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Abstract. Due to the rise of e-commerce, an increasing number of mar-
kets is characterized by dynamic pricing competition. Many competitors
adjust their prices in response to changing market environments caused by
other competitors’ repricing strategies. In this paper, we study repricing
strategies in an infinite horizon duopoly model with stochastic demand.
Assuming that the competitor’s pricing strategy is known, we derive
optimal response strategies that effectively avoid a decline in price. For
different pairs of competing strategies, we analyze resulting price trajec-
tories over time and evaluate the firms’ associated expected long-term
profits. We measure the effect of price reaction frequencies on a strategy’s
performance. Further, we extend our model to analyze settings with
randomized reaction times as well as mixed strategies. Finally, we study
mutual optimal reaction strategies. We show that equilibrium strategies
can be identified by iterating optimal response strategies. We find that
equilibrium strategies are characterized by specific structures which are
illustrated by numerical examples.

Keywords: dynamic pricing, duopoly competition, response strategies,
reaction time, equilibrium strategies

1 Pricing Strategies for Stochastic Demand

Firms offering goods on online marketplaces have to face increasing compe-
tition and stochastic demand. One reason for the increasing competition is
the rising application of automated repricing algorithms and the resulting
shortening of time spans between price updates. The time pressure and
stochastic demand make it challenging for firms to determine prices fast
and efficiently (often for a large number of products) while ensuring to
employ pricing strategies that maximize their own expected profits. But
at the same time, online marketplaces also provide numerous advantages.
Sellers are now able to observe the market situation at any given point
in time and set prices accordingly. Having historical market data at hand
also enables sellers to learn the demand over time and better understand
the consumers’ decision making. More interestingly for the context of this
paper, firms can learn the competitors’ strategies. Pricing strategies that
use that demand knowledge and further competitor strategies will thus
be of increasing interest.
Nevertheless, determining suitable price reactions is a highly challenging
task. While fixed price strategies are relatively straightforward to manage,
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in an increasing number of contexts involving both perishable (e.g., fashion
goods, seasonal products, event tickets) as well as durable goods (e.g.,
books, natural resources, gasoline) automated price adjustment strategies
are employed. A typical pattern observed on markets with automated
response strategies are cyclic price patterns over time, e.g., Edgeworth
cycles as illustrated in Figure 1. Here, firms compete with each other by
undercutting the competitor’s price until the lower bound is reached (e.g.,
when margin nears zero) and one competitor raises the price in order to
allow for future profits [11, 12].

time

price

upper bound

lower bound

Fig. 1. Exemplary illustration of Edgeworth price cycles in a duopoly. Both firms
undercut each other until the green firm reaches his lower bound and adjusts his price
to the upper bound.

In this paper, we present a model for duopoly pricing models in a stochas-
tic dynamic framework in which sales probabilities are allowed to be an
arbitrary function of time and competitor prices. The goal is to take into
account (i) varying (randomized) reaction times, (ii) various given com-
petitor strategies, (iii) additional passive competitors that use constant
prices, and (iv) competitors that optimally react.

1.1 Literature Review

The challenge of determining optimal prices for the sale of products is one
of the key aspects of revenue management theory. This field of dynamic
pricing has been discussed in an array of books (e.g., [13, 17, 21]). Chen
and Chen published a survey giving an excellent overview of recent pricing
models under competition [4]. Gallego and Wang consider a continuous
time multi-product oligopoly for differentiated perishable goods using
optimality conditions to reduce the multi-dimensional dynamic pricing
problem to a one-dimensional one [7]. Gallego and Hu analyze structural
properties of equilibrium strategies in more general oligopoly models
for the sale of perishable products [6], basing the solution model on
a deterministic version of the model. Martínez-de-Albéniz and Talluri



3

consider duopoly and oligopoly pricing models for identical products [2].
They use a general stochastic counting process to model customer demand.
Further related models are studied by Yang and Xia [20] as well as Wu
and Wu [19]. Levin et al. [9] and Liu and Zhang [10] analyze dynamic
pricing models under competition including strategic customers. Dynamic
pricing competition models with limited demand information are analyzed
by Adida and Perakis [1], Tsai and Hung [18], and Chung et al. [5] using
robust optimization and learning approaches. Many models consider
continuous time models with finite horizon and limited inventory. In
most existing models, discounting is not included and the demand is
assumed to be of a somewhat artificial and stylized form. We consider an
infinite horizon model without inventory restrictions (i.e., products can
be reproduced or reordered) [14]. Demand is allowed to depend generally
on time as well as on the market participants’ prices.
Current automated pricing strategies are comparatively simple and aggres-
sive. One example is the often employed strategy of slightly undercutting
the price of the cheapest competitor [8]. We do not assume that all market
participants act rationally. In order to be able to respond to arbitrary
suboptimal pricing strategies we provide applicable solution algorithms
that allow computing optimal response strategies.

