable way
of using Spark for large-scale data processing. On the left-
hand side in figure 4, the Driver Program is shown, which is
the application that is executed on top of Spark. Though there
might be multiple applications distributed within a cluster, only
the main program creates a so called SparkContext. This object
is responsible for coordinating the perhaps existing multiple
client processes. Furthermore, it is typically and especially in
cluster mode connected to a Cluster Manager [20].

Driver Program

SparkContext
Cluster

Manager

Worker Node

Worker Node

Worker Node

Fig. 4. Architecture of Spark in Cluster Mode (own figure based on [20])

There are three Cluster Managers supported by Spark -
the included manager Spark Standalone, Apache Mesos [34]
and Apache Hadoop YARN (Yet Another Resource Negotiator)
[35]. Its main task is providing executors to applications as
soon as a SparkContext has established a connection [20].

One or more executors run in a Spark worker. Equivalent
to Storm’s worker structure, a Spark worker can run multiple
executors and each executor contains one or more tasks. Thus,
the conceptual overview of a worker’s architecture displayed
in figure 2 is also valid for a Spark worker [20].

The Worker Nodes or its executor processes are again
responsible for the calculations. Executor processes only work
for one program at one time and stay alive until it has finished.

A consequence of the first aspect is a complexity reduction
with regard to task scheduling, since each application can
schedule the tasks of their exclusive executors independently,
meaning without considering other programs. The execution
scheduling is done by the Driver Program [20], [33].

This kind of isolation is similar to the described Storm
mechanism, where even every worker process is exclusively
connected to a single topology, which is equivalent to an
application in the context of Spark. A downside of this concept
is related to the data exchange between different programs
or SparkContext objects, which can only be done through
indirections like writing data to a file system or database [20].

The stream processing feature of Spark that comes with
its library uses a slightly adapted version of a general Spark
system. It conceptually works as shown in figure 5. The data
stream on the left-hand side is the input for Spark Streaming,
which creates batches out of the stream in form of RDDs.
These batches are passed to the Spark Engine, which is doing
the calculations [31].

Furthermore, an abstraction for data streams called dis-
cretized streams (D-Streams) is used in Spark. Such a D-
Stream object consists of an RDD sequence, whereby each
RDD contains data of a certain stream interval. The idea for
developing this model is providing a better handling for faults
and slow nodes within a cluster. In particular, calculations
shall be structured ”as a set of short, stateless, deterministic
tasks instead of continuous, stateful operators” [31]. These
calculations in form of small batch computations allow an
earlier identification of the mentioned issues and provide an
exactly-once message processing. The concept distinguishes
Spark from systems that are processing data as a stream and
so using the ”continuous operator model” [31] such as Storm
and Flink. On the one hand, using those micro-batches brings
the mentioned advantages in the area of recovery, but on the
other hand it increases the latency for message processing [31].

Next to the higher latency compared to Storm and Flink,
its throughput can be seen as comparatively high and so higher
as, for example, Storm’s throughput [7], [28], [31].

Data
Stream

Batches of
Data Stream

Batches of
Results

Spark
Streaming

Spark
Engine

Fig. 5. Stream Processing in Spark Streaming (own figure based on [31])

D. Apache Samza

Apache Samza is a distributed stream processing system
mainly written in Scala and Java that treats messages as
streams. Overall, it has a relatively high throughput as well
as a somewhat increased latency compared to Storm. In
Samza’s usual setup, two other Apache projects are used,
which can be seen in figure 6. The two lower components,
YARN and Apache Kafka, represent the two commonly used
but exchangeable projects for Samza’s execution (YARN) and
streaming (Kafka) layer [28], [36], [37], [38].

YARN [35], which is mentioned before as a supported
cluster manager for Spark, can be seen as ”the next generation
of Hadoop’s compute platform” [35]. Apache Hadoop is a
framework for distributed computing. Particularly, YARN is

used for tasks like job scheduling and the management of
cluster resources [35], [39].

