A Framework for Self-Managing Database Systems

Jan Kossmann
Hasso Plattner Institute
Potsdam, Germany
jan.kossmann@hpi.de

Abstract—Database systems that autonomously manage their
configuration and physical database design face numerous chal-
lenges: They need to anticipate future workloads, find satisfactory
and robust configurations efficiently, and learn from recent
actions. We describe a component-based framework for self-
managed database systems to facilitate development and database
integration with low overhead by relying on a clear separation of
concerns. Our framework results in exchangeable and reusable
components, which simplify experiments and promote further
research. Furthermore, we propose an LP-based algorithm to
find an efficient order to tune multiple dependent features in a
recursive way.

I. SELF-MANAGING DATABASE SYSTEMS

The idea of database systems that autonomously adjust their
configuration is almost as old as the idea of relational database
systems itself. For example, the first work on the topic of
self-adaptive index selection dates back to 1976 by Hammer
and Chang [1]. However, the topic of self-managing database
systems gained recent popularity [2]-[4]. Studies show that the
spending on database personnel is a key factor in the TCO of
database systems [S[]. A higher complexity of this task, e.g.,
caused by volatile workloads, a lack of domain knowledge and
application context [6] in cloud scenarios and more available
dependent configuration options further increases this number.

These aspects demand systems that support autonomous ad-
justments of their configuration. Such systems face a multitude
of challenges, e.g., finding efficient solutions for configuration
problems in a scalable fashion [7]], predicting future work-
loads [3]], and learning from past self-management decisions.

The topic is also interesting from an architecture and
integration point of view. Database systems are usually not
designed with self-managing capabilities in mind. Interviews
that we conducted with industry database architects showed
that low overhead, a maximum of 1% of additional runtime in-
troduced by such capabilities, and minimally invasive changes
to the architecture are mandatory. However, many papers focus
on tuning while holistic approaches for multiple features or
database integration remain unexplored.

Contribution: Therefore, we present a component-based
framework for self-managing database systems. Our frame-
work divides the significant challenge of incorporating self-
management capabilities into manageable subproblems (sepa-
ration of concerns). Components with clearly specified func-
tions and interfaces handle these subproblems. Our frame-
work simplifies experimentation and development of self-

Rainer Schlosser
Hasso Plattner Institute
Potsdam, Germany
rainer.schlosser @hpi.de

management techniques by offering reusable and exchangeable
components. Further, we discuss integration and design deci-
sions on the basis of the ongoing integration into our research
DBMS Hyrise [8] in Section Besides, we explain our
strategy of how to optimize multiple dependent features, for
example, the selection of indexes, compression schemes and
the decision on data placement simultaneously (Section [II).
Ideas on workload anticipation to allow robust optimizations
are given in Section and Section Related work in
this area is examined in Section Section [VI| concludes our
work after a presentation of future work in Section [V]

II. FRAMEWORK ARCHITECTURE

In this section, we present the architecture of our framework
for self-managing database systems and the reasoning that
influenced its design. For this work, we substantially extend
our previous ideas of such an architecture [9]]. The framework
recursively divides common challenges in the context of self-
managing database systems into smaller subproblems that are
handled by exchangeable components. Thereby, we achieve a
clear separation of concerns which simplifies the development
of such systems. Also, the framework offers interfaces to
access data that is provided by common database entities, e.g.,
cost models and the query plan cache. We detail the involved
components and their interfaces in the following subsections
after giving a short general overview of the architecture.

A. Overview

Figure [1| depicts a diagram of the proposed framework and
an integration into the database system Hyrise. We decided
to divide the system into components, each handling smaller
sub-problems for a couple of reasons. First, we recognized
that when tuning different features often similar or related
subproblems are solved. By making components reusable
and shareable, we avoid redundancy, cf. Section for
more details. Second, by relying on components with clearly
specified interfaces, we simplify the development and experi-
ments of new approaches since components can be exchanged
effortlessly.

The driver is the central entity encapsulating all the other
components that are responsible for adding self-management
capabilities. It consists of three key components which are
further divided into the following sub-components:

o Workload Predictor: The effect of a particular database
configuration largely depends on the executed workload.

