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ABSTRACT
Improving memory consumption of main memory-resident
databases by evicting infrequently accessed data to secon-
dary storage layers can significantly reduce the TCO. But
traditional approaches for data eviction such as paged-based
LRU algorithms are unsuitable for OLxP systems with their
scan-dominated workloads. In this paper, we present a da-
ta tiering ansatz for columnar in-memory databases that is
workload-aware and retains full performance for analytical
queries. To make our tiering ansatz also applicable for tran-
sactional workloads, we will focus on the topic of table reor-
dering to improve tuple reconstruction, which is one of the
the main bottlenecks for tiered columnar databases. We eva-
luate our approach using data and workload of a production
SAP ERP enterprise system of a Global 2000 company.

1. DATA TIERING FOR OLXP SYSTEMS
Main memory-resident databases have been in the focus

of database research in recent years. One trend is the ri-
se of columnar in-memory databases that are capable of
handling both transactional (OLTP) and analytical (OLAP)
workloads, so-called OLxP [7, 9]. Besides such software achie-
vements, the rise of in-memory databases is caused by hard-
ware achievements such as falling DRAM prices and incre-
asing DRAM capacities per server. Nonetheless, main me-
mory is still a scarce resource and comparatively expensive.
Improving main memory utilization is thus a major objec-
tive for any in-memory database as more free memory can
improve performance (e.g., using faster but more memory-
intensive algorithms), allow larger systems to be stored on
a single machine, or – the focus of this paper – to impro-
ve cost efficiency by evicting infrequently accessed data to
less expensive storage layers. The process of evicting less
relevant data to secondary storage layers while frequently
accessed data is stored in main memory is called Data Tie-
ring. Looking at production database workloads shows that
data accesses are often skewed and frequently request a small
fraction of the data [2]. This observation is in line with the
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working set model [5] that says that for each process there
is a subset of pages that are accessed more frequently.

Our approach tries to exploit the working set model obser-
vation by improving the main memory footprint of columnar
in-memory databases by partially evicting infrequently ac-
cessed tuples to secondary storage layers.

1.1 Aspects of Data Tiering
To tackle the topic of data tiering for columnar in-memory

databases end-to-end, we will first discuss the three main
aspects of data tiering. Then, we briefly introduce our tie-
ring implementation and discuss how we address each tiering
aspect with our implementation.

Data Classification The task of data classification seeks
to answer the question which data is actually relevant. For
disk-resident row-stores, this question can be considered as
solved using classical LRU approaches on page level. Ho-
wever, for columnar databases – with both transactional as
well as analytical workloads [13] – efficient data classification
remains an unsolved problem.

Data Access Given that the data has been classified into
relevant (hot) and less relevant (cold) data and the cold data
has been evicted to cheaper and slower storage tiers: how can
the database avoid unnecessary accesses to cold storage (thus
significantly slowing down query run times)? The aspects of
data access include finding partition criteria that allow for
efficient partition elimination as well as indexing on cold
data to avoid unnecessary accesses.

Data Placement Modern server systems are no longer
solely two-tiered architectures with fast volatile DRAM and
slow non-volatile hard drives. In between these two tiers,
various forms of solid-state drives have emerged, such as
PCIe-connected NVMe devices with bandwidths of sever-
al GB/s. Additionally, non-volatile memory (NVDIMM) is
on the horizon promising to revolutionize server computers.
The challenge is to seamlessly move data between different
tiers and store data on the tier with the best fitting charac-
teristics in terms of storage costs, bandwidth, or latency.

Figure 1 depicts the tiering approach [1] we implemen-
ted in Hyrise1, an open source hybrid in-memory database.
Hyrise uses MVCC to ensure ACID properties and data mo-
difications are done via an insert-only approach [8]. Columns
are dictionary-encoded, whereby the main partition is read-
optimized and regularly merged with the write-optimized
delta partition, which handles data modifications.

