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Abstract. Learning the causal structures in high-dimensional datasets
enables deriving advanced insights from observational data. For example,
the construction of gene regulatory networks inferred from gene expres-
sion data supports solving biological and biomedical problems, such as,
in drug design or diagnostics. With the adoption of Graphics Processing
Units (GPUs) the runtime of constraint-based causal structure learning
algorithms on multivariate normal distributed data is significantly re-
duced. For extremely high-dimensional datasets, e.g., provided by The
Cancer Genome Atlas (TCGA), state-of-the-art GPU-accelerated algo-
rithms hit the device memory limit of single GPUs and consequently,
execution fails. In order to overcome this limitation, we propose an out-
of-core algorithm for GPU-accelerated constraint-based causal structure
learning on multivariate normal distributed data. We experimentally val-
idate the scalability of our algorithm, beyond GPU device memory ca-
pacities and compare our implementation to a baseline using Unified
Memory (UM). In recent GPU generations, UM overcomes the device
memory limit, by utilizing the GPU page migration engine. On a real-
world gene expression dataset from the TCGA, our approach outper-
forms the baseline by a factor of 95 and is faster than a parallel Central
Processing Unit (CPU)-based version by a factor of 236.

Keywords: GPU-Acceleration · Out-of-core · Causal Structure Learn-
ing · PC Algorithm.

1 Introduction

Learning causal structures from observational data is an active field of research in
statistics and data mining. Discovering the causal relationships between observed
variables in complex systems fosters new insights and is of particular interest
in the context of high-dimensional settings such as in personalized medicine.
For example, in genetic research, the construction of gene regulatory networks
inferred from gene expression data supports drug design or diagnostics [20].

Causal graphical modeling is a well-known concept for the formalization of
causal structures [18, 7, 26], where directed edges between nodes represent causal
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relationships between the observed variables. Algorithms for learning the struc-
ture of causal graphical models from observational data build upon two main
approaches: score-based and constraint-based methods. Score-based approaches
treat structure learning as an optimization problem over a score function on all
possible graphical models which raises an NP-hard problem [3]. Constraint-based
approaches apply a series of statistical tests to identify the conditional indepen-
dence constraints of the causal structure as a first step and an orientation step
that incorporates deterministic rules as a second step. While this approach may
be exponential to the number of observed variables in the worst case, constraint-
based algorithms such as the PC algorithm introduced by Spirtes et al. [26] run
in polynomial time in sparse settings. Nevertheless, the algorithm’s long runtime
hinders its application in practice, in particular for high-dimensional data [13].

With recent advances in hardware technology, i.e., multi-core, many-core,
and Graphics Processing Unit (GPU)-accelerated systems parallel versions of
the algorithm have been developed [15, 16, 24, 13, 23, 28]. GPU-accelerated causal
discovery implementations report a significant speedup of factors between 700
to 1, 300 compared to Central Processing Unit (CPU)-based implementations
under the assumption of multivariate normal distributed data [23, 28]. These
approaches support the application in practice reporting fast learning of causal
structures for datasets with up to 5, 361 observed variables. While both imple-
mentations focus on the PC-algorithm, the GPU-accelerated adjacency search
is also applicable to other constraint-based causal structure learning algorithms,
such as FCI, RFCI, and CCD [26, 5, 21]. Yet, both implementations are limited
by the GPU device memory and execution fails once data structures exceed
available memory. Given, that memory requirement is quadratic to the number
of observed variables in the multivariate normal distributed case, the limita-
tion of current GPU-accelerated implementations is reached for extremely high-
dimensional data. In particular, in genetic research, high-dimensional datasets
are being collected and made available for research, e.g., see The Cancer Genome
Atlas (TCGA) [1]. Resulting gene expression datasets from TCGA contain infor-
mation on more than 55, 000 observed genes [19], exceeding the device memory
of recent GPU generations.

In order to benefit from GPU-acceleration beyond device memory limitations,
we propose an out-of-core causal structure learning algorithm, which enables a
GPU-accelerated adjacency search for extremely high-dimensional datasets, i.e.,
as available in TCGA. In our approach, we split data into smaller-sized blocks
that fit into device memory and yield enough statistical tests to occupy the
compute cores of the GPU. In the worst case, the adjacency search of the PC
Algorithm requires to conduct statistical tests between all observed variables,
thereby requiring data from multiple blocks. Therefore, we incorporate knowl-
edge of data dependencies across blocks for higher-order statistical tests and
manually manage data transfer. By overlapping computation and data trans-
fer using different CUDA Streams3 we hide any transfer overhead. We compare
our block-based implementation with manual memory management to a version

3 http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#streams-cdp
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based on automatic memory management utilizing the default page migration
engine available in current NVIDIA V100 GPUs. Thereby, we show the scal-
ability of our block-based implementation beyond device memory limitations
for higher-order statistical tests within the PC algorithm and a speedup of the
runtime on a gene expression dataset from TCGA by a factor of 95.