Copyright ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. DOI: |10.1109/ICDEW.2019.00-27

https://doi.org/10.1109/ICDEW.2019.00-27

Queries

Query Plan
Cache

Workload Predictor

(Worst Case)
)

Forecasts

; Organizer

Physical
Design

Knobs

%

Hardware

Resources

Query Optimizer

Enumerator

v
<R
Assessor |—()-H Selector

Configuration

—O

; Candidates) (Assessmentgf\>< Choices)}
Tuner

4

Cost Estimator

Driver

il

Configuration
Instance Storage

Hyrise

Runtime KPIs

Hardware
Resources

Constraints

Fig. 1. Architecture diagram of our framework for self-managing database systems.

Therefore, a component is required that predicts the
upcoming workload based on historical workload data.
The workload predictor is detailed in Section [[I-C|

e Tuner: Based on these predictions, the tuner employs a
multi-step process to calculate a selection for a certain
feature. Section [II-D| contains further information regard-
ing the tuner.

o Organizer: The organizer is orchestrating the whole self-
managing processes. It is responsible for starting and
stopping tunings, enforcing constraints and assessing run-
time KPIs. Further, it determines in which order features
should be tuned (cf. Section [[II). Section gives more
details on the organizer.

Furthermore, the driver is the interface for accessing other
database or system components that serve as external inputs.
We describe these inputs in the following paragraphs.

a) Query Plan Cache: Most relational database systems,
e.g., Microsoft SQL Server [10] and SAP HANA [11] employ
query plan caches. These have typically two purposes: the
support of prepared statements and caching of optimized query
plans to avoid optimizing the same SQL queries repeatedly.
For our work, the latter aspect is of importance because
workload-driven optimizations need information about work-
loads that were executed in the past. In addition to query plans,
information such as the execution time and the number of
executions of the queries is stored and used by the workload
predictor to generate forecasts of future workloads.

b) Configurations: The configuration of a DBMS is the
combination of all of its configurable entities. These can
be categorized into features regarding the physical database
design, the knob configuration of the database, or hardware
resources that are available to the system. The selection of
indexes, a partitioning scheme, or data placement are examples
for physical design features while the buffer pool size or the
number of available threads are typical examples for knobs. A

particular configuration is called configuration instance. When
the configuration is adjusted, former configuration instances
are stored. This storing is central to establish a feedback loop
for past decisions by enabling the assessment of the impact of
past tuning decisions.

c) Constraints: Constraints are DBMS-related or result
from the available hardware resources. Examples for the first
case are user-defined service level agreements (SLAs) or
limitations of the memory utilized for indexes. Other entities,
as management software in cloud scenarios or applications
itself, could also set these constraints.

Hardware resource constraints limit the available options
during the tuning process from a physical perspective. A con-
figuration instance that requires more memory than actually
available on the system should not be considered. Both types
of constraints could conflict. In such cases, available hardware
resources overwrite externally specified ones.

d) Cost Estimators: Cost estimation is a crucial part
of self-managing database systems. To determine efficient
configurations, different options must be compared. Therefore,
cost estimation must be involved at every stage of the tuning
process. It is required to quantify the impact of all decisions
the system may take. To also make these decisions and actions
of the system comparable across different features, cost must
be estimated in the same unit, for instance, runtime. The
costs of changes to the configuration, e.g., the runtime of
applying a specific compression to an attribute must be as
quantifiable as the processing of workloads. For example,
the computation cost of a query given a particular index (cf.
what-if optimization [12]) must be determinable to enable the
proposed workload-driven approach.

Simple logical cost models are not capable of representing
the interplay of, e.g., data types, encodings, and coprocessors
in their cost estimations. We argue that hardware-dependent
cost models are necessary to ensure a maximum of precision

of cost predictions which, in turn, enable well-suited database
configurations. The proposed cost models can be created
adaptively by learning from observed query execution costs.
At database system start, a minimal set of queries is run
to create training data for a specialized cost model. During
further database operation more data points are collected,
thus enabling more specialized models that ensure precise
cost predictions. Cost models can be obtained by applying
simple linear regressions [[13] or more advanced approaches
like gradient boosting regressors or neural networks [[14].

e) Runtime KPIs: We classify runtime KPIs as DBMS or
system specific. Examples for typical DBMS KPIs are query
response times or the number of aborted transactions. On the
other hand, system KPIs are mostly comprised of hardware
metrics: CPU utilization, memory usage, or cache misses. The
use cases of runtime KPIs are manifold. First, they are nec-
essary for determining the impact of adjusted configurations,
e.g., how did a certain index decision influence the average
query response time? Second, runtime KPIs can disclose when
the configuration should be adjusted. For example, when SLAs
are constantly violated or performance peaks are detected.
Furthermore, these KPIs can help to identify phases of low
resource utilization that can be used to run resource-intensive
tunings. Therefore, these are used by the organizer to identify
favorable points in time for tuning runs.