1Hyrise on GitHub: https://github.com/hyrise/hyrise
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Figure 1: Schematic visualization of our tiering ansatz.
DRAM-allocated data shown in blue. Columns frequently
used for query evaluation are DRAM-resident, while co-
lumns mainly accessed for tuple reconstruction are predo-
minantly stored on secondary storage. As most applications
have a small distinct working set of tuples that are regularly
materialized, the challenge is to find an optimal reordering
to gather such tuples and allocate them in DRAM.

Data Placement. To efficiently move data based on its re-
levance and access patterns, we use the tiering-aware mmap
replacement discussed in [12]. This mmap replacement ex-
tends Linux’s mmap with additional logic that uses so-called
data temperatures in order to transparently move pages bet-
ween different storage tiers. Linux’s virtual file system is
bypassed to improve random access latencies.

Data Access. As we will explain in Section 1.2, our ap-
proach differs from most published tiering approaches. For
that reason, access to tiered data during query evaluation [3]
is not hampered at the expense of lower eviction rates for
narrow tables. For tuple reconstruction, data access is ma-
naged via our mmap replacement that transparently handles
the access to disk in case of cold data materializations. This
cold data is stored in an uncompressed format for further
materialization improvements as presented.

1.2 Data Classification
Our approach to classify relevant data differs from most

traditional approaches where wrongly classified data has a
direct severe impact on query evaluation.

Traditional Approaches. There are various traditional ap-
proaches to determine whether data is considered to be re-
levant or not: (i) analyzing access frequencies given a work-
load, (ii) predefined business rules based on expert analysis
or semantic knowledge, and (iii) caching approaches.

The idea behind the access frequency analysis is simple:
the more often data is accessed, the more relevant it is and
thus the higher the probability or recurring accesses is. There
are different approaches to track data accesses in a fast and
resource-efficient way. One example is logging system presen-
ted by Levandoski et al. [11] that uses sampling and smoo-
thing techniques to reduce the size of memory consumption.

In contrast, rules-based approaches require manual work
by application experts [14]. An example for such a rule could
be: “All paid receipts older than six months are cold“. The
benefits of business rules are manifold: domain knowledge

can introduce high precision, especially considering the ti-
me parameter. In business applications, financial reports are
often created monthly by analytical processes. A frequency-
based system would probably not identify the needed data
as hot, due to the fact that it is requested only monthly and
the log history is usually shorter (the same is true for ser-
vice level agreements, SLAs). But at the same time, experts
potentially formulate rules too weak, losing optimization po-
tential. Furthermore, modern OLxP systems are increasingly
complex due to the consolidation of multiple platforms (e.g.,
operational reporting, warehousing, transaction processing,
data mining applications, etc.) making rule-driven expert
approaches not feasible in the long run.

Another approach to identify important data is caching.
An example for such techniques is page buffer tracking using
Least Recently Used or Most Recently Used policies [4]. Such
methods can be faster and consume less memory than fre-
quency approaches. On the other hand, they can be less
accurate and have high book keeping overhead.

Our Approach. Transactional and analytical access pat-
terns are different in various aspects. For the presented pro-
ject in this paper, the most important aspects are query
filtering (the most costly part of query evaluation) and tu-
ple reconstruction. Anticipating analytical access patterns
is challenging, because analytical applications do not follow
predefined processes and are usually not automated. Fur-
ther, the purpose of analytical queries is often gaining new
insights or finding hidden patterns, which leads to a broad
variety of query patterns hampering predictability. On the
other hand, transactional workloads usually follow predefi-
ned business processes and are automated to a high degree.
Also, OLTP accesses typically access only a very small sub-
set (i.e., the working set). Thus, predicting upcoming acces-
ses based on previous workloads is comparatively easy.

This has led to our tiering ansatz shown in Figure 1. All
attributes that have been used for query evaluation are com-
pletely stored in DRAM. This way, we ensure that both
analytical as well as transactional operations are as fast as
they would be in a fully main memory-resident database.
We think that any other approach will significantly thwart
OLAP performance as analytical queries often access very
large parts of the data and are hard to predict.