Samza API

YARN Apache Kafka

Fig. 6. Common Components of a Samza System (own figure based on [36])

YARN’s architecture is illustrated in figure 7. A cen-
tral component that exists once per cluster is the Resource
Manager, which is realized as daemon process running on a
dedicated machine. This interface for client applications and
also monitors the cluster node’s status. Moreover, it decides
about resource distribution among applications. It thereby
allocates and leases resources in form of so called containers.
A container, which usually stands for a UNIX process [36],
can be seen as ”a logical bundle of resources (e.g., <2GB
RAM, 1 CPU>) bound to a particular node” [35].

Resource
Manager

Node Manager

Node Manager

Node Manager

Fig. 7. Architecture of YARN (own figure based on [35])

For managing cluster resources, a Node Manager daemon
is running on each node. The tasks of that worker process
cover keeping track of the node’s resources and notifying about
failures should the occasion arise. The communication between
the Resource Manager and the Node Manager processes is
again implemented using the heartbeat concept [35].

Additionally, there might be communication between the
Node Managers themselves as shown in figure 7. However,
such message exchange can only happen on application level.
Particularly, it can happen between a so called Application
Master and its assigned containers. After the Resource Man-
ager accepts an application, it allocates a container and starts
the Application Master within it. This master process also
sends heartbeats to the Resource Manager [35].

The Application Master manages the program execution
regarding aspects such as resource needs and fault handling.
That covers coordinating the logical execution plans by re-
questing resources and generating the physical execution plans
accordingly to the actually assigned resources. In order to get
new resources, an Application Master has to send a request
to the Resource Manager. As soon as a resource lease on
behalf of an Application Master is created, the corresponding
container is pulled by the Master’s next heartbeat. With respect
to Samza, adapted implementations are used, specifically a
Samza Application Master and Samza Containers [35], [36].

Kafka as the streaming layer within Samza is a distributed
publish-subscribe messaging system that was originally devel-
oped at LinkedIn. Its initial objective is to collect and deliver

high volumes of event data, in particular log data, with a low
latency. Moreover, Kafka and therewith Samza provides an at-
least-once message processing guarantee [40].

A Kafka system’s architecture is comparatively simple as
it only consists of a set of Brokers. Data streams are defined
by topics, which are divided into partitions that are distributed
over the Broker instances. One can publish messages as well
as subscribe to those for retrieving the corresponding messages
using a pull mechanism [40].

IV. COMPARISON RESULTS

An overview of the compared systems regarding the de-
fined and presented aspects is shown in table I. One similarity
is the language the systems are mainly written in, which is
either Java or Scala. Consequently, every system runs within
a JVM and advantages, like the platform independence [41],
and disadvantages, such as the performance compared to other
languages [42], with respect to the use of a JVM hold true for
every system.

TABLE I. SUMMARIZED OVERVIEW OF THE COMPARED DATA
STREAM PROCESSING SYSTEMS (OWN TABLE)

Criteria
System Apache

Storm
Apache
Flink

Apache Spark
Streaming

Apache
Samza

Written in Java, Closure Java, Scala Scala, Java,
Python Scala, Java

Message
Treatment Stream(s) Stream(s)

and Batches
(Small)
Batches Stream(s)

Latency Very Low Very Low High Low
Throughput Low High High High

Message
Processing

At-least-once
Processing

Exactly-once
Processing

Exactly-once
Processing

At-least-once
Processing

Main
System
Compo-

nents

Nimbus
(Master),

ZooKeeper
Nodes,

Supervisors
(Worker)

Job Manager
(Master),

Task
Managers
(Worker)

Cluster
Manager
(Master),
Worker
Nodes

YARN
Resource
Manager
(Master),

YARN Node
Managers
(Worker),

Kafka
Brokers

Furthermore, there are differences in how incoming data
feeds are treated. As mentioned, Spark Streaming divides
streams into batches of data, which are then further processed.
That is contrary to the other systems, though Flink offers a
batch processing as well.