B. Implementation Strategies

The aforementioned architecture is currently under imple-
mentation in our research database system Hyris which
is categorized as a relational in-memory database system
and tables are stored in column-major format. Every table
is implicitly partitioned into chunks of a certain size. Deci-
sions about, e.g., compression, indexes, or data distribution
in NUMA systems are all taken on a per-chunk instead of
a per-table basis. This chunking increases the flexibility in
the context of self-managing database systems since decisions
are possible for fractions of the data of an attribute. For
example, the system can decide to create indexes only on
the frequently accessed and most beneficial chunks to save
memory. This approach is especially useful for skewed data
which is often found in real-world systems [15]. Further,
applying new configurations to a whole table is a heavyweight
operation. Applying these iteratively to chunks reduces the
cost of these operations.

There are mainly two different options of how to imple-
ment self-management capabilities: inside the database core
or outside of the database system as a standalone application.
For the first option, the database core functionality could be
extended by integrating self-management with the database
source code. This extension introduces tight coupling between
the self-management system and the database core which
would, in turn, complicate the development process because
every developer has to be aware of and understand the self-
managing system. On the other hand, for a standalone appli-
cation running outside the database system, the DBMS itself

'Source Code available at: https://github.com/hyrise/hyrise

has to provide powerful interfaces to adjust the configuration
from outside, access KPIs and other entities which are usually
not publicly accessible, e.g., the cost estimators. Providing
these interfaces would induce additional development efforts
while at the same time introducing overhead by further layers
of indirection. The proposed framework works with both
implementation strategies as long as the interfaces to the
necessary data are provided.

We decided to implement self-management capabilities with
the plugin infrastructureE] of Hyrise. Thereby, we can combine
the strengths of the aforementioned approaches. The plugin
interfaces offer direct access to database core methods without
implementation or performance overhead. In addition, it avoids
tight coupling of the development of database core and self-
management functionality. Plugins are dynamic libraries which
are loaded during database runtime. The development of
plugins is identical to the development of the database core,
but plugin code is not compiled with the database system itself.
Thus, the database system remains independent.

C. Workload Predictor

The workload predictor is responsible for creating forecasts
about future workloads. Such predictions are indispensable
for self-managing database systems. The configurations itself
(determined by the tuner) as well as the points in time
when the process of deciding on configurations should be
triggered (by the Organizer) are based on these predictions.
Robust predictions support the system in being less sensitive
to irregular workload patterns.

As a first step, the workload predictor accesses informa-
tion about past workloads from the query plan cache (cf.
Section [[I-A). The information contains which queries were
executed and their execution count and cost. By relying on
the query plan cache, no further overhead is added during
query execution time and the database system’s architecture
remains unchanged. The prediction itself is a multistep pro-
cess. First, depending on how the query plan cache stores
information about past queries, these are transformed into an
abstract logical representation of query templates to remove
unnecessary information. The second step is an optional query
clustering (e.g., similar to [J3]]) for large and diverse workloads.
Here, similar queries can be combined to reduce the number
of queries that have to be processed in the following and,
in the end, reduce the time necessary for predictions and
tunings. Lastly, a workload analyzer calculates a forecast of
future workloads. The system can consist of multiple workload
analyzer instances that each employ different methods to create
forecasts, e.g., based on expert knowledge, latest scenarios
(seasonal time intervals) as well as simple linear regressions,
time series analysis (cf. ARIMA), or more expensive recurrent
neural networks.

In this context, we recall, that robustness is a crucial
component for self-managing database systems. We refer to

2Example plugin available at: |https:/git.io/HyriseExamplePlugin

https://github.com/hyrise/hyrise
https://git.io/HyriseExamplePlugin

robustness as how workload changes affect a system’s per-
formance. Robust configurations do not aim to provide the
best performance for the expected scenario but aim for accept-
able performance for most scenarios so that small workload
changes do not have a large impact on the performance. Hence,
not only the expected workload should be incorporated but also
information about the distribution of potential future scenarios
to allow the computation of robust configurations.