For OLTP accesses, we try to exploit the working set mo-
del assumption that only few data items are regularly acces-
sed. All columns that are not part of the query evaluation are
assumed to be accessed solely for tuple reconstruction. Each
of these cold columns is horizontally partitioned into hot
and cold partitions. Using Hyrise’s variable data layouter,
we partition each column on its own. If we would partition
all hot/cold columns by a common partition criterion, some
few columns would dominate the partitioning decision redu-
cing the optimization benefit. This way, we are later able to
allow query evaluation even on cold columns as long as we
can guarantee that the most frequently accessed filter values
are DRAM-located. The decision to use no more than two
partitions per column was made to avoid hardly manageable
complexities incurred by maintenance, query optimization,
and query execution. After each column has been partitio-
ned, the goal is to cluster tuples that are often materialized
and store them together in the DRAM-allocated hot parti-
tion. Cold partitions are stored on secondary storage.

The reason for our model is the overhead of tuple recon-



struction in column stores, which is further amplified when
attributes are stored on disk. For typical ERP tables with
over 300 attributes, a single SELECT * operation requires
300 ∗ 2 page reads for dictionary-encoded columns, reading
2.4 MB for a single tuple (assuming 4KB disk pages).

Consequently, our goal is to avoid reconstruction from se-
condary storage. The main challenge of our approach is to
ensure that most tuple reconstructions can be processed wi-
thout accessing secondary storage. This leads us to the main
challenge discussed in this paper: How can we reorder tuples
to ensure fast reconstructions on tiered data?

1.3 Table Reordering
Table reordering has been researched from multiple angles.

Probably the most well known approach is the clustered in-
dex where a table is sorted by the index key to improve
scanning [15]. Lemke et al. use heuristics to find a sorting
order that both balances data compression and query per-
formance [10]. A different approach called database cracking
has been presented by Halim et al. [6]. Here, the database
iteratively reorders the table to increasingly adjust to the
current workload, improving query run times over time.

Our motivation for table reordering is different as the ta-
ble ordering is orthogonal to query evaluation. The purpose
of table reordering in our case is optimizing the data layout
in a way that future tuple reconstructions access DRAM-
allocated tuples with a high probability and only access
slower storage tiers as a rare exception.

The presented reordering approach is completely indepen-
dent of the extraction of relevance information. This way,
our method can be applied in many typical database scena-
rios independent of their definition of data relevance and the
information extraction methods. The basic idea of our reor-
dering approach is to provide a simple but flexible definition
of data importance. Therefore, we request as input for each
data block the information whether a block can be evicted
to disk or not. A data block is ideally a single table cell but
can be also a group of cells (i.e., a chunk). We discuss this in
more detail in Section 2.2. This input provides enough infor-
mation to restructure the data dividing it in two partitions:
(i) tuples kept in main memory and (ii) tuples evicted to
disk. Throughout this paper, we refer to these two partitions
hot and cold partition.

To tackle all described obstacles, we follow the approach
of reordering table rows. Our goal is to find an optimal order
of rows to minimize the number of cold data in hot partiti-
ons, while cold partitions evicted to disk are not allowed to
contain hot data.

This paper focuses on the following topics:

• Formalization of the table reordering problem as an
optimization problem.

• Introduction of rules and heuristics that significantly
reduce complexity.

• Evaluation of presented techniques using real-world
application access patterns and data.