The remainder of this paper is structured as follows. Section 2 provides the
necessary background on constraint-based causal structure learning algorithms,
in particular, the PC algorithm. In Section 3, we discuss related work on par-
allel constraint-based causal structure learning and general out-of-core GPU-
accelerated algorithms. Afterward, in Section 4, we present our GPU-accelerated
block-based implementation of the adjacency search, which allows execution on
datasets exceeding device memory limits. The evaluation of the implementation
is provided in Section 5 before we conclude our work in Section 6.

2 Background

In this section, we provide necessary background on constraint-based causal
structure learning, in particular, the PC-stable algorithm. Further, we introduce
an existing GPU-accelerated version of the adjacency search in the context of
the PC-stable algorithm’s skeleton estimation.

2.1 Constraint-Based Causal Structure Learning

In the framework of causality according to Pearl [18] and Spirtes et al. [25],
causal relationships between N observed variables Vi, i = 1, . . . , N , can be rep-
resented in a Directed Acyclic Graph (DAG) G. In this DAG G = (V,E), the
vertices V = {V1, . . . , VN} represent the observed variables and the directed
edges E ∈ V×V between the vertices denote direct causal relationships, i.e.,
Vi → Vj for i, j = 1, . . . , N . Constraint-based methods for causal structure
learning exploit the factorization properties of the joint distribution P of V and
apply conditional independence (CI) tests to determine the Markov equivalence
class of the DAG G that is uniquely described by a Complete Partially Directed
Acyclic Graph (CPDAG) [2]. In particular, the undirected skeleton C of G to-
gether with all unshielded colliders Vi → Vj ← Vk for non-adjacent Vi and Vj
with i, j, k = 1, . . . , N in G entail the CI information of the joint distribution
P of V. Accordingly, based on the d-separation criterion [18], two variables Vi
and Vj are conditionally independent given a set of variables S if and only if the
vertices Vi and Vj are d-separated by the set S ⊂ V \{Vi, Vj} for i, j = 1 . . . , N .
Hence, under the assumption of causal sufficiency and causal faithfulness of the
joint distribution P of V the application of consistent CI tests enables to derive
the Markov equivalence class of the true underlying DAG G, e.g., see [4, 25, 9].

Constraint-based algorithms, such as the well-known PC algorithm intro-
duced by Spirtes et al. [26], follow this theoretical foundation. The algorithm
first determines the undirected skeleton C of G in an adjacency search through
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the repeated application of CI tests between variables given increasing separa-
tion sets S chosen from the set of adjacent vertices in V. In a second step, the
repeated application of deterministic orientation rules on the skeleton C orients
edges, by orienting the detected unshielded colliders in C based on the exam-
ined separation set S. Moreover, edges can be oriented through the application
of further orientation rules such that neither additional unshielded colliders nor
cycles are present in the resulting graph which results in the CPDAG.

For multivariate normal distributed variables V1, . . . , VN , two variables Vi
and Vj are conditionally independent given a set of variables S ⊆ {V1, . . . , Vn} \
{Vi, Vj} if and only if the corresponding partial correlation coefficient is equal
to zero [12]. Hence, a consistent conditional independence test can be derived
upon the corresponding sample partial correlation coefficient ρ̂(Vi, Vj |S) fol-
lowing standard statistical decision theory [14]. Moreover, in high-dimensional
multivariate normal distributed settings, the PC algorithm is established as a
computationally feasible and provable correct estimation procedure of the equiv-
alence class of a sparse DAGs G [9].

While the original version of the PC algorithm depends on the order of the
variables set V1, . . . , VN the PC-stable algorithm [4] is an order-independent ex-
tension that is the basis for efficient parallel adaptions [13, 24], also in the context
of GPU-accelerated implementations [23, 28]. This order-independent version of
the adjacency search of the PC-stable algorithm is outlined in Algorithm 1.