D. Tuner

Tuners are components that take workload forecasts and cost
estimations as input and deliver configurations for features as
output. There is one tuner instance per feature, e.g., a tuner
for index selection and another tuner for determining efficient
partitioning schemes. Tuning relies heavily on accurate cost
estimations (cf. Section to determine configurations.
Without sufficiently precise estimations different configuration
options cannot be compared. We specified tuning as a multi-
step process where each step is mapped to a subcomponent
to enable reuse across the tuning of multiple features (cf.
Section [[I). Figure [T] indicates that multiple instances for the
tuning subcomponents exist. Thereby, different techniques can
be employed and compared based on the outcome of former
tuning runs or (time) constraints. In the following, we detail
the involved subcomponents.

a) Enumerator: An enumerator is responsible for pro-
viding a list of Candidates to the tuning process. The size of
the candidate set is typically a significant contributor to the
execution time of optimization algorithms. Hence, providing
a variety of enumeration algorithms is advisable to be able to
influence the runtime. Some enumeration algorithms restrict
the candidate set based on heuristics (cf. [12]]) while others
consider all available candidates. The framework allows to
switch between different enumerators or fall back to restrictive
enumerators when necessary. Candidates can be of various
forms to represent different types, i.e., physical design fea-
tures or knobs. For discrete problems, for example for index
selection, candidates would be a set of lists (to support multi-
attribute indexes) of attributes. For continuous problems, e.g.,
the decision about the buffer pool size candidates are specified
by providing the start and the end of a range, e.g., 1.0 GB to
100.0 GB and the smallest available intervals to pick in this
range, e.g., 0.5 GB. Users can either implement enumerators
on their own or utilize general ones provided by the system.

b) Assessor: This component provides an assessment
of the previously generated candidates. Each candidate is
assigned a positive or negative desirability indicating its
impact on the overall system performance given a forecast
scenario. The system assigns different desirabilities to the
same candidate for different forecast scenarios. Later in the
decision process these, possibly differing, desirabilities are
utilized for robustness considerations. Besides, the assessor
assigns an associated confidence, describing the certainty of
the assessment, and a cost to each assessment. The cost
component is twofold: it consists of permanent costs (e.g.,
the memory consumption of an index) and one-time costs

for applying the configuration (e.g., the cost of constructing
an index). The sum of all these one-time costs are so-called
reconfiguration costs. These are of importance in the following
scenario: The tuner might find a new improved configuration
that suggests to completely change the current one even though
the associated performance increase is comparably small. To
avoid such effects reconfiguration costs can be used to balance
performance improvements and reconfigurations to identify
minimally invasive changes. Thus, accurate cost models are
indispensable for precise and fast assessments.

Again, the system can contain different assessors that reflect
the use of different cost models, e.g., simple logical, physical
or what-if optimizer-based models. Choosing an assessor is a
trade-off between accuracy and runtime. Learnings from past
decisions, i.e., the effect of specific configurations on runtime
KPIs can be incorporated during this step.

c) Selector: A selector chooses candidates based on the
previous assessments and specified constraints, e.g., a memory
budget for indexes. As in the previous steps, there are multiple
selectors available, each following a different strategy. For
selection, a third component is added to the trade-off of finding
optimized solutions or achieving low computation times for
the optimization: robustness of the chosen candidates. We
consider the following classes of selectors (including existing
approaches for the tuning of specific features) to be interesting
for self-managing database systems:

o Greedy: The greedy selector chooses candidates based on
the desirability per cost. Choosing the candidates with
the highest ratio first and proceeding until the constraint
is violated. The strength of the greedy selector is its
short runtime. For example, [|16]], [[17] for index selection
or [18]] for data tiering with greedy approaches.

e Optimal: As the name implies, optimal selectors find
optimal configurations (e.g., Dash et al. [19] for an
optimal index selection). This selector is usually based on
off-the-shelf solvers that are heavily optimized for such
a task. Optimal selectors might lead to long runtimes.

o Genetic: These algorithms are based on the biological
principles of mutation, selection, and crossover [20].
Genetic algorithms (e.g., for index selection Kratica et
al. [21]) can be applied when the search space is too
large to find optimal solutions. They usually find close-
to-optimal solutions in relatively short amounts of time.

o Robust and risk-averse: Selectors that act risk-averse are
a good choice for scenarios in which stable performance
in most cases is preferred over best performance in the
expected case. (cf. [22]). Criteria based on mean-variance
optimization, utility functions, value at risk, and worst-
case considerations can be used.