1.4 SAP ERP Data
As a foundation for the experiments in this paper, we tra-

ced a live production SAP ERP enterprise system of a Global
2000 company. We analyzed the system and executed a que-
ry replay to retrieve access frequencies as explained in [2].
The SQL workload trace was recorded over a period of three
days and contains over 50 M queries. We use the trace data

and the executed replay of the ERP system to identify data
cells as hot or cold in dependence on their access frequen-
cies. Section 2 describes in more detail how hot and cold
are defined exactly. To provide meaningful results, we ha-
ve chosen the BSEG table for our experiments. The BSEG is
the central transactional table of the SAP financials modu-
le and stores accounting documents. It is one of the largest
and most accessed tables in an SAP system and therefore
representative for our purposes. Additionally, the BSEG table
has the highest analytical load. In the regarded dataset, the
table contains 345 columns and more than 100 million rows.
Dealing with such large tables makes our task of finding an
optimal row ordering even more challenging.

In the following sections, we show how to formalize the
problem as an optimization problem and present various ap-
proaches to tackle this problem.

2. REORDERING ANSATZ
In this section, we formalize our ansatz of the separation

of hot and cold data as an optimization problem and show
the need for non-trivial algorithms due to the unacceptable
performance of näıve approaches.

2.1 Task Formalization
Given a table and a workload, the goal of our system is

to provide for each column in the table a separation in two
partitions, the hot partition and cold partition. We define
the cold partition as the partition containing cells that were
never accessed during a given workload. The hot partition
contains all column cells that are not in the cold partition.
The separation is defined by a simple rule:

partition(cell) :=

{
hot row id(cell) < τ

cold row id(cell) ≥ τ

The reasoning for such a separation is given in Section 1.
To improve the impact of the hot and cold partitioning,

we want to minimize the number of never accessed cold cells
in the hot partition and therefore to minimize τ . Having
no background information about the semantic meaning of
underlying data, the only possible way is to change the order
of table rows to sort rows with more cold cells to the bottom
of the table while placing rows with often requested cells
to the top. The alert reader has already noticed that we
reorder complete rows and not only cells in each column. The
reasoning is simple: if we reorder each column separately,
we would need to store the related row id for each cell to
be able to reconstruct tuples during the reconstruction or
operation computation. This would introduce an intolerable,
additional memory and computation overhead.

Therefore, we can define our task as the search of a table
row permutation that minimizes the total number of cold
cells in hot partitions for all columns. To measure the quality
of the hot and cold separation on the permutation, we define
a metric called error :

errorC(column) = |{cell ∈ column | state(cell) = cold

∧ row id(cell) < τ}|

errorT (table) =
∑

c∈columns

errorC(c)

(1)



Using the error function, we can express our task as an
optimization problem:

solution = arg min
p∈π(table)

errorT (p)

A näıve solution is the examination of each possible row per-
mutation, storing the best permutation found so far. The
complexity of that näıve approach depends on the tables
row count r and can be computed as O(r) = r!. Even pro-
viding the optimal solution, this approach cannot be used
in real database systems, since the dimensions of table row
count are in ranges of hundreds of millions. In Section 3, we
are going to introduce some approaches which decrease the
complexity significantly. But first, we need to find a way to
formalize the terms hot and cold.

2.2 Hot and Cold Data
In this section, we present two methods to compute the

hotness of a table cell and discuss advantages and disadvan-
tages of both approaches. In this work, we do not discuss
the workload analysis required to extract the information
we use. For this paper, we assume that we have a log pro-
viding a timestamp for each distinct cell access and a query
id of the query accessing the cell [2].

As already mentioned previously, we define cells never ac-
cessed by a query as cold, otherwise as hot:

state(cell) :=

{
cold log entries(cell) = ∅
hot otherwise

For simplicity reasons in the following computations, we in-
troduce the hotness function mapping the state of a cell to
the interval [0, 1]. Using the upper definition, we retrieve the
following mapping:

hotnessstate(cell) :=

{
0 state(cell) = cold

1 state(cell) = hot

In contrast to the state function, the hotness definition pro-
vides the possibility of taking the number of cell accesses
into consideration. This can be useful for weighing cells: if
a cell is accessed just once in the whole workload, it is col-
der than a cell accessed thousands of times. In this case, the
hotness is computed in the following way:

hotnessquery(cell) :=
#log entries(cell)

maxc∈cells #log entries(c)

We use this definition in Section 3.4 to determine columns
having similar query behavior. The state-based definition is
used in Section 3 to reduce the computation complexity. To
finish the consideration of the hotness definition, it must
be mentioned that the query number-based definition can
be transformed into the binary state-based by introducing a
hotness threshold.