Algorithm 1 Adjacency search of PC-stable algorithm [4]
Input: Vertex set V , tuning parameter α
Output: Estimated skeleton C, separation sets Sepset

1: Start with fully connected skeleton C and l = −1
2: repeat
3: l = l + 1
4: for all Vertices Vi in C do
5: Let a(Vi) = adj(C, Vi);
6: end for
7: repeat
8: Select a pair of variables Vi and Vj adjacent in C with |a(Vi) \ {Vj}| ≥ l
9: repeat

10: Choose separation set S ⊆ a(Vi) \ {Vj} with |S | = l.
11: if p(Vi, Vj |S) ≥ α then
12: Delete edge Vi − Vj from C;
13: Save S in Sepset;
14: end if
15: until edge Vi − Vj is deleted in C
16: or all S ⊆ a(Vi) \ {Vj} with |S | = l have been chosen
17: until all adjacent vertices Vi, and Vj in C such that
18: |a(Vi) \ {Vj}| ≥ l have been considered
19: until each adjacent pair Vi, Vj in C satisfy |a(Vi) \ {Vj}| ≤ l
20: return C, Sepset
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Following the previously introduced concepts the adjacency search of the
PC-stable algorithm depicted in Algorithm 1 starts with a complete undirected
skeleton C and uses CI tests with an increasing size of separation set S of adja-
cent vertices in the corresponding level l to subsequently remove edges between
vertices that are determined as being independent (see lines 8-15).

For every level l, the adjacency sets a(Vi) = adj(C, Vi) of vertices Vi within
the current skeleton C are computed and stored (see lines 4-6). Thus, at each
level l, the algorithm marks edges for removal and deletes the edges only when
entering the subsequent level l + 1 which guarantees the order-independence.

For l = 0, all edges between adjacent vertices Vi, Vj ∈ V are deleted if
the corresponding independence test, i.e., given an empty set S = ∅, rejects the
null-hypothesis of dependence against independence. In this sense, independence
between Vi and Vj can be concluded if the p-value p(Vi, Vj |∅) is greater than the
significance level α and the empty set ∅ can be stored as separation set in Sepset
(see lines 11-13 in Algorithm 1). Note, that the significance level α can be treated
as a tuning parameter influencing the sparsity of the estimated skeleton. After
testing all pairs of vertices the algorithm proceeds to the next level l = 1.

For l = 1, the algorithm applies the CI tests for variables Vi and Vj given a
separation set of size 1 if they remained adjacent in the skeleton C after l = 0.
Therefore, it is now examined whether it holds for the corresponding p-value
that p(Vi, Vj |S) ≥ α with subset S ⊂ adj(C, Vi) \ Vj of size 1 until either all
other subsets in adj(C, Vi) \ Vj have been considered or the variables Vi and Vj
are found to be conditionally independent. If the variables Vi and Vj are found to
be conditionally independent, the corresponding edge Vi−Vj is removed, and the
corresponding separation set S is stored in Sepset. Once all pairs of variables
Vi and Vj that are adjacent in the current skeleton C are tested the algorithm
proceeds to the next level l + 1. The same procedure is repeated until l reaches
the maximum size of the adjacency sets of the vertices maxVi∈V|adj(G, Vi)\{Vj}|
in the underlying DAG.

2.2 GPU-Accelerated Adjacency Search

For the case of multivariate normal distributed variables V1, . . . , VN , approaches
exist that allow the processing of the corresponding consistent CI tests on the
basis of partial correlations in parallel on the GPU [23, 28]. In order to benefit
from the parallel processing capabilities of GPUs, the CI tests are distributed to
threads following the Single Instruction Multiple Threads (SIMT) model.

For level l = 0, a mapping of CI tests to threads is straightforward as, given
an empty separation set S = ∅ for each pair of vertices Vi and Vj , each thread is
processing a single CI test which launches N2 threads [23]. For subsequent level
l ≥ 1, a CI test given a subset S of size l is considered. Hence, testing a pair of
vertices Vi and Vj for conditional independence within a single level l may require
multiple CI tests given appropriate adjacent subsets S in the current skeleton
C. Therefore, current implementations join a fixed number of threads to blocks
for each pair of vertices Vi and Vj , e.g., launching a single thread block with a
number of threads. In this case, each thread within a thread block is responsible
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for processing several CI tests for the corresponding pair of vertices Vi and Vj
given the appropriate subsets S. This distribution of CI tests for the same pair
of vertices Vi and Vj to threads within the same thread block allows sharing data
structures using shared memory and improves performance [28]. Furthermore,
early termination is possible through synchronization within the thread block
such that unnecessary CI tests are avoided. This ensures that the separation sets
S examined are consistent for GPU-based and CPU-based implementations [23].

3 Related Work

Constraint-based causal structure learning is an active field of research, in par-
ticular in the context of the PC algorithm [26]. Given the algorithm’s long exe-
cution time due to its computational complexity several parallel adaptions and
implementations have been proposed [15, 16, 13, 24, 23, 28]. Whereas the majority
of work addresses CPUs as execution units, recently also two GPU-accelerated
versions for multivariate normal distributed datasets have been proposed [23,
28]. Both GPU-accelerated versions state a significant speed-up of three to four
orders of magnitude compared to existing CPU versions.