1.2 Contribution

This paper is an extended version of [14] in which we analyzed optimal
price response strategies that are based on anticipated competitor strate-
gies. The model is characterized by a discrete time setting, an infinite
horizon, subsequent price reactions, and no inventory considerations.
Compared to [14], in this paper we make the following contributions: First,
instead of applying value iteration, we compute optimal strategies by
solving the Hamilton-Jacobi-Bellman equation using a non-linear solver.
Second, we allow both firms to apply optimal price response strategies in
order to study iterated mutual strategy adjustments. Third, we identify
equilibrium strategies and analyze their characteristics. Fourth, we study
how equilibrium strategies are affected by the discount factor.
The remainder of this paper is structured as follows. In Section 2, we
describe the stochastic dynamic duopoly model with infinite time horizon
for durable goods. We allow sales probabilities to depend on competitor
prices as well as on time (seasonal effects). The state space is characterized
by time and the actual competitors’ prices. The stochastic dynamic control
problem is expressed in discrete time. In Section 3, we consider a duopoly
competition. The competitor is assumed to frequently adjust its prices
using a predetermined strategy. We assume that the price reactions
of competitors as well as their reaction times can be anticipated. We
set up a firm’s Hamilton-Jacobi-Bellman equation and use recursive
methods (value iteration) to approximate the value function. We are able
to compute optimal feedback prices as well as expected long-term profits
of the two competing firms. Evaluating price paths over time, we are
able to explain specific price cycles. Additionally, the results obtained
are generalized to scenarios with randomized reaction times and mixed
strategies.
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In Section 4, optimal response strategies in the presence of active and
passive competitors are analyzed. We examine how the duopoly game
of two active competitors is affected by additional passive competitors.
We show how to compute optimal pricing strategies and to evaluate
expected profits. We also discuss how the cyclic price paths of the active
competitors are affected by different price levels of passive competitors.
In Section 5, we evaluate the expected profits when different strategies
are played against each other. We study scenarios in which the competitor
also applies optimal response strategies. In Section 6, we study mutual
optimal reaction strategies. We show that equilibrium strategies can
be identified by iterating optimal response strategies. Eventually, the
conclusion and managerial recommendations are given in Section 7.

2 Model Description

For this work, we consider the situation where a firm wants to sell goods
(e.g., groceries, technical devices, gasoline) on a digital marketplace (e.g.,
Amazon, eBay, Alibaba). We assume that several sellers compete for
the same market, i.e., customers are able to compare prices of different
competitors at any given point in time.
We assume that the time horizon is infinite. We assume that firms are able
to reproduce or reorder products (promise to deliver), and the ordering
is decoupled from pricing decisions. If a sale takes place, shipping costs c
have to be paid, c ≥ 0. A sale of one item at price a, a ≥ 0, leads to a
net profit of a− c. Discounting is also included in the model. We will use
the discount factor δ, 0 < δ < 1, for the length of one period.
On the majority of marketplaces, prices cannot be continuously adjusted.
Thus, we consider a discrete time model. The sales intensity of our
product is denoted by λ. Due to customer choice, the sales intensity will
particularly depend on our offer price a and the competitors’ prices. We
also allow the sales intensity to depend on time, e.g., the time of the day
or the week. We assume that the time dependence is periodic and has an
integer cycle length of J periods. In our model, the sales intensity λ is
a general function of time, our offer price a and the competitors’ prices
~p. Given the prices a and ~p in period t, the jump intensity λ satisfies,
t = 0, 1, 2, ..., a ≥ 0, ~p ≥ ~0,

λt(a, ~p) = λt mod J(a, ~p). (1)

We assume the sales probabilities (for one period) to be Poisson distributed
in our discrete time model. That means the probability to sell exactly i
items within one period of time is given by, t = 0, 1, 2, ..., a ≥ 0, ~p ≥ ~0,
i = 0, 1, 2, ...,

Pt(i, a, ~p) =
λt(a, ~p)

i

i!
· e−λt(a,~p). (2)

A price a has to be determined for each period t. We call strategies (at)t
admissible when they belong to the class of Markovian feedback policies;
i.e., pricing decisions at ≥ 0 may depend on time t and the current prices
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of the competitors. By A we denote the set of admissible prices. A list of
variables and parameters is given in the Appendix, cf. Table 4.
By Xt we denote the random number of sales in period t. Depending on
the chosen pricing strategy (at)t, the random accumulated profit from
time/period t on (discounted on time t) amounts to, t = 0, 1, 2, ...,

Gt :=

∞∑
s=t

δs−t · (as − c) ·Xs. (3)

The objective is determining a non-anticipating (Markovian) pricing
strategy that maximizes the expected total profit E(G0).
In the next sections, we will solve dynamic pricing problems that are
related to (1) - (3). Further, we mostly assume a duopoly situation.
We assume that the competitor frequently adjusts his/her prices and
show how to derive optimal response strategies. We analyze the impact
of different reaction times as well as randomized reaction times. We
also consider the case in which the competitor plays mixed strategies.
In Section 4, we compute pricing strategies for duopoly scenarios with
additional passive competitors. Eventually, we let the competitor also
apply optimized response strategies in Sections 5 and 6.

3 Duopoly: Optimal Reaction Strategies

Due to the increasing market transparency on e-commerce platforms,
sellers can observe and thus anticipate transitions of the market situation.
In this section, we examine a duopoly where we compete with a seller
that frequently adjusts her prices using a predetermined strategy.