The BSEG table of the traced production system consists of
345 columns containing more than 100 millions rows, which
result in 34.5 billion cells. These dimensions make it ne-
cessary to find heuristic simplifications to store and process
hotness data. Examples for such simplifying approaches are
sampling or summarization. In our research, we decided to
use the second approach, because sampling would not take
all cells into account, which could lead to worse results for
our algorithms. Instead, we propose to summarize cells into

equally sized chunks, based on their row ids. The computati-
on of the hotness is also performed on the chunks accordin-
gly. One efficient way to assign cells to a chunk, which is al-
so supported by standard SQL methods, is to use grouping-
based on integer division of the row id by a predefined chunk
size:

chunki(column) = {cell ∈ column |
⌊
row id(cell)

chunk size

⌋
= i}

The introduction of chunks forces an adaption of the hotness
definition. We follow both approaches, the state-based and
query-based, resulting in following formulas:

hotnessstate(chunki) =

∑
cell∈chunki hotnessstate(cell)

chunk size

hotnessquery(chunki) =

∑
cell∈chunki hotnessquery(cell)

chunk size

By intuition, the state-based chunk hotness is the fraction of
distinct accessed cells in the chunk. The query-based chunk
hotness is the average count of query accesses to cells.

The summarization of cells in chunks improves the resour-
ce consumption, but influences the results of the partitioning
algorithms. In Section 4, we investigate the impact of chunk
sizes on the algorithms’ performance and results.

Both approaches, the state- and the query-based one have
different advantages and disadvantages. On the one hand,
the state-based method does not require logging the que-
ry identifiers, just a flag per cell or a counter per chunk.
Furthermore, it has less computational effort. On the other
hand, the state-based approach does not differentiate bet-
ween often and rarely accessed cells. This might be a pro-
blem considering workload traces over longer time periods.
The probability of being accessed once only, at least at the
row insertion moment, will increase with the increasing time
period, so old data may be defined as hot even being cold
in reality. The query-based approach can tackle these pro-
blems, providing more flexible data insight, which is paid
with a significantly higher computational effort caused by
the persistence of distinct query ids for each cell/chunk.

To specify the estimation of the hotness metric for work-
load traces over longer time periods, we propose to app-
ly the already defined metrics on predefined time intervals.
The intervals should be chosen depending on the task. For
the partitioning task itself, a coarse time interval of multiple
days is advisable to avoid the misclassification of hot data as
cold. For the clustering task described in Section 3.4, a finer
time interval of an hour provides more detailed information
about the query behavior on each column.

3. SORTING PROBLEM
The problem of sorting the table via reordering tuples is

a complex one as outlined in Section 2.1. In the following
sections, we introduce rules that substantially decrease the
complexity of finding an optimal solution and present heu-
ristics based on these rules. These heuristics can be applied
in cases when the complexity of finding an optimal solution
would be too high. Furthermore, we discuss a simple esti-
mation to distinguish cases when a heuristic or the optimal
algorithm should be used. The considered algorithms are
based on a binary hotness metric mapping the cold state to
zero and the hot state to one. Ways to define such metrics
were described in the previous section.



3.1 Optimization Rules
For the following discussion, we introduce two types of bit

vectors: columnar and row vectors, containing information
about the hotness of a column or a row. Due to our limitation
to binary hotness metrics, bit vectors can be used for storing
the hotness information. If we do not specify the type of the
bit vector, we mean implicitly a row vector. Such a vector
describes the hotness behavior for a row of cells:

~r =

 hotness(cellcolumn1,r)
. . .

hotness(cellcolumnn,r)


The upper definition can be easily adopted to chunks, where-
by the row means the range of rows described by the chunk.
The presented solutions do not differ for cells or chunks, as
they work only on the bit vectors. A columnar bit vector is
defined in the same way as the row vector, but instead of
iterating over columns, we iterate over rows.