In the work of Schmidt et al. [23] a GPU-accelerated adjacency search for
levels 0 and 1 is proposed. As most CI tests on publicly available gene expression
datasets are executed on levels l = 0, 1 they introduce an implementation of
GPU-accelerated kernels for these two cases only. Another limitation of their
implementation is the applicability to datasets that fit in the device memory.

The work of Zare et al. introduces a GPU-accelerated implementation, called
cuPC [28], which is capable of processing any level l on the GPU. An extension
cuPC-S enables the sharing of intermediate results during the computation of CI
tests, in particular, parts of matrix inversions for the calculation of the sample
partial correlation coefficients are shared. They show that the sharing of interme-
diate results can further reduce the execution time in higher levels l ≥ 1. More-
over, they add a compact step after each level, for better assignment of threads
to edges which leads to a reduction of the required memory. Hence, it helps to
lift the device memory limitation for extremely high-dimensional datasets, yet,
in the worst case, i.e., a dense graphical model, it also fails to process.

Approaches to overcome the device memory limitation of a GPU are sub-
ject to research [8, 6, 27, 17, 22, 29]. Application-specific out-of-core algorithms
avoid hitting device memory limits by splitting the specific task or data and
processing the parts independent from each other [8, 6]. These approaches either
require a dividable-task [27] or a redesign of the algorithm [8]. Furthermore, the
out-of-core algorithms require manual data management, i.e., data transfers, and
orchestration, i.e., kernel launches. Generic frameworks to overcome the memory
limitation provide the developer with API functions to allocate memory that is
managed by the framework [17, 22]. This enables automatic data transfers, ac-
cording to the memory regions requested by the GPU during kernel execution,
using the GPU driver and the memory management unit of the GPU [17]. Thus,
the available memory capacity is effectively extended to the capacity of DRAM
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Out-of-Core GPU-Accelerated Causal Structure Learning 7

in the system [22] or going even beyond to nonvolatile memory (NVM) [17]. In
the context of Unified Memory (UM), this capacity increase is achieved through
the addition of 49-bit virtual addressing and on-demand page migration within
recent GPU generations [22]. Yet, previous performance evaluations of UM on
Kepler GPUs indicate that the utilization of UM introduces performance over-
head with marginal improvement in code complexity [11].

4 An Out-Of-Core GPU-Accelerated Parallel Adjacency
Search for the PC Algorithm

In the following section, we introduce two implementation strategies for an out-
of-core GPU-accelerated adjacency search. The first implementation which can
be treated as a baseline integrates the concept of UM into the GPU-accelerated
skeleton discovery of Schmidt et al. [23]. Thus, it relies on a generic framework
to overcome the device memory limitation. For the second implementation, we
propose block-based algorithm of the adjacency search. In contrast to the first
approach, the second requires manual data management and orchestration, i.e.,
data transfer and kernel launches.

4.1 Unified Memory Based Adjacency Search

With the introduction of a page migration engine on recent NVIDIA GPU gen-
erations [22], it is possible to use CUDA API calls to address larger memory than
available on-chip. Specifically, a call to cudaMallocManaged() allocates memory,
which is accessible from both the CPU and the GPU. In order to incorporate
page migration into the kernels for levels l = 0, 1, for detail see [23], we adapt
our implementation in the following way. Data structures required during ker-
nel execution are allocated using cudaMallocManaged(), making them accessible
from both CPU and GPU. Once, the GPU kernels are launched data is managed
by the GPU driver and is transferred to the device transparently via the page
migration engine. Thus, API calls for the explicit allocation of memory on the
GPU and API calls to initiate data transfer to and from the device are removed.
The source code of the kernels launched on the GPU remains unchanged.

4.2 Block-Based Adjacency Search

The block-based adjacency search follows the idea of splitting the data processed
during the adjacency search into smaller blocks, that are independent of each
other, to overcome the device memory limitation. The implementation aims to
avoid any overhead introduced by UM [11] and aims to avoid dependency on
novel GPU features. Following previous GPU-accelerated implementations [23,
28], our block-based adjacency search assumes multivariate normal distributed
data that yields to consistent CI tests on the basis of the corresponding sam-
ple partial correlation coefficients ρ̂(Vi, Vj |S). As the sample partial correlation
coefficients can be derived from the sample correlation coefficients between the
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Algorithm 2 Block-based Adjacency Search of PC-stable algorithm
Input: Vertex set V , correlation matrix Cor, tuning parameter α, block size bs
Output: Estimated skeleton C, separation sets Sepset

1: Start with fully connected skeleton C and l = −1
2: repeat
3: l = l + 1
4: for all Vertices Vi in C do
5: Let a(Vi) = adj(C, Vi);
6: end for
7: blocks = Split(V,Cor, C,Sepset, bs)
8: for all b in blocks do
9: Transfer b to GPU

10: if l == 0 then
11: BlockCITest(b, α)
12: else
13: sepsetblocks = SepSetCombination(b, l, blocks)
14: for all s in sepsetblocks do
15: Transfer s to GPU
16: BlockCITest(b, s, α)
17: end for
18: end if
19: Transfer b from GPU
20: end for
21: Merge(blocks)
22: until each adjacent pair Vi, Vj in C satisfy |adjout(Vi) \ {Vj}| ≤ l
23: return C, Sepset

variables Vi, Vj and S, our implementation operates on the correlation matrix
Cor that contains the precomputed sample correlation coefficients ρ̂(Vi, Vj) for
all i, j = 1, . . . , N , for more information we refer to [23].