Regarding latency and throughput, there are no benchmarks
or measurements that compare all systems with each other.
Hence, there are no numbers that would create a clear ranking
for these quantifiable attributes. However, a few measurements
exist for sub-sets of the compared systems [28], [7]. But since
aspects like the latency can be highly dependent on the used
algorithms and so on the strengths and weaknesses of each
system, the results can differ between studies. Thus, the values
displayed in table I can only be tendencies.

The kind of message processing assurance differs as men-
tioned among the systems. While Flink and Spark guarantee
an exactly-once processing, Storm and Samza only assure that
each message is processed at least once. According to [38], an
option for exactly-once processing is also planned for Samza.

As mentioned beforehand, all systems make use of a
master-worker pattern in their default setup with regard to

the cluster architecture and do not use one single node type
like, for example, Kafka. That can possibly create a single
point of failure, the master node(s). Next to the master and
worker nodes, Storm has the shown third layer in between, a
ZooKeeper cluster. Contrary to the other systems, Samza is
rather a mix of different exchangeable projects, whereby the
actual cluster architecture is dependent on the used implemen-
tations for Samza’s components.

V. CONCLUSIONS AND FUTURE WORK

After analyzing and comparing the presented data stream
processing systems, further research based on these results can
include work in the area of benchmarks for such systems. As
mentioned before, this topic is not fully developed and offers
potential. Building on that, the creation of use case-driven
recommendations for systems or concepts could be another
interesting research area.

The mentioned benchmarking topic could thereby cover
quantifiable aspects such as throughput and latency. These
factors might also vary among systems depending on used
algorithms. Moreover, a scalability analysis could be done.
Particularly, the ratio between adding (worker) nodes and the
resulting performance improvements is of peculiar interest.

As all compared systems more or less use a master-worker
pattern, it might be interesting having a look at another con-
cept. Additional domains that could be studied in greater detail
are, for example, fault management, memory consumption and
the used programming model for writing applications.

Regarding the near future, it will be interesting to observe
towards which direction(s) the systems will develop. Addition-
ally, one will see whether all projects will be continued next
to each other or the development for one or more systems will
stop. Twitter, for example, already announced Twitter Heron
as its internal successor of Storm [43].

Summarizing, all systems have similarities, such as the fact
that all systems run within a JVM, as well as distinctions in
certain areas. Depending on the challenge that shall be tackled
with a data stream processing system, there might be small
advantages for one or another. A clear ranking can not be
created based on the presented results, but the development of
recommendations based on use cases or other aspects can be
a next step for research.

REFERENCES

[1] K. Ashton, “That internet of things thing,” RFiD Journal, vol. 22, no. 7,
pp. 97–114, 2009.

[2] S. Sarma, D. L. Brock, and K. Ashton, “The networked physical world,”
Auto-ID Center White Paper MIT-AUTOID-WH-001, 2000.

[3] L. Liu, C. Pu, and W. Tang, “Continual queries for internet scale event-
driven information delivery,” IEEE Trans. on Knowl. and Data Eng.,
vol. 11, no. 4, pp. 610–628, Jul. 1999.

[4] L. Golab and M. T. Özsu, “Issues in data stream management,”
SIGMOD Rec., vol. 32, no. 2, pp. 5–14, Jun. 2003.

[5] L. Golab, K. G. Bijay, and M. T. Özsu, “Multi-query optimization of
sliding window aggregates by schedule synchronization,” in Proceed-
ings of the 2006 ACM CIKM International Conference on Information
and Knowledge Management, Arlington, Virginia, USA, November 6-11,
2006, 2006, pp. 844–845.

[6] A. Marascu, P. Pompey, E. Bouillet, M. Wurst, O. Verscheure,
M. Grund, and P. Cudre-Mauroux, “Tristan: Real-time analytics on
massive time series using sparse dictionary compression,” in Big Data
(Big Data), 2014 IEEE International Conference on. IEEE, 2014, pp.
291–300.