Using the column bit vector definition, we can define the
partition strategy as following:

• the last vector item points to the last hot column cell

• the column part up to this cell is the hot partition (])

• the column part after this cell is the cold partition ([)

This approach allows keeping the cold partition clean of hot
cells and the hot partition as small as possible.

Blocking Rule
We found the trivial but important rule: “equal bit vectors
should be ordered together”. It is enough to find an orde-
ring of distinct bit vectors to place all vectors. Due to the
fact that the error function depends on cold cell counts, it
is necessary to keep the information of how many equal bit
vectors exist, even if we need to place just the distinct ones.
Therefore, we introduce so-called blocks. Each block is des-
cribed by a bit vector and the count of such bit vectors in the
original table. The table from Figure 3 contains two blocks:
{value : 101, count : 2} and {value : 100, count : 2}. In the
following explanations, we write a block shorter like 101×2.
We call the bit vector of a block value and the count of such
bit vectors length. The blocking rule is important to reduce
the number of elements to be reordered. During our analy-
ses of real-world enterprise applications, we saw that such
systems exhibit only few distinct access patterns and have
consequently only few distinct hotness vectors. For example,
observing the BSEG table with its 345 columns and 100 mil-
lion rows, we found only 1,053 distinct bit vectors, reducing
the task complexity by a factor of 10,000.

In Section 2.1, we discussed the complexity of the näıve
permutation approach for the sorting problem. Using the
blocking rule, we can improve the näıve approach sorting
only distinct bit vectors. The maximum number of differing
row bit vectors in the database is: 2#columns. Therefore, it
would be enough to test all 2#columns! permutations instead
of the previous #rows! permutations. Nevertheless, in cases
of broad tables, the table can contain less rows than are
needed to place all possible bit vectors. Therefore, we should
adopt our complexity estimation to:

O(#rows,#columns) = min(#rows, 2#columns)!

Trivial Blocks Rule
The trivial blocks rule implies that the block containing bit
vectors full of ones should be always placed as first block in-
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0001001001001000
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1110 1101 1011 0111
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Figure 2: Hierarchical parent-child relations as lattice

to the ordered table. Respectively, the block containing bit
vectors full of zeros should be always placed as last block.
The block with ones represents rows where each cell is hot.
If such rows are not placed on the top of a table, they always
introduce an additional error. The block with zeros repres-
ents rows where each cell is cold. Such rows should be placed
at the bottom of the reordered table, otherwise they would
introduce additional errors.

The impact of this rule on the efficiency of heuristic me-
thods is relatively low. However, it reduces the factorial com-
plexity to find the optimal solution without heuristics. We
estimate the complexity of the näıve approach as follows:

O(#rows,#columns) = min(#rows, 2#columns − 2)!

Parent-Child Rule
This rule provides the foundation for efficient reordering
strategies. First, we define a parent-child relation between
two bit vectors. A vector C is child of vector P if P has each
1 C has. For example, 0010 is child of 0011, but not a child
of 0001. In other words, the parent vector has ones at least
at the same positions like the child vector. We can use the
logical disjunction to define a parent-child test function:

is child(C,P ) =

{
child C ∨ P = P

not a child else

Figure 2 provides a lattice of all possible bit vectors with
the length of four. Each possible path downwards represents
a parent-child relation. For example, 1110 is parent of 0010,
but not of 0001.

Now, we can formulate the rule as: “Filling the reordered
table from top: each child should be placed after all its pa-
rents. Filling the reordered table from bottom: each child
should be placed before the according parent”. To provide
an example for this rule: in Figure 3, the vector 100 is placed
after the vector 101, because 101 is a parent of 100.