Algorithm 2 sketches the block-based adjacency search executed on a GPU,
which extends the PC-stable algorithm (see Algorithm 1). Within each level
l, the relevant data structures are split into a set of blocks b in blocks (see
line 7 in Algorithm 2). Note, the input parameter bs determines the sizes of data
structures within a block b in blocks. In this sense, the operation Split() returns
an iterable list blocks of blocks b, for which each block b contains disjunct bs×bs-
submatrices of the following data structures: the correlation matrix Cor, the
skeleton C. Moreover, it returns corresponding subsets with cardinality bs of the
current the adjacency set a(Vi), the separation sets Sepset, and auxiliary data
structure containing the calculated p-values p(Vi, Vj |S) as well as a mapping
m(b) of the positions of the bs×bs submatrices of Cor and C in b to their original
positions. Zero-padding is applied in the case that the dimension of the dataset is
not a multiple of bs. Next, the list blocks of blocks b is iterated and each block b is
processed. First, all data structures in b are transferred to the GPU (see line 8 and
9). If the algorithm operates on level l = 0, the kernel can be launched directly as
depicted in lines 10 and 11 of Algorithm 2. In this case, the algorithm operates on

Christopher Schmidt
This is a pre-print of an article published in Algorithms and Architectures for Parallel Processing ICA3PP 2019. 
The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-38991-8_7�



Out-of-Core GPU-Accelerated Causal Structure Learning 9

the fully connected skeleton C, such that all CI tests between Vi and all Vj from
the subset with cardinality b of the adjacency set a(V i) can be executed on the
basis of the bs × bs-submatrix Cor that incorporates the corresponding sample
correlation coefficients. Processing of the edges in the corresponding undirected
bs-dimensional subgraph of C in BlockCITest() follows the standard procedure
within the lines 8 and 18 of Algorithm 1. Afterwards, the corresponding result
of block b, e.g., the separation sets and p-values as well as the updated part of C,
is transferred back to the CPU where it is merged together with all other block
results within blocks (see line 19-21).

For all remaining levels l ≥ 1, a CI test between a pair of variables Vi and Vj
adjacent in the b-dimensional subgraph of C requires a separation set S of size
l drawn from the subset with cardinality b from a(Vi). Note that, in contrast
to level l = 0, the derivation of the p-values p(Vi, Vj |S) corresponding to CI
test may not be restricted to the sample partial correlation coefficient that are
available in bs × bs-submatrix of Cor within block b. Thus, additional bs ×
bs-submatrices of Cor, which we call separation set blocks are required. The
number of separation set blocks increases with l. For a given block b, the list
of sets of required separation set blocks, sepsetblocks, is determined within the
function SepSetCombination() (see line 13). The list contains all bs×bs disjunct
submatrices of Cor that contain at least one sample correlation coefficient that is
needed to derive the p-value p(Vi, Vj |S) of the corresponding CI-test between the
variables Vi and Vj given a subset S with |S | = l of the subset of a(Vi)\{Vj} with
cardinality bs. As depicted in the lines 14 till 17 in Algorithm 2, each element
s in the list sepsetblocks is transferred to the GPU such that a GPU kernel
can be launched, which conducts all necessary CI tests between the variables
Vi and Vj given the corresponding set S. Afterward, the block b contains all
required conditional independence results, e.g., separation sets and p-values as
well es the corresponding bs-dimensional subgraph of Skel, and is transferred
from the GPU into the host memory (see line 19). Once, all blocks b in blocks
have been processed the results are merged in line 21. This process is repeated
for an increasing level l until the same termination criterion in line 19 of the
PC-stable algorithm sketched in Algorithm 1 is satisfied (compare line 22 of
Algorithm 2).