By strictly relying on the interfaces between components,
selectors can be exchanged and shared between features.
Selectors can also request re-assessments of certain candidates
from the assessors. This is useful to reflect changed circum-
stances or incorporate interaction between candidates.

d) Executor: The executor takes care of applying the
choices that were selected previously. There are different appli-
cation strategies regarding order, point in time and sequential
or parallel application. The executor can access runtime KPIs
to determine favorable points in time for applying the choices.

E. Organizer

The organizer is responsible for orchestrating the whole
self-managing process. It identifies convenient points in time
for tuning by constantly monitoring runtime KPIs and taking
workload forecasts into account. The organizer also decides
whether changes observed in workload forecasts are significant
enough to justify possibly expensive tunings. This decision
relies, upon other terms, on the difference of the current work-
load cost and the estimated workload cost for the forecasted
workload given the current configuration.

Furthermore, self-managing database systems manage the
configuration of multiple features, e.g., the selection of indexes
and compression schemes for attributes. The organizer decides
on the order of tuning processes for these features. More
details are given in Section In the future, the organizer
could also, based on the workload forecast, decide to only tune
the subset of features which is expected to yield the largest
benefits to avoid wasting resources on unprofitable tunings.

III. COMBINED TUNING OF MULTIPLE FEATURES

In this section, we discuss ideas and highlight challenges
regarding the tuning of multiple features. There are generally
two approaches of tuning multiple features: An iterative ap-
proach tuning one feature at a time or an integrated approach
that relies on an omnipotent model that is capable of deter-
mining efficient configurations for all features in a combined
fashion. The first approach does not consider dependencies
at all. The solution space of single features for real-world
problems is already substantial. Consequently, the second
method results in prohibitively large complexity. Therefore,
building a single model for many features is unfeasible.

A. Recursive Tuning of Subproblems

A third approach is to recursively tune single features. The
order is of importance since features are not independent of
each other. For example, depending on the chosen compression
scheme the impact of indexing a particular attribute might be
affected. Furthermore, resource constraints might prohibit the
tuning of all features. In some cases, only the features with the
most significant impact can be tuned. Therefore, the overall
cost and benefit of the tuning of a specific feature need to be
considered to determine a tuning order.

Zilio et al. [23|] describe a hybrid approach that orders
tuning processes by their pairwise dependence: Non-dependent
features are tuned one after another in any order, unidirectional
dependent ones are tuned in the most efficient order, and
mutually dependent ones are tuned in a combined fashion.
More details and a differentiation are given in Section

Accurately determining dependencies can be of high com-
plexity because it relies on expensive calculations: conducting

the actual tunings for all features as well as many calls to
cost estimators. However, the complexity can be reduced by
reducing the workload size with sampling or working on
clustered queries as provided by the workload predictor.

We propose a mechanism to recursively tune all features in a
reasonable order while taking their dependencies into account.
These basic dependencies are automatically determined. We
see multiple interesting dimensions to consider when deter-
mining the dependence of different features. The authors of
the aforementioned approach consider the feature B strongly
dependent on the feature A when a change in the selection
of A often causes a change in the selection of B. We believe
that the impact on performance regarding, e.g., workload cost
is an important additional factor in determining dependence.

In the following, we are going to lay out the concept of our
solution before we discuss the applicability and complexity.
The organizer retrieves the expected workload forecast from
the workload predictor. Based on this forecast the cost (Wg)
of executing the expected workload without any optimization
is determined using the cost estimators. This cost serves as
a reference for future considerations. Afterward, a separate
tuning run is conducted for each single feature A and the cost
for the execution of the expected workload W4 is determined.
The ratios Wy /W4 provide a simple way of assessing the
impact of the tuning of each feature (while not considering any
dependencies). Note, considering the costs of the respective
tunings allows a heuristic-based ranking of impact per cost
which can be utilized when resources do not suffice for tuning
all features.

In addition, we can determine whether the order in which
two features A and B are optimized is of importance. We
first optimize feature A followed by feature B and determine
the workload cost: W4 p. We repeat the same for Wp 4. A
dependence ratio d4 B := %j ; close to 1 indicates that the
order of optimizing A and B is less important. A value of
da,p > 1 indicates that A should be optimized before B and
the other way around if d4 g < 1.

Further, we can calculate d pairwise for all combinations
of features. The ratios can be used to determine an optimized
order to tune all features recursively.

Since we define the dependency of two features A, B by
workload cost, efficient and precise ways to estimate these
costs are required. Therefore, cost estimators, as described in
Section [I[I-Al are of high importance. In addition, the estima-
tion of workload costs for many combinations and large work-
loads can become expensive. Decreasing the workload size, for
example, by clustering (cf. Workload Compression [24]]) can
mitigate this problem in exchange for possibly less accuracy.

B. LP-Based Order Optimization

Deriving an optimal order of all features is a highly chal-
lenging task as (i) the number of permutations can be large and
(ii) a consistent order satisfying all preferred pairwise relations
cannot be assumed to exist.

Based on the values d 4, g the preferable order, as well as its
importance, can be quantified for all pairs of features A and B.

To determine an optimized tuning order of features we propose
the following integer linear programming (LP) approach. By
the family of binary variables x 4, we denote whether feature
A € S is tuned in step k (xa, = 1) or not (x4 = 0),
k=1,...,]5|, where S is the set of features. The second family
of binary variables y4 p expresses whether feature A € S
is tuned before feature B € S\{A} (i.e., ya,5 = 1) or not
(ya,B = 0). To determine an optimized tuning order, we use
the integer LP formulation as follows.

maximize E Yya,B-dap -Wg/Wa s
zA kYA, BE{0,1}
A€S,BeS\{A},k=1,...,|S| A,BeS
subject to

Z xA7k:1 ,AES

k=1,...5|
oaar=1 k=19
AesS

and the coupling constraints, A € S, B € S\{A},

ya,B +ypa=1

Z k~;vA,k

k=1,...,|S|

The objective optimizes the sum of the dependence ratios
d weighted by the associated impact coefficients Wy / Wa B,
A € S,B € S\{A}. The first two families of constraints
guarantee an admissible permutation order of all features: (i)
each feature is assigned to exactly one tuning step and (ii)
each tuning step is associated to exactly one feature.

The last two families of constraints uniquely couple the
variables x and y in a linear way. The first one guarantees
that exactly one of the variables y4 g and yp 4 is equal to
one (for all pairs of features A € S, B € S\{A}). The last
constraint works as follows: If a feature B is supposed to
be tuned after a feature A then the right-hand side of the
inequality is positive and, hence, ¥4, has to be equal to one.

The number of variables and constraints is 2 |S|* — |S| and
2 -|S|?, respectively. The integer LP can be solved using off-
the-shelf solvers. Our LP approach is (i) viable, (ii) allows the
consideration of many features, and (iii) effectively accounts
for mutual dependencies when tuning multiple features.

IV. RELATED WORK

The field of database systems that autonomously adjust
their configuration regained popularity. In contrast to earlier
solutions for commercial database systems (e.g., [12], [[16]],
[23], [25]), our work takes a holistic approach to the problem
proposing a framework to facilitate development and database
integration.

Pavlo et al. [2] describe their vision of a self-managing
database that autonomously adjusts the configuration of mul-
tiple features. Further, they discuss the integration and archi-
tecture of such a system in their database Peloton. In their

work, the authors sketch the system’s architecture on a higher
level and do not discuss the joint optimization of multiple
arbitrary features. Our work sets its focus on (i) dividing
the challenge of creating a self-managing DBMS into small
subproblems and (ii) giving a more detailed specification of the
components that handle these subproblems. Thereby, contrary
to aforementioned work, also challenges from a software
engineering and development point of view are considered.