We need to show that it is always better to place a parent
before the child. To do so, we need to recall our partitioning
strategy: the partition decision is made considering the last
1 in the column vector. Let us assume a parent block would
be placed after its child in the table. Due to the definition of
the parent-child relation, the parent has ones for the same



columns as the child, but also for columns where the child
has zeros. For these columns, this placement of the parent
would introduce an additional error, because the cold cells
of the child would reside in the hot partition.

The two topmost rows of the unsorted table in Figure 3
provide a good example for this case. The child 101 is placed
before the parent 111. For column B, where the child has a
cold cell and a parent a hot, the hot partition would finish
at least at the parent’s cell, introducing an additional error
through the child’s cold cell.

We have shown that it is bad to place a child before a
parent, we need to show that it is never bad to place a parent
before a child. This proof is trivial, because the child has
only ones the parent also has. Therefore, the child can never
introduce more errors as the parent and for that reason, the
child should be placed always after the parent.

Looking at Figure 2, it becomes clear why this rule is so
important. Imagine we would try to find the best ordering
by testing each possible permutation as we have presented
in the näıve approach. Considering the rule, we know for
example, that we do not need to try any permutation where
1010 would be placed before 1110, 1011 or 1111. Using the
rule, it is possible to show that for a full lattice like in Figu-
re 2, it would be enough to test each possible permutation of
the blocks with only one 1 in the bit vector. In the presented
figure, those are only elements from the second lattice row
counting from the bottom. The number of such elements is
equal to the number of table columns allowing us to reduce
the complexity from Eq. 2 down to Eq. 3:

O(#rows,#columns) = min(#rows, 2#columns − 2)! (2)

O(#rows,#columns) = min(#rows, #columns)! (3)

In the case of lattices with missing elements, the com-
plexity increases again. In the worst case, only the top half
of the lattice is given, forcing us to test all permutations
of elements from the middle lattice row. This lattice row
contains an exponential number of elements in dependence
on the column count leading to similar complexity classes
as shown earlier. Nevertheless, in real-world applications we
observed only few distinct bit vectors with a high number
of parent-child relations allowing to reduce the complexity
in comparison to näıve approaches.

Bitmask Rule
The bitmask rule is a continuation of the parent-child rule.
The reordered table is filled from the bottom: each child of
the disjunction of all vectors already placed can be immedia-
tely placed. Let us first regard an example of the rule’s ap-
plication and discuss the impact on complexity afterwards.

Assuming we are going to reorder a table and have crea-
ted a reordered table that we are filling with given blocks
starting from the table’s bottom. An example of such a table
and elements to place is given in Figure 4. To apply the ru-
le, we need to compute the disjunction of all vectors already
placed. The result of the disjunction, we call bitmask. In this
case, we compute the bitmask as:

bitmask = 0010 ∨ 0011 ∨ 0100 = 0111

The rule says that we are allowed to place all children of
the bitmask immediately and in any order to the free table
slots. In our example, we place elements 0101, 0111, and
0110 since they are children of the bitmask, but not 1110.

Input Table
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Figure 3: Example of an in-
put table and optimal reor-
dering.

Reordered table Elements to place
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Figure 4: Example of pla-
cing new elements for bit-
mask rule application.

The reasoning for the rule correctness is similar to the
proof of the parent-child rule. Recalling that the partitioning
for each column depends only on the last 1 in the column bit
vector, it is clear that if such 1 was already placed, values
in upper cells do not matter. Constructed as the disjunction
of all vectors already placed, the bitmask implicitly tracks
the information for which columns the partitioning decision
has already been made. This means, bit vectors having ones
in a subset of such columns can be placed in an arbitrary
order, because they only influence columns where the parti-
tion decision has already been made. Elements fulfilling this
condition are by definition children of the bitmask.