3.1 Fixed Reaction Times

Having information about a competitor’s strategy at hand and being
able to anticipate it allows us to optimize expected profits. Here, the
price responses of competitors as well as their reaction time can be taken
into account. In this case, a change of the market situation ~p can take
place within a period. A typical scenario is that a competitor adjusts
its price in response to our price with a certain delay. Throughout this
section, we assume that the pricing strategy and the reaction time of the
competitor is known; i.e., we assume that choosing a price a at time t is
followed by a state transition (e.g., a competitor’s price reaction) and the
current market situation ~p changes to a subsequent state described by a
transition function F , which can depend both on the market situation ~p
as well as price a.
We want to derive optimal price response strategies to a given competitor’s
strategy. For simplicity, we consider the sale of one type of product in a
duopoly situation. We assume that the state of the system (the market
situation) is one-dimensional and simply characterized by the competitor’s
price p, i.e., we let ~p := p.
In real-life applications, a firm is not able to adjust its prices immediately
after the price reaction of the competing firm. Consequently, we assume
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that in each period the price reaction of the competing firm takes place
with a delay of h periods, h < 1. Thus, after an interval of size h the
competitor adjusts its price from p to F (a), as illustrated in Figure 2.

Phase 1 Phase 2

our price a

competitor’s price p adjusted competitor’s price F(a)

t t + h t + 1

Fig. 2. Duopoly: sequence of price reactions, cf. [14].

In period t, the probability to sell exactly i items during the first interval
(Phase 1, cf. Figure 2) of size h is

P
(h)
t (i, a, p) := Pois (h · λt(a, p))

while for the rest of the period (Phase 2, cf. Figure 2) the sales probability
changes to P (1−h)

t (i, a, F (a)) = Pois ((1− h) · λt (a, F (a))).
We will use value iteration to approximate the value function which
represents the present value of future profits. For a given “large” number
T , T � J , we let VT (p) = 0 for all p, and compute, t = 0, 1, 2, ..., T − 1,
0 < h < 1, p ∈ A,

Vt(p) = max
a∈A

{∑
i1≥0

P
(h)
t (i1, a, p) ·

∑
i2≥0

P
(1−h)
t+h (i2, a, F (a))

· ((a− c) · (i1 + i2) + δ · Vt+1 (F (a)))} . (4)

The associated pricing strategy a∗t (p), t = 0, 1, 2, ..., J − 1, p ∈ A, is
determined by the arg max of

a∗t (p) = argmax
a∈A

{∑
i1≥0

P
(h)
t (i1, a, p) ·

∑
i2≥0

P
(1−h)
t+h (i2, a, F (a))

· ((a− c) · (i1 + i2) + δ · Vt+1 (F (a)))} . (5)

Given a∗t (p) is not unique, we choose the largest one.

Remark 1. The recursive solution approach also allows to solve problems
with perishable products and finite horizons T . Simply be evaluating
equations (4)-(5) for all t = 0, 1, 2, ..., T − 1.
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In order to illustrate the approach, let us consider a numerical example
for durable goods. We assume the competitor applies one of the most
common strategies: our current price is undercut by ε down to a certain
minimum (e.g., the shipping costs c). The sales dynamics of the following
example above are based on a large data set from the Amazon marketplace
for used books [15].

Definition 1. By P (h)
t (i, a, ~p) := Pois

(
h · e~x(a,~p)

′~β/(1 + e~x(a,~p)
′~β)
)
we

define sales probabilities for oligopoly settings which are based on linear
combinations of the following five regressors ~x = ~x(a, ~p), ~p = (p1, ..., pK)

with given coefficients ~β = (β1, ..., β5):

(i) constant / intercept
x1(a, ~p) = 1

(ii) rank of price a within the set of competitor prices ~p

x2(a, ~p) = 1 + |{k = 1, ...,K |pk < a}|+ 0.5 · |{k = 1, ...,K |pk = a}|

(iii) price gap between price a and the best competitor price

x3(a, ~p) = a − min
k=1,...,K

{pk}

(iv) total number of competitors

x4(a, ~p) = K

(v) average price level

x5(a, ~p) = (a +
∑

k
pk)/(1 +K)

Example 1. We assume a duopoly, i.e., K = 1 and ~p = p. Let c = 3,
δ = 0.99, 0 ≤ h ≤ 1, and let F (a) := max(a − ε, c), ε=1, a ∈ A :=
{1, 2, ..., 100}. For the computation of the value function, we let T := 1000.
We assume the sales probabilities P (h)

t (·, a, p), cf. Definition 3.1, where
~β = (−3.89,−0.56,−0.01,0.07,−0.02).

Figure 3(a) and Figure 4(a) illustrate optimal response strategies for
different reaction times h=0.1 and h=0.9. The case h = 0.1 illustrates a
fast reaction time of the competitor; h = 0.9 represents a slow reaction of
the competitor. In the case of h = 0.5, both competing firms react equally
fast. In all three cases the optimal response strategies are of similar shape.
If the competitor’s price is either very low or very large, it is optimal
to set the price to a certain moderate level. If the competitor’s price is
somewhere in between (intermediate range), it is advisable to undercut
that price by one price unit ε. If h is larger, also the intermediate range
is larger and the upper price level is increasing.
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(b) Evaluated price paths.

Fig. 3. Example 1 with h = 0.1: optimal response strategy and price paths, cf. [14].
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(b) Evaluated price paths.

Fig. 4. Example 1 with h = 0.9: optimal response strategy and price paths, cf. [14].

Employing optimal response strategies can create cyclic price patterns
over time, so-called Edgeworth cycles [8, 11, 12]. The resulting price paths
are illustrated in Figure 3(b) and Figure 4(b). We observe that the cycle
length and the amplitude of the price patterns are increasing if the
reaction time of the competitor is longer. Note, roughly h · 100% of the
time our firm is offering the lowest price; i.e., the parameter h can also
be used to model situations in which one firm is able to adjust its prices
more often than another firm [3, 16].
Additionally, we are able to analyze the impact of the reaction time
on expected long-term profits of our firm as well as the competitor. We
assume that the competitor faces the same sales probabilities and shipping
costs. The competitor’s expected profits can be recursively evaluated by,
cf. (4), t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ∈ A, V (c)

T+h(a) = 0,

V
(c)
t+h(a) =

∑
i2≥0

P
(1−h)
t+h (i2, F (a), a) ·

∑
i1≥0

P
(h)
t+1 (i1, F (a), a∗t+1 mod J(F (a)))

·
(
(F (a)− c) · (i1 + i2) + δ · V (c)

t+h+1 (a
∗
t+1 mod J (F (a)))

)
. (6)
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Because of the cyclic price paths, expected future profits V0(p) and V (c)
h (a)

are (almost) independent of the initial states or prices. Figure 5 depicts
V as well as the competitor’s expected profits V (c) as a function of h. We
observe that the expected profit V is linear increasing in the competitor’s
reaction time; the competitor’s profit V (c) is decreasing in h. Note, the
impact of h is substantial. The “disadvantage” of the player that stops
the undercutting phase can already be compensated in case our reaction
time is smaller than 0.46, i.e., if h is larger than 0.54.

0.0 0.2 0.4 0.6 0.8 1.0
h

5

10

15

20

25
V
(c) V

Fig. 5. Expected profit for different reaction times of the competitor (Example 1),
cf. [14].

3.2 Randomized Reaction Times

Due to the shown significant impact of reaction times firms will try to
gain advantage by updating their prices more frequently. In addition,
firms might also try to minimize their reaction times by anticipating their
competitor’s time of adjustment. In order not to act predictably, firms
will randomize their reaction times.
Our model can be extended to capture the cases in which reaction
times are not deterministic. If the distribution of the reaction time of
competitors is known, the Hamilton-Jacobi-Bellman (HJB) equation, cf.
(4), can be modified. The different reaction scenarios just have to be
considered with their corresponding probability. Note, the reaction times
of different competitors can be observed over longer time spans.
In the following, we consider scenarios with randomized reaction times.
We assume that each firm adjusts its price with a certain intensity (e.g.,
on average once a period of size 1). We model that approach as follows: we
assume that at each point in time d, d = t+∆, t+2∆, ..., t+1, 0 < ∆� 1,
our firm adjusts its price with probability q, 0 < q � 1; i.e., on average
we adjust our price q/∆ times a period of size 1. Similarly, the competitor
adjusts its price with probability q(c), 0 < q(c) � 1. The competitor
applies a certain strategy F (a). By a− we denote our current price at
time d, the beginning of the sub-period (d, d+∆). With probability q(c),
the competitor adjusts its price from p to F (a−). We adjust the price
a− to price a with probability q. Since q and q(c) are assumed to be
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"small" we do not consider the case in which both firms adjust their
prices at the same time. The related value function is given by, a−, p ∈ A,
t = 0,∆, 2∆, ..., T −∆, ṼT (a−, p) = 0,

Ṽt(a
−, p) = (1− q − q(c)) ·

∑
i≥0

P
(∆)
t (i, a−, p)

·
(
(a− − c) · i+ δ∆ · Ṽt+∆(a−, p)

)
+q(c) ·

∑
i≥0

P
(∆)
t (i, a−, F (a−)) ·

(
(a− − c) · i+ δ∆ · Ṽt+∆(a−, F (a−))

)
+q ·max

a∈A

{∑
i≥0

P
(∆)
t (i, a, p)·

(
(a− c) · i+ δ∆ · Ṽt+∆ (a, p)

)}
. (7)

The optimal price ã∗t (a−, p), t = 0,∆, 2∆, ..., J − ∆, is determined by
the arg max of (7). The competitor’s expected profit corresponds to,
t = 0,∆, 2∆, ..., T −∆, Ṽ (c)

T (a−, p) = 0,

Ṽ
(c)
t (a−, p) = (1− q − q(c)) ·

∑
i≥0

P
(∆)
t (i, p, a−)

·
(
(p− c) · i+ δ∆ · Ṽ (c)

t+∆(a
−, p)

)
+q(c) ·

∑
i≥0

P
(∆)
t (i, F (a−), a−)

·
(
(F (a−)− c) · i+ δ∆ · Ṽ (c)

t+∆(a
−, F (a−))

)
+q ·

∑
i≥0

P
(∆)
t

(
i, p, ã∗t mod J(a

−, p)
)

·
(
(p− c) · i+ δ∆ · Ṽ (c)

t+∆

(
ã∗t mod J(a

−, p), p
))

. (8)

Example 2. We assume the duopoly setting of Example 1 and let c = 3,
F (a) := max(a− ε, c), ε = 1, a ∈ A := {1, 2, ..., 100}, δ=0.99, ∆=0.1. We
use T := 1000. We consider different reaction probabilities q and q(c).

Table 1 contains the expected profits (Ṽ , Ṽ (c)) of the two competing
firms for different reaction probabilities. We observe that Ṽ is increasing
in q and decreasing in q(c). For Ṽ (c) it is the other way around. We found
that the ratio q/q(c) of the adjustment frequencies is a critical quantity.
The importance of the overall adjustment frequency is alleviated as long
as the ratio q/q(c) is the same. Hence, the expected profits of both firms
can be approximated by the profits from the model with deterministic
reaction time, cf. Section 3.1, where h = q/q(c), i.e., the percentage of
time our firm has the most recently updated price.
Figure 6(b) shows the price paths for the parameter setting of Example
2. Figure 6(a) shows the deterministic case of Example 1 for h = 0.5.
We observe that overall the price patterns have similar characteristics.
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Table 1. Expected profits (Ṽ , Ṽ (c)) of both firms for different reaction probabilities q,
q(c) = 0.05, 0.1, 0.2, δ = 0.99, ∆ = 0.1; Example 2, cf. [14].

q(c)\q 0.05 0.1 0.2

0.05 (16.53, 17.07) (16.80, 16.81) (17.01, 16.62)
0.1 (16.26, 17.36) (16.48, 17.09) (16.75, 16.84)
0.2 (16.03, 17.59) (16.22, 17.37) (16.48, 17.12)
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(a) Deterministic reaction times (Ex-
ample 1 with h = 0.5).
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(b) Randomized reaction times (Ex-
ample 2 with ∆ = 0.1, q = q(c) =
0.1).

Fig. 6. Comparison of evaluated price paths, cf. [14].

However, in the randomized case, the timing of the price reactions is
not predictable. While in the deterministic h = 0.5 case (cf. Section 3.1)
we have Ṽ = 16.44 and Ṽ (c) = 17.13, in the randomized case (∆ = 0.1,
q = q(c) = 0.1) the expected profits are Ṽ = 16.48 and Ṽ (c) = 17.09.
In both models the advantage of the aggressive player is basically the
same, but for the model with randomized reaction times the advantage is
slightly smaller.

3.3 Mixed Competitors’ Strategies

If the competitor’s strategy is known, suitable response strategies can
be computed. Hence, firms might try to randomize their strategies. In
this section, we will analyze scenarios in which competitors play a mixed
pricing strategy.
Let us assume that the competitor plays strategy Fk(a), a ∈ A, with
probability πk, 1 ≤ k ≤ K < ∞,

∑
k
πk = 1. Further, we assume

deterministic reaction times. We adjust our model, cf. Section 3.1, by
using a weighted sum of potential price reactions. The Hamilton-Jacobi-
Bellman (HJB) equation can be written as, t = 0, 1, 2, ..., T −1, 0 < h < 1,
p ∈ A,

Vt(p) = max
a∈A

{∑
i1≥0

P
(h)
t (i1, a, p) ·

∑
k

πk ·
∑
i2≥0

P
(1−h)
t+h (i2, a, Fk(a))
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· ((a− c) · (i1 + i2) + δ · Vt+1 (Fk(a)))} , (9)

where VT (p) = 0 for all p. The associated pricing strategy a∗t (p), t =
0, 1, 2, ..., J − 1, 0 < h < 1, p ∈ A, is determined by the arg max of (9).
The resulting competitor’s expected profits can be computed by (starting
from, e.g., V (c)

T+h(a) = 0), t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ∈ A,

V
(c)
t+h(a) =

∑
k

πk·
∑
i2≥0

P
(1−h)
t+h (i2, Fk(a), a)

·
∑
i1≥0

P
(h)
t+1 (i1, Fk(a), a

∗
t+1 mod J(Fk(a)))

·
(
(Fk(a)− c) · (i1 + i2) + δ · V (c)

t+h+1 (a
∗
t+1 mod J (Fk(a)))

)
. (10)

Using the models just introduced, we can compute suitable pricing strate-
gies in various competitive markets. As long as the number of competing
firms is small, the value function and the optimal prices can be computed.
Note, due to the coupled state transitions in general the value function
has to be computed for all states in advance. When the number of com-
petitors is large this can cause serious problems since the state space can
grow exponentially (curse of dimensionality).
The approach is suitable if the number of competitors is small and
their strategies are known. If the number of competitors is large and
the strategies are unknown, we recommend using simple but robust
strategies [15].

4 Active and Passive Sellers in Competition

In case the pricing strategies and the competitors’ reaction times are
known, the model can be extended to an oligopoly setting. For each
additional competitor the state space of the model has to be extended by
one dimension. Note, only active competitors that frequently adjust their
prices should be taken into account. Inactive customers will be treated
as external fixed effects.
We assume one active competitor and Z passive competitors. The prices of
the passive competitors are denoted by ~z = (z1, ..., zZ), zj ≥ 0, j = 1, ..., Z,
and assumed to be constant over time. The active competitor employs a
(non-randomized) strategy F (a) that refers to our price a (not the passive
one). The Hamilton-Jacobi-Bellman (HJB) equation can be written as,
t = 0, 1, 2, ..., T − 1, 0 < h < 1, p ≥ 0, VT (p, ~z) = 0 for all p, ~z,

Vt(p, ~z) = max
a∈A

{∑
i1≥0

P
(h)
t (i1, a, p, ~z) ·

∑
i2≥0

P
(1−h)
t+h (i2, a, F (a), ~z)

· ((a− c) · (i1 + i2) + δ · Vt+1 (F (a), ~z))} . (11)
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The associated pricing strategy amounts to, t = 0, 1, 2, ..., J−1, 0 < h < 1,
p ∈ A,

a∗t (p, ~z) = argmax
a∈A

{∑
i1≥0

P
(h)
t (i1, a, p, ~z) ·

∑
i2≥0

P
(1−h)
t+h (i2, a, F (a), ~z)

· ((a− c) · (i1 + i2) + δ · Vt+1 (F (a), ~z))} . (12)

The competitor’s profits can be computed by (using, e.g., VT+h(a, ~z) = 0
for all a, ~z), t = 0, 1, 2, ..., T − 1, 0 < h < 1, a ≥ 0,

V
(c)
t+h(a, ~z) =

∑
i2≥0

P
(1−h)
t+h (i2, F (a), a, ~z)

·
∑
i1≥0

P
(h)
t+1 (i1, F (a), a∗t+1 mod J(F (a), ~z), ~z)

·
(
(F (a)− c) · (i1 + i2) + δ · V (c)

t+h+1 (a
∗
t+1 mod J (F (a), ~z) , ~z)

)
. (13)

It is not necessary to compute the value function for all price combinations
of passive competitors in advance. The value function and the associated
pricing strategy can be computed separately for specific market situations
(e.g., just when they occur). In the following, we consider an example
with active and passive competitors.

Example 3. We assume the duopoly setting of Example 1 and let F (a) :=
max(a − ε, c), ε = 1, c = 3, h = 0.5, a ∈ A := {1, 2, ..., 100}, δ = 0.99,
and T = 1000. Further, we consider an additional passive competitor
with a constant price z, z = 15, 20, 25.
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(b) Evaluated price paths.

Fig. 7. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 15), cf. [14].
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(b) Evaluated price paths.

Fig. 8. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 25), cf. [14].

For the three cases z = 15, z = 20, and z = 25 the results are shown in
Figures 7, 8, and 9. We observe three different characteristics.
If the passive competitor’s price is low (z = 15) the cyclic price battle
between our firm and the aggressive firm takes place at a high price level,
see Figure 7(b). The response strategies of the three firms are illustrated
in Figure 7(a).
In the case that the price of passive firm is sufficiently high (z = 20),
the cyclic price paths of the two active firms take place below that
level. If the constant price is "moderate" (z = 20), then a mixture of
the characteristics shown in Figure 7 and 8 is optimal. Note, it is not
advisable to place price offers that slightly exceed competitors’ prices
(see Figure 9).
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Fig. 9. Optimal response strategy and evaluated price paths (Example 3; h = 0.5,
z = 20), cf. [14].

5 Duopoly: Iterated Strategy Adjustments

In this section, we generally evaluate the outcome when different strategies
are played against each other in a duopoly setting.
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5.1 Evaluating Competing Strategies
We assume time homogeneous demand and h = 0.5. If firm 1 plays
a pure strategy S1 and firm 2 plays the pure strategy S2 then the
associated expected profits can be computed by, t = 0, 1, 2, ..., T − 1,
V

(1)
T (p) = V

(2)
T (p) = 0, for all p ≥ 0,

V
(1)
t (p) =

∑
i1≥0

P (h) (i1, S1(p), p) ·
∑
i2≥0

P (1−h) (i2, S1(p), S2(S1(p)))

·
(
(S1(p)− c) · (i1 + i2) + δ · V (1)

t+1 (S2 (S1(p)))
)
, (14)

V
(2)
t (p) =

∑
i1≥0

P (h) (i1, S2(p), p) ·
∑
i2≥0

P (1−h) (i2, S2(p), S1(S2(p)))

·
(
(S2(p)− c) · (i1 + i2) + δ · V (2)

t+1 (S1 (S2(p)))
)
. (15)

Alternatively, for given strategies Sk, k = 1, 2, we can exactly evaluate the
associated expected profits V (k) by solving the linear system of equations,
p ∈ A, j, k = 1, 2, j 6= k,

V (k)(p) =
∑
i1≥0

P (∆k) (i1, Sk(p), p) ·
∑
i2≥0

P (∆j) (i2, Sk(p), Sj(Sk(p)))

·
(
(Sk(p)− c) · (i1 + i2) + δ · V (k) (Sj (Sk(p)))

)
, (16)

where ∆k := h and ∆j := 1 − h, 0 < h < 1. Note, the system (16) has
|A| equations and can be solved using standard linear solvers.

5.2 Iterating Optimal Response Strategies
In this subsection we let two firms optimally adjust their strategies in
order to identify equilibrium strategies. The approach, cf. (16), cannot
only be used to evaluate competing strategies, it can also be applied to
exactly compute optimal reaction strategies, cf. (4)-(5), by solving the
nonlinear system of equations, p ∈ A, j, k = 1, 2, j 6= k,

V (k)(p) = max
a∈A

{∑
i1≥0

P (∆k) (i1, a, p) ·
∑
i2≥0

P (∆j) (i2, a, Sj(a))

·
(
(a− c) · (i1 + i2) + δ · V (k) (Sj(a))

)}
. (17)

If the number of admissible prices |A| is sufficiently small the system (17)
can be solved using standard nonlinear solvers, such as MINOS1. The
associated pricing strategy a(k)(p;Sj), p ∈ A, j, k = 1, 2, j 6= k, is given
by the arg max of (17). If a(k)(p) is not unique, we choose the largest
one. In the following example, we will iterate optimal response strategies.

1 MINOS solver: https://www.gams.com/latest/docs/solvers/minos
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Example 4. We assume the duopoly setting of Example 1. If not chosen
differently, we let c = 3, h = 0.5, a ∈ A := {1, 2, ..., 100}, δ = 0.99. We
consider an initial strategy S(0)(p) := SU (p) := max(p − ε, c), ε = 1.
Additionally, by S(k)(p) = S(k)(p;S(k−1)) we denote the optimal response
strategy to strategy S(k−1), k = 1, 2, ..., cf. (17).

Considering Example 4, we evaluate the expected profits of the different
strategy combinations according to (16). The results are summarized in
Table 2. We observe that the aggressive strategy SU yields good results
with the exception when the competitor also plays SU . The strategy S(1)

yields good results in all constellations. Strategy S(2) is excellent when
played against S(1) but yields only moderate results in the other cases.

Table 2. Expected profits V (1)
0 (50) of firm 1 when its strategy S1 = S(k) is played

against a strategy S2 = S(j), k, j = 0, 1, 2, ..., 5, S(0) := SU ; Example 4.

S1\S2 S(0) S(1) S(2) S(3) S(4) S(5)

S(0) 2.56 17.14 15.41 12.38 17.24 15.04
S(1) 16.19 16.78 12.07 16.06 16.16 12.07
S(2) 14.74 20.98 14.74 12.05 17.71 14.54
S(3) 11.23 16.84 16.59 12.00 16.84 16.59
S(4) 16.19 17.45 15.00 16.11 17.24 12.41
S(5) 14.31 20.55 15.26 11.81 20.55 14.81

Our example shows that optimal response strategies have a significant
impact on expected profits. They help to gain profits, especially, when
aggressive competitors are involved. On the other hand, we learn that it is
also important to know a competitor’s strategies. In practical applications,
a competitor’s price reactions can be inferred from market data over time.

6 Equilibrium Strategies

In this section, we want to identify mutual best response strategies. We
consider the duopoly setting of Section 5. In order to identify equilibrium
strategies, we further iterate mutual strategy responses.
We consider the setting of Example 4. Starting with the aggressive
strategy SU we allow the two competing firms to repeatedly adjust their
strategies using optimal response strategies. Figure 10 illustrates the
different iterated response strategies S(k) for k = 0, 1, 2, ..., 20.
We observe that optimal response strategies do not converge to mutual
optimal pure strategies. Instead, we obtain a repeating cyclic sequence of
strategy adjustments. The structure of the single response strategies is
similar to those shown in Figures 3 and 4.
However, pure mutual optimal response strategies do exist. We consider
Example 4 for a different starting strategy. Figure 11 illustrates iterated
response strategies S(k), k = 0, 1, 2, ..., 20, for S(0) := S(0)(p) ≡ 20.
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Fig. 10. Iterated response strategies (Example 4; S(0) := SU , h = 0.5).

We observe that after 11 iterations the optimal response strategies con-
verge to a pure equilibrium strategy S∗ which is such that no firm has
an incentive to deviate. The equilibrium strategy has a characteristic
structure which can be described as follows.

Remark 2. If the competitor’s price is either below a certain low price
pmin or a above a certain large price pmax, it is optimal to set the price
to the upper level pmax. If the competitor’s price is slightly under that
upper price level pmax (upper intermediate range), it is best to undercut
that price by one price unit ε as long as the competitor’s price is above a
certain medium price pmed. Is the competitor’s price below the medium
price pmed and above pmin (lower intermediate range) it is optimal to
decrease the price to pmin.

The equilibrium strategy is similar to the type of strategy derived in
Section 3, see Figures 3 and 4. The difference is the counterintuitive
massive price drop (lower intermediate range) to the minimal price pmin.
This phenomenon can be explained as follows. The price drop forces
the rational competitor to give in and to raise the price immediately.
This way the price range in which the undercutting price battle takes
place is shifted to a higher level, which in turn is advantageous for both
competitors.
Table 3 illustrates the expected profits of a firm when different iterated
response strategies are played against each other, cf. Table 2, for S(0) := 20,
i.e., the equilibrium case. We observe that profits quickly converge at a
moderate level (16.43) compared to those in Table 2.



18

Fig. 11. Iterating equilibrium strategies (Example 4; S(0) := 20, h = 0.5).

Table 3. Expected profits V (1)
0 (50) of firm 1 when its strategy S1 = S(k) is played

against a strategy S2 = S(j), k, j = 0, 1, 2, ..., 5, S(0) := 20; Example 4.

S1\S2 S(0) S(1) S(2) S(3) S(4) S(5)

S(0) 10.74 8.14 8.14 8.14 8.14 8.14
S(1) 13.62 15.28 16.13 16.13 16.13 16.13
S(2) 12.42 16.19 16.23 16.19 16.19 16.19
S(3) 12.42 16.19 16.23 16.25 16.31 16.23
S(4) 12.42 16.19 16.23 16.27 16.31 16.27
S(5) 12.42 16.17 16.23 16.27 16.31 16.31

We varied different parameters of our model, such as the price granularity,
the discount factor, and the initial strategy S(0). We found that mainly
the initial strategy S(0) is responsible for pure equilibrium strategies to
exist. In the context of Example 4 we obtain the same equilibrium, see
Figure 11, as long as S(0) ≥ 18. For S(0) < 18 we obtain response cycles
similar to Figure 10.

Remark 3. If the starting strategy is aggressive, i.e., characterized by
low prices we do not obtain a pure strategy equilibrium. If the starting
strategy is not aggressive, we usually obtain a pure strategy equilibrium.
Furthermore, in case a pure equilibrium strategy exists it is of the structure
described above, cf. Remark 2.

At the end of this section, we study how equilibrium strategies are affected
by the discount factor. We consider the setting of Example 4. Figure 12
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illustrates pure equilibrium strategies for five different discount factors
between 0 and 0.99.
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Fig. 12. Equilibrium strategies for different discount factors, δ = 0, 0.4, 0.7, 0.85, 0.99,
h = 0.5; Example 4.

We observe that for all S∗ the mutual optimal response strategies δ is
of the structure described above which is characterized by (pmin,pmed,
pmax). While pmin is not affected by δ the thresholds pmed and pmax
increase in δ. The range of the resulting staircase like price trajectories is
hardly affected by δ but the level at which the price battle takes place is
higher if δ increases.

7 Conclusion

The recent rise of e-commerce and the development of web technologies
made it increasingly easy for merchants to observe market situations
and automatically adjust their prices. Subsequently, more and more
companies employ dynamic pricing strategies. In this paper, we analyze
stochastic dynamic infinite horizon duopoly models characterized by active
competitors. We set up a dynamic pricing model including discounting
and shipping costs. The sales probabilities are allowed to arbitrarily
depend on time, our price as well as the competitor’s prices. Data-driven
estimations of sales intensities under pricing competition can be used to
calibrate the model.
Assuming that a competitor’s response strategy is known, we show how
to compute optimal reaction strategies that take advantage of price an-
ticipations. As expected, it is often optimal to slightly undercut the
competitor’s price. However, when the price falls below a certain lower
bound it is advisable to raise the price to a certain upper bound. Our
optimized strategies optimally choose these critical price bounds. Opti-
mized feedback strategies effectively avoid a decline in price. Especially,
when competitors play aggressive strategies it is important to react in a
reasonable way in order not to lose potential profits.
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Furthermore, we analyze reaction times or price adjustments frequencies,
respectively. We find that they have a huge impact on expected profits.
To be able to adjust prices more often than the competitor does is
a competitive advantage. Hence, the ratio of the competitors’ prices
adjustment frequencies is crucial for the firm’s expected profits. Moreover,
it can be profitable to strategically time price adjustments. In order
not to use predictable reaction time firms should randomize their price
adjustments. We show how to derive optimal response strategies when
reaction times are randomized.
We also derive optimal response strategies if additional players are involved
that employ fixed price strategies. We analyzed how the presence of such
additional passive competitors affects the price battle of two active players
that frequently adjust their prices. Our technique to compute prices is
simple and easy to implement.
Finally, we evaluated expected profits of competing pairs strategies if both
players apply optimized price reactions. In order to identify equilibrium
strategies, we analyzed iterated strategy adjustments. Mutual strategy
responses do not necessarily have to converge as pure strategy equilibria
might not exist. However, pure equilibrium strategies can be identified by
iterating mutual strategy responses. We found that as long as strategies
are not too aggressive optimal strategy adjustments lead to equilibrium
strategies. These strategies have a characteristic structure: in a certain
price range it is optimal to undercut the competitor’s price, otherwise it
is optimal to either raise the price or force the competitor to restore the
price level by significantly dropping the price.
In future research, we will use market data to estimate competitors’
response strategies. We will also extend the model to study the sale of
perishable products with inventory restrictions.
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Appendix

Table 4. Notation table

t time / period
X random number sold items
G random future profits
c shipping costs
δ discount factor
F competitor’s reaction strategy
Z number of passive competitors
A set of admissible prices
V value function
V (c) competitor’s value function
a offer price
~p competitors’ prices
~z competitors’ prices (fixed)
K number of competitors
λ sales intensity
P sales probability
~β logit coefficients
J cycle length
h reaction time
q reaction probability
q(c) competitor’s reaction probabilities
S response strategy