Following previous work [23], we provide an implementation of the block-
based algorithm for levels l = 0, 1. This enables to investigate the performance
improvements of the introduced concepts for CI tests with (l = 1) and without
(l = 0) a separation set. Note, that according to cupc [28] the behaviour for
levels l ≥ 2 is similar to level l = 1. In the implementation of Algorithm 2, we
incorporate the following optimizations. First, in level l = 0, we do not trans-
fer the adjacencies a(Vi) and the separation sets Sepset reducing the memory
footprint during kernel execution. In the level l = 0, the deletion of an edge can
be carried out on the skeleton C directly, without influencing any other CI test.
Thus, the adjacencies a(Vi) are not necessary. Furthermore, an empty separa-
tion set is used in level l = 0, which we assume as the initial value in the data
structure Sepset for each pair of variables Vi, Vj . Hence, setting it within the
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Fig. 1. Overlapping execution on CPU with data transfer and execution on GPU within
the adjacency search of the block-based PC algorithm.

kernel for l = 0 is not required. Note, that the same optimization applies to the
kernel for level l = 0 in the UM-based adjacency search. Second, we overlap data
extraction and merging on the CPU, as well as, data transfer to the GPU with
kernel execution, as shown in Figure 1, in order to reduce the overall runtime of
the block-based algorithm. We realize the overlap by using two separate CUDA
streams and adapt the proposed Algorithm 2, accordingly. In the implementa-
tion we first obtain the mapping for the blocks b, thus enabling to extract the
appropriate data structures within the for loop in line 8 of Algorithm 2 for each
block b independently. The same applies to the separation set blocks. Hence, all
required data structures to launch a kernel on block b are extracted on the CPU
and transferred to the GPU on one CUDA stream, while at the same time a
GPU kernel is executed in a second, separate, CUDA stream, processing a sec-
ond block from blocks. Once the kernel execution is finished, data is transferred
back to the host and merged on the CPU, within the for loop.

5 Evaluation

For the evaluation of the proposed block-based adjacency search executed on a
GPU, we conduct the following two experiments. First, we compare the perfor-
mance of our block-based approach to the baseline implementation that applies
the concept of UM with a page migration engine to overcome the device mem-
ory limit. Here, we focus on an examination of the approaches with regards to
their scalability with respect to an increasing number of multivariate normal
distributed variables, assuming a fully connected underlying causal graphical
model. Since the assumption of a fully connected causal graphical model is not
realistic demonstrating the worst case, we conduct a second experiment. There-
fore, we examine a real-world gene expression dataset from the TCGA project
that has been used in the context of integrative gene selection approaches [19].
Thereby, we investigate the performance benefits of the block-based approach
compared to a CPU-based implementation and its applicability to real-world
high-dimensional datasets.

The experiments are executed on an NVIDIA V100 card, with 32 GB of high
bandwidth memory, inside an enterprise-grade server with 2 Intel R© Xeon R©

Gold 6148 CPU with 20 cores each. The GPU card is connected via PCI-E
version 4. Furthermore, the server is equipped with 1.5 TB of RAM, allowing
to keep all data in memory during the execution of the experiments. The op-
erating system is an Ubuntu 18.04 and the NVIDIA driver version 410.79 is
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Out-of-Core GPU-Accelerated Causal Structure Learning 11

installed with CUDA version 9.1. For measurements of the runtime we utilize
the system_clock from the C++ standard library chrono. This allows to in-
clude all CPU-based operations, such as splitting and merging of blocks, kernel
launches and data transfer in our measurements. In particular, we measure the
runtime for each level l = 0, 1 separately. If not stated differently, we report the
median value of 10 measured executions for dataset sizes until 40, 000 variables,
for higher dimensional datasets we report the median value of 3 measured exe-
cutions, due to long runtimes. For the block-based approach, we choose a block
size bs of 2, 560, which maps to the hardware specifications of the NVIDIA V100.
For brevity we omit measurement results, which confirmed the chosen block size.

5.1 Experiments on Scalability Properties

In the first experiment, we examine the scalability with regards to the number
of variables in the dataset. We consider datasets with 5, 000 to 55, 000 variables,
increasing with a step size of 5, 000. Hence, we scale beyond the dimensions
of previously used datasets for evaluation of GPU-accelerated causal structure
learning algorithms [23, 28], which did not exceed the available device memory.
Based on available gene expression datasets from TCGA [19], we choose 55, 000
variables as our upper limit for the experiment. Under the assumption of double-
precision values, all data structures required during kernel execution result in
a maximum memory footprint of 0.47 GB for 5, 000 variables to 56.35 GB for
55, 000 variables in level l = 0. Respectively, the maximum memory footprint in
level l = 1 for 5, 000 variables is 0.65 GB and for 55, 000 variables is 78.88 GB.
Note, the difference is due to two memory optimizations in level l = 0 applicable
to approaches, as explained in Section 4. Furthermore, in order to eliminate any
influence of the underlying graph structure on our measurements, we assume
that all possible CI tests have to be conducted within each level l. This coincides
with a fully connected graph and sketches a worst case for the number of CI tests
to be conducted. Hence, in level l = 0, over 12 million CI tests are conducted for
5, 000 variables and over a billion CI tests are conducted for 55, 000 variables.
For level l = 1 this results in over 60 billion CI tests for 5, 000 variables and
around 83 trillion CI tests for 55, 000 variables.