As seen in the example, the bitmask rule can significantly
influence the complexity in a positive way. Furthermore, this
rule allows handling the worst case for the parent-child rule
more efficiently. As pointed out earlier, this worst case was a
table containing elements only from the top half of the latti-
ce. Using the parent-child rule, it was still necessary to test
all permutations of the middle row elements. In case of four
columns, like in Figure 2, that would be six elements and ac-
cordingly 6! = 720 permutations. Applying the bitmask rule,
we can state that each time we choose two elements, their
disjunction will be parent of a further element. Therefore,

we need to test maximally
(

6
3

)
= 20 permutations.

3.2 Optimal Solution
In this section, we provide an optimized way to find the op-

timal solution for the sorting problem. As we already pointed
out in the corresponding sections, rules are useful to signi-
ficantly decrease the high complexity of the problem. Our
algorithm for finding the optimal solution derives from the
näıve approach. We try to test all permutations using rules
preventing tests of clearly bad permutations.

The steps of our approach are the following:

1. Create blocks from row bit vectors (blocking rule).

2. Disregard the full ones and full zeros blocks in following
computations (trivial blocks rule).

3. Construct all relevant permutations recursively star-
ting from the bottom (parent-child and bitmask rules).

4. Compute the table error for each permutation and de-
cide for the permutation with the lowest error.

The most interesting step is the third one. Due to its com-
plexity, we explain it with an example. Assume we have the
vectors 0010, 1001, 1010 and 0111. We use a recursive strat-
egy to create permutations and start from the bottom of the
table enabling the usage of the bitmask rule. To find candi-
dates for the first element, we consider elements that have no
children or whose children are already placed. In this case,
no elements are placed and the vectors 0010 and 1001 have



no children. We decide to start the first permutation with
1001 and place it at the bottom of the table. Following the
bitmask rule, we compute the bitmask as 1001. Logically,
we have no elements that are children of the bitmask in the
first step. Now, we search candidates for the second element
of our permutation. Remembering, that we are not allowed
to place parents before children, we have only one candida-
te for this position: 0010. As 1010 and 0111 are parents of
0010. We recompute our bitmask with 1001 ∨ 0010 = 1011.
Following the bitmask rule, we can place now all children of
the bitmask in arbitrary order. In our case, vector 1010 is a
child of the bitmask 1011 and should be placed as the third
element of our permutation. The bitmask needs no adopti-
on. Now, we search the fourth and last element to finish the
creation of the first permutation. We have only one candi-
date: 0111. As we can see, all its children (0010) are already
placed and therefore, we can place this candidate. The first
permutation is: (1001, 0010, 1010, 0111).

To create the second permutation we need to go back in
our recursive trace until we reach a moment, where we had
multiple candidates to choose and to select the next candi-
date. In the previous permutation, the last selection point
was the choice of the first element. We chose between 1001
and 0010. To create the second permutation, we need to se-
lect now the element 0010. Our bitmask is 0010 accordingly.
For the choice of the second permutation element, we have
now three candidates: 1001, 0111 and 1010; due to the fact
that the only child of 0111 and 1010 has already been placed.
For the second permutation, we choose 0111 as the second
element. The bitmask is consequently 0111, but we have no
children of the bitmask that are not placed already. For the
third element, we have two candidates: 1010 and 1001. We
choose 1001 and retrieve as result the bitmask 1111. The
last unplaced element is child of the bitmask and can be
placed immediately resulting in the following permutation:
(0010, 0111, 1001, 1010). To create the third permutation, we
need to search the moment of the last decision and decide
for another candidate (i.e., another third element).

It is possible to prune permutations to reduce the com-
plexity of the problem. In our small example, our approach
would generate six permutations to test for being optimal.
The näıve approach would generate 24 permutations instead.
Nevertheless, for applications in real-world scenarios with
a huge number of distinct vectors having only few parent-
child relations, the optimal solution approach would fail due
to high complexity as we show in Section 4. Therefore, we
present heuristics in the next chapter, which address this
problem.

3.3 Heuristics
In this section, we