[7] R. Lu, G. Wu, B. Xie, and J. Hu, “Stream bench: Towards benchmarking
modern distributed stream computing frameworks,” in Utility and Cloud
Computing (UCC), 2014 IEEE/ACM 7th International Conference on.
IEEE, 2014, pp. 69–78.

[8] D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul, and S. Zdonik, “Monitoring streams:
A new class of data management applications,” in Proceedings of the
28th International Conference on Very Large Data Bases, ser. VLDB
’02. VLDB Endowment, 2002, pp. 215–226.

[9] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito,
R. Motwani, U. Srivastava, and J. Widom, “Stream: The stanford data
stream management system,” Stanford InfoLab, Technical Report 2004-
20, 2004.

[10] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in Data Mining Workshops (ICDMW),
2010 IEEE International Conference on. IEEE, 2010, pp. 170–177.

[11] T. Akidau, A. Balikov, K. Bekiroğlu, S. Chernyak, J. Haberman, R. Lax,
S. McVeety, D. Mills, P. Nordstrom, and S. Whittle, “Millwheel: fault-
tolerant stream processing at internet scale,” Proceedings of the VLDB
Endowment, vol. 6, no. 11, pp. 1033–1044, 2013.

[12] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica, “Discretized
streams: an efficient and fault-tolerant model for stream processing on
large clusters,” in Proceedings of the 4th USENIX conference on Hot
Topics in Cloud Ccomputing. USENIX Association, 2012, pp. 10–10.

[13] V. Nguyen and R. Kirner, “Demand-based scheduling priorities for
performance optimisation of stream programs on parallel platforms,”
in Algorithms and Architectures for Parallel Processing, ser. Lecture
Notes in Computer Science, J. Koodziej, B. Di Martino, D. Talia, and
K. Xiong, Eds. Springer International Publishing, 2013, vol. 8285, pp.
357–369.

[14] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernández-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry,
E. Schmidt, and S. Whittle, “The dataflow model: A practical
approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing,” Proc. VLDB Endow.,
vol. 8, no. 12, pp. 1792–1803, Aug. 2015. [Online]. Available:
http://dx.doi.org/10.14778/2824032.2824076

[15] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel,
S. Kulkarni, J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat,
S. Mittal, and D. Ryaboy, “Storm@twitter,” in Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’14. New York, NY, USA: ACM, 2014, pp. 147–156.

[16] D. Simoncelli, M. Dusi, F. Gringoli, and S. Niccolini, “Scaling out
the performance of service monitoring applications with blockmon,”
in Passive and Active Measurement, ser. Lecture Notes in Computer
Science, M. Roughan and R. Chang, Eds. Springer Berlin Heidelberg,
2013, vol. 7799, pp. 253–255.

[17] P. Hintjens, ZeroMQ: Messaging for Many Applications, ser. Oreilly
and Associate Series. O’Reilly Media, Incorporated, 2013.

[18] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: Wait-free
coordination for internet-scale systems.” in USENIX Annual Technical
Conference, vol. 8, 2010, p. 9.

[19] S. Long, R. Rao, W. Miao, and X. Zhang, “An improved topology sched-
ule algorithm for storm system,” in Computer Science and Applications:
Proceedings of the 2014 Asia-Pacific Conference on Computer Science
and Applications (CSAC 2014), Shanghai, China, 27-28 December
2014. CRC Press, 2015, p. 187.

[20] “Spark - cluster mode overview,” http://spark.apache.org/docs/latest/
cluster-overview.html, accessed: 2015-08-11.

[21] I. Brigadir, D. Greene, P. Cunningham, and G. Sheridan, “Real time
event monitoring with trident,” in RealStream: Real-World Challenges
for Data Stream Mining workshop at European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in
Databases (ECMLPKDD 2013), Prague, September 23th to 27th, 2013,
2013.

[22] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske,
A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters,
A. Rheinländer, M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke, “The stratosphere platform for big data analytics,” The
VLDB Journal, vol. 23, no. 6, pp. 939–964, Dec. 2014.

[23] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas, “Lightweight
asynchronous snapshots for distributed dataflows,” arXiv preprint
arXiv:1506.08603, 2015.

[24] “Mirror of apache flink,” https://github.com/apache/flink, accessed:
2015-08-20.

[25] K. Tzoumas, S. Ewen, and R. Metzger, “High-throughput, low-
latency, and exactly-once stream processing with apache flink -
the evolution of fault-tolerant streaming architectures and their per-
formance,” http://data-artisans.com/high-throughput-low-latency-and-
exactly-once-stream-processing-with-apache-flink/, accessed: 2015-08-
20.

[26] J. D. Bali, “Streaming graph analytics framework design,” 2015.
[27] “Apache flink - configuration,” https://ci.apache.org/projects/flink/flink-

docs-master/setup/config.html, accessed: 2015-08-10.
[28] J. Galilee and Y. Zhou, “A study on implementing iterative algo-

rithms using bigdata frameworks,” http://sydney.edu.au/engineering/it/
research/conversazione-2014/Galilee-Jack.pdf, accessed: 2015-08-20.

[29] A. G. Shoro and T. R. Soomro, “Big data analysis: Apache spark
perspective,” Global Journal of Computer Science and Technology,
vol. 15, no. 1, 2015.

[30] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql:
Relational data processing in spark,” in Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data. ACM,
2015, pp. 1383–1394.

[31] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized streams: Fault-tolerant streaming computation at scale,”
in Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, ser. SOSP ’13. New York, NY, USA: ACM, 2013,
pp. 423–438.

[32] “Mirror of apache spark,” https://github.com/apache/spark, accessed:
2015-08-11.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX conference on Networked Systems Design
and Implementation. USENIX Association, 2012, pp. 2–2.

[34] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center.” in NSDI, vol. 11, 2011, pp. 22–22.

[35] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of the
4th Annual Symposium on Cloud Computing, ser. SOCC ’13. New
York, NY, USA: ACM, 2013, pp. 5:1–5:16.

[36] “Samza architecture,” http://samza.apache.org/learn/documentation/0.9/
introduction/architecture.html, accessed: 2015-08-17.

[37] “Mirror of apache samza,” https://github.com/apache/samza, accessed:
2015-08-17.

[38] “Samza - storm,” https://samza.apache.org/learn/documentation/0.9/
comparisons/storm.html, accessed: 2015-08-20.

[39] “Hadoop,” http://hadoop.apache.org, accessed: 2015-08-17.
[40] J. Kreps, N. Narkhede, J. Rao et al., “Kafka: A distributed messaging

system for log processing,” in Proceedings of the NetDB, 2011, pp. 1–7.
[41] R. Pinilla and M. Gil, “Jvm: platform independent vs. performance

dependent,” ACM SIGOPS Operating Systems Review, vol. 37, no. 2,
pp. 44–56, 2003.

[42] R. A. Vivanco and N. J. Pizzi, “Scientific computing with java and
c++: a case study using functional magnetic resonance neuroimages,”
Software: Practice and Experience, vol. 35, no. 3, pp. 237–254, 2005.

[43] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal,
J. M. Patel, K. Ramasamy, and S. Taneja, “Twitter heron: Stream
processing at scale,” in Proceedings of the 2015 ACM SIGMOD

http://dx.doi.org/10.14778/2824032.2824076
http://spark.apache.org/docs/latest/cluster-overview.html
https://github.com/apache/flink
http://data-artisans.com/high-throughput-low-latency-and-exactly-once-stream-processing-with-apache-flink/
https://ci.apache.org/projects/flink/flink-docs-master/setup/config.html
http://sydney.edu.au/engineering/it/research/conversazione-2014/Galilee-Jack.pdf
https://github.com/apache/spark
http://samza.apache.org/learn/documentation/0.9/introduction/architecture.html
https://github.com/apache/samza
https://samza.apache.org/learn/documentation/0.9/comparisons/storm.html
http://hadoop.apache.org

International Conference on Management of Data, ser. SIGMOD ’15.
New York, NY, USA: ACM, 2015, pp. 239–250.