The measurements presented in Figure 2 display the median execution times
for the adjacency search in level l = 0 on the left and the adjacency search for
level l = 1 on the right. The vertical blue line marks the device memory limit
of the GPU used in the experiments. Note, previous implementations would fail
on datasets whose number of variables is located to the right of the vertical line.
Furthermore, the measurements of the block-based adjacency search is drawn
in a yellow line denoted with GPU Block-Based and the UM-based adjacency
search drawn in a green line denoted with GPU UM.

Considering the adjacency search for level l = 0 our measurements show that
the block-based approach has a continuously higher execution time compared
to the UM-based approach. In fact, the UM-based approach outperforms the
block-based approach by a factor of up to 15 for datasets with few variables
to a factor of 4.4 for datasets with 55, 000 variables. In-depth analysis with the
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Fig. 2. Median execution times of the GPU UM-based (green) and the GPU Block-
based (yellow) implementation for level 0 (left) and level 1 (right) of the skeleton
discovery with an increasing number of variables; with all possible CI tests conducted

nvprof profiler has shown that the total data transfer time exceeds the kernel
execution time. Additional time has to be added for the block extraction and
merge on the CPU, which is not efficiently overlapped. Both approaches scale
well, beyond the device memory limit. As no separation sets are required in level
l = 0 and coalesced memory accesses is used such that the number of page faults
scales linearly with the dataset size. Thus, the UM-based approach shows good
performance beyond device memory limitations. Note, that the performance gap
between both approaches decreases with an increasing number of variables.

For the adjacency search in level l = 1 the runtime of both approaches is
similar up to a dataset with 35, 000 variables. For datasets with a number of
variables that scales beyond this number, the device memory limit is exceeded.
The block-based approach shows similar scalability on these higher-dimensional
datasets compared to the lower-dimensional datasets. In contrast, the UM-based
approach’s performance drops significantly beyond the GPU memory limit. In
fact, the block-based approach outperforms the UM-based approach by factors
from 12.4, for 40, 000 variables up to 34, for 55, 000 variables. Profiling with
nvprof revealed that for the UM-based approach the number of page faults
increases drastically once the device memory limit is hit. For 35, 000 variables
the number of page faults is around 140, 000 and increases to almost 12 million
for 40, 000 variables. The performance difference is accounted for by memory
stalls, for page accesses that result in page faults. When conducting a CI test
with a separation set of size l = 1, the values for the separation set can be
arbitrarily scattered across pages within the required data structures. Hence,
the page migration engine reloads previously evicted pages, as caching is not
trivial.

Comparing the measured execution times for both levels, it is evident that the
runtime in level l = 1 is significantly higher, due to the larger amount of CI tests
that are conducted. Yet, for the smallest dataset in level l = 1 approximately 40
times more CI tests are conducted compared to the largest dataset in level l = 0,
in less time. We account that for overhead in data transfer in level l = 0, which
is also shown in [23] and results in a poorer ratio of computation per memory
access.
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Table 1. Execution times of the CPU- and the two GPU-based implementations over
both levels l = 0, 1 on TCGA dataset consisting of 55, 572 variables with α of 0.01.

CPU pcalg GPU UM GPU Block-Based
(on 32 cores) (2560 block size)

107.6 hours 43.4 hours 0.46 hours

5.2 Experiments on Real-World Gene Expression Data

In our second experiment, we examine the performance of the approaches on
a real-world gene expression dataset from TCGA. The dataset contains 55, 572
variables with 3, 189 observations [19]. We set the tuning parameter α to 0.01,
which is a common option found in literature [4]. In this setting, one-third of all
edges are removed within level l = 0 leading to fewer tests in level l = 1. In addi-
tion to both GPU-accelerated implementations of the PC-stable algorithm’s ad-
jacency search, we executed a CPU-based OpenMP-enabled version chosen from
the well-known R-package pcalg [10] (version 2.6). We conducted the CPU-based
measurements on a separate system equipped with Intel R© Xeon R© E7-4850 v4
CPUs with 16 cores and 2 TB of DRAM. For the execution, we allowed OpenMP
to scale to 32 cores and limited the execution to levels l = 0, 1, by setting the
parameter of the m.max = 1. Using the skeleton method stable.fast an un-
derlying C++ extension is used in the adjacency search, in which we integrate the
time measurements. In Table 1, we state the measured execution times for the
three approaches. The GPU block-based approach executes the adjacency search
for level l = 0, 1 in 27.35 minutes. The GPU UM-based approach requires 43.4
hours to finish, suffering from a large number of page faults. In comparison, the
CPU-based version runs for over 4 days. Thus, the GPU block-based approach
outperforms, the GPU baseline using UM by a factor of 95 and the CPU-based
implementation by a factor of 236.