As a third contribution, we present an approach to effi-
ciently combine the tuning of multiple features which goes
beyond the idea of Zilio et al. [23]]. The authors assume that
knowledge about dependencies of features is given. In their
work, four problems are considered and the dependencies are
defined manually. We argue that dependencies are challenging
to be manually determined with volatile workloads, varying
hardware and an increasing number of features to tune. Fur-
ther, their approach is limited as, in general, the number of
dependent features which have to be jointly optimized can
be too large. We also consider more dimensions to determine
dependencies automatically and we do not limit the number
of physical design features to tune.

V. FUTURE WORK

The presented concepts and ideas open many opportunities
for further research. Self-managing systems must be able to
precisely assess costs and benefits of preferably each and
every operation and action. Therefore, we currently work
on an approach to adaptive cost estimation where costs for
the processing of every operation are logged during database
operation. Subsequently, this data is used to generate updated
accurate cost models from time to time.

Robustness is especially important for the adoption of self-
managing DBMSs in practice. If the performance of such
systems degrades as soon as the actual workload deviates
from the expected workload, customers will not adopt these
systems. Thus, we incorporated support for different forecast
scenarios in the workload predictor and see their application
and evaluation as an important area for further research.

Lastly, a thorough evaluation of the presented ideas on
determining a favorable order to tune multiple features in
Section [[Tl] is necessary to assess the viability and performance
implications for large problem instances.

VI. CONCLUSION

Our framework divides the challenge of integrating self-
management capabilities in database systems into smaller
problems that are tackled by components. We detailed the spe-
cific components and interfaces between them. The separation
of concerns enables reuse and exchange of components as well
as simplification of development and experimentation. The
presented workload predictor is capable of predicting multiple
workload scenarios that are incorporated by the respective
tuners to allow robust solutions. Furthermore, in Section
we discussed an LP-based approach to find an efficient order
for the recursive tuning of mutually dependent features.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

M. Hammer and A. Chan, “Index selection in a self-
adaptive data base management system,” in Proceedings
of the International Conference on Management of Data
(SIGMOD), 1976, pp. 1-8.

A. Pavlo et al., “Self-driving database management
systems,” in Online Proceedings of the Biennial Con-
ference on Innovative Data Systems Research (CIDR),
2017.

L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo,
and G. J. Gordon, “Query-based workload forecasting
for self-driving database management systems,” in Pro-
ceedings of the International Conference on Manage-
ment of Data (SIGMOD), 2018, pp. 631-645.

T. Kraska et al., “Sagedb: A learned database system,”
in Online Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2019.

S. Chaudhuri and G. Weikum, “Self-management tech-
nology in databases,” in Encyclopedia of Database
Systems, 2009, pp. 2550-2555.

S. Das et al., “Automatically Indexing Millions of
Databases in Microsoft Azure SQL Database,” in Pro-
ceedings of the International Conference on Manage-
ment of Data (SIGMOD), 2019.

D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang, “Au-
tomatic database management system tuning through
large-scale machine learning,” in Proceedings of the
International Conference on Management of Data
(SIGMOD), 2017, pp. 1009-1024.

M. Dreseler, J. Kossmann, M. Boissier, S. Klauck, M.
Uflacker, and H. Plattner, “Hyrise Re-engineered: An
Extensible Database System for Research in Relational
In-Memory Data Management,” in Proceedings of the
International Conference on Extending Database Tech-
nology (EDBT), 2019.

J. Kossmann, “Self-Driving: From General Purpose
to Specialized DBMSs,” in Proceedings of the VLDB
PhD Workshop co-located with the 44th International
Conference on Very Large Databases (VLDB), 2018.
Microsoft. (2018). Query Processing Architecture
Guide - Execution Plan Caching and Reuse, [Online].
Available: https://docs . microsoft. com/en - US/sql/
relational - databases / query - processing - architecture -
guide ?view=sql-server-2017#execution- plan-caching-
and-reuse (visited on 02/20/2019).

SAP. (2018). Analyzing SQL Execution with the SQL
Plan Cache, [Online]. Available: |https://help . sap .
com/viewer/bed8c14{9f024763b0777aa72b543616/2.0.
03/en- US/bed20ba0bb57101483ffa333cf3e55c8 . html
(visited on 02/20/2019).

S. Chaudhuri and V. R. Narasayya, “An efficient cost-
driven index selection tool for microsoft SQL server,”
in Proceedings of the International Conference on Very
Large Data Bases (VLDB), 1997, pp. 146-155.

[13]

[14]

[15]

[18]

Q. Zhu and P-A. Larson, “Building regression cost
models for multidatabase systems,” in Proceedings of
the International Conference on Parallel and Dis-
tributed Information Systems, ser. DIS *96, IEEE Com-
puter Society, 1996, pp. 220-231.

A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A.
Kemper, “Learned cardinalities: Estimating correlated
joins with deep learning,” in Online Proceedings of
the Biennial Conference on Innovative Data Systems
Research (CIDR), 2019.

A. Vogelsgesang et al., “Get real: How benchmarks
fail to represent the real world,” in Proceedings of the
International Workshop on Testing Database Systems,
DBTest@SIGMOD 2018, Houston, TX, USA, June 15,
2018, 2018, 1:1-1:6.

G. Valentin, M. Zuliani, D. C. Zilio, G. M. Lohman, and
A. Skelley, “DB2 advisor: An optimizer smart enough
to recommend its own indexes,” in Proceedings of the
International Conference on Data Engineering (ICDE),
2000, pp. 101-110.

R. Schlosser, J. Kossmann, and M. Boissier, “Efficient
scalable multi-attribute index selection using recursive
strategies,” in Proceedings of the International Confer-
ence on Data Engineering (ICDE), 2019.

M. Boissier, R. Schlosser, and M. Uflacker, “Hybrid
data layouts for tiered HTAP databases with pareto-
optimal data placements,” in Proceedings of the Interna-
tional Conference on Data Engineering (ICDE), 2018,
pp- 209-220.

D. Dash, N. Polyzotis, and A. Ailamaki, “CoPhy: A
Scalable, Portable, and Interactive Index Advisor for
Large Workloads,” PVLDB, vol. 4, no. 6, pp. 362-372,
2011.

M. Mitchell, An introduction to genetic algorithms. MIT
Press, 1998, 1SBN: 978-0-262-63185-3.

J. Kratica, I. Ljubic, and D. Tosic, “A genetic algorithm
for the index selection problem,” in Proceedings of the
Applications of Evolutionary Computing, EvoWorkshop,
2003, pp. 280-290.

B. Mozafari, E. Z. Y. Goh, and D. Y. Yoon, “Cliffguard:
A principled framework for finding robust database de-
signs,” in Proceedings of the International Conference
on Management of Data (SIGMOD), 2015, pp. 1167-
1182.

D. C. Zilio et al., “DB2 design advisor: Integrated
automatic physical database design,” in Proceedings of
the International Conference on Very Large Data Bases
(VLDB), 2004, pp. 1087-1097.

S. Chaudhuri, A. K. Gupta, and V. R. Narasayya,
“Compressing SQL workloads,” in Proceedings of the
International Conference on Management of Data (SIG-
MOD), 2002, pp. 488-499.

S. Chaudhuri and V. R. Narasayya, ‘“Self-tuning
database systems: A decade of progress,” in Proceed-
ings of the International Conference on Very Large Data
Bases (VLDB), 2007, pp. 3—14.

https://docs.microsoft.com/en-US/sql/relational-databases/query-processing-architecture-guide?view=sql-server-2017#execution-plan-caching-and-reuse
https://docs.microsoft.com/en-US/sql/relational-databases/query-processing-architecture-guide?view=sql-server-2017#execution-plan-caching-and-reuse
https://docs.microsoft.com/en-US/sql/relational-databases/query-processing-architecture-guide?view=sql-server-2017#execution-plan-caching-and-reuse
https://docs.microsoft.com/en-US/sql/relational-databases/query-processing-architecture-guide?view=sql-server-2017#execution-plan-caching-and-reuse
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.03/en-US/bed20ba0bb57101483ffa333cf3e55c8.html
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.03/en-US/bed20ba0bb57101483ffa333cf3e55c8.html
https://help.sap.com/viewer/bed8c14f9f024763b0777aa72b5436f6/2.0.03/en-US/bed20ba0bb57101483ffa333cf3e55c8.html

	Self-Managing Database Systems
	Framework Architecture
	Overview
	Implementation Strategies
	Workload Predictor
	Tuner
	Organizer

	Combined Tuning of Multiple Features
	Recursive Tuning of Subproblems
	LP-Based Order Optimization

	Related Work
	Future Work
	Conclusion