6 Discussion and Conclusion

In this paper, we proposed an out-of-core GPU-accelerated adjacency search to
overcome the GPU device memory limitation. The adjacency search is a sub-
stantial part of constraint-based causal structure learning algorithms, such as the
PC-algorithm. It is used for the estimation of the Markov equivalence class of
the underlying causal graphical model G from observational data. Our proposed
algorithm splits the correlation matrix of multivariate normal distributed data
and other relevant data structures, e.g., the skeleton, into small blocks such that
datasets that usually exceed device memory can be processed efficiently on the
GPU. We compare the approach to a baseline implementation using the concept
of UM to overcome the memory limit. The baseline implementation relies on
the page migration engine available in recent NVIDIA GPU-generations, which
automatically transfers data between host and device memory. This baseline is
easy to implement and shows good performance for level l = 0 of the adjacency
search. In this case, it outperforms the block-based approach, which suffers from
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the overhead of block extraction and merging. In contrast, we show that the
baseline suffers severely from page faults in case of arbitrarily scattered memory
accesses, which occur in the adjacency search for level l ≥ 1. For these cases, the
performance gain of the block-based approach is significant, with factors up to 34.
Furthermore, on real-world gene expression data, we show that the block-based
approach outperforms the naive baseline by a factor of 95 and a parallel CPU-
based version by a factor of 236. While our current implementation is limited to
levels l = 0, 1, we assume similar behavior for higher levels l ≥ 2. In future work,
we aim to extend our implementation to these higher levels to evaluate limita-
tions with regards to the number of required separation set blocks. Furthermore,
adding a compact procedure, similar to the one described in cuPC [28], could
be of interest since implementations may benefit from the condensed memory
layout. Summarizing, we conclude that the block-based approach is well suited
to extend GPU-accelerated causal structure learning algorithms to extremely
high-dimensional datasets, which exceed the available device memory and could
not benefit from the parallel processing capabilities of the GPU before.
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Inference Using Graphical Models with the R package pcalg. Journal of Statistical
Software, Articles 47(11), 1–26 (2012)

Christopher Schmidt
This is a pre-print of an article published in Algorithms and Architectures for Parallel Processing ICA3PP 2019. 
The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-38991-8_7�



Out-of-Core GPU-Accelerated Causal Structure Learning 15

11. Landaverde, R., Tiansheng Zhang, Coskun, A.K., Herbordt, M.: An investigation
of Unified Memory Access performance in CUDA. In: 2014 IEEE High Performance
Extreme Computing Conference (HPEC). pp. 1–6 (Sep 2014)

12. Lauritzen, S.L.: Graphical models, vol. 17. Clarendon Press (1996)
13. Le, T., Hoang, T., Li, J., Liu, L., Liu, H., Hu, S.: A fast PC algorithm for high

dimensional causal discovery with multi-core PCs. IEEE/ACM Transactions on
Computational Biology and Bioinformatics (02 2015)

14. Lehmann, E.L., Romano, J.P.: Testing statistical hypotheses. Springer Science &
Business Media (2006)

15. Madsen, A.L., Jensen, F., Salmerón, A., Langseth, H., Nielsen, T.D.: Parallelisation
of the PC Algorithm. In: Proceedings of the 16th Conference of the Spanish As-
sociation for Artificial Intelligence on Advances in Artificial Intelligence - Volume
9422. pp. 14–24. Springer-Verlag New York, Inc., New York, NY, USA (2015)

16. Madsen, A.L., Jensen, F., Salmerón, A., Langseth, H., Nielsen, T.D.: A Parallel
Algorithm for Bayesian Network Structure Learning from Large Data Sets. Know.-
Based Syst. 117(C), 46–55 (Feb 2017)

17. Markthub, P., Belviranli, M.E., Lee, S., Vetter, J.S., Matsuoka, S.: DRAGON:
Breaking GPU Memory Capacity Limits with Direct NVM Access. In: Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis. pp. 32:1–32:13. IEEE Press, Piscataway, NJ, USA (2018)

18. Pearl, J.: Causality: Models, Reasoning and Inference. Cambridge University Press,
New York, NY, USA, 2nd edn. (2009)

19. Perscheid, C., Grasnick, B., Uflacker, M.: Integrative Gene Selection on Gene Ex-
pression Data: Providing Biological Context to Traditional Approaches. Journal of
Integrative Bioinformatics (2018)
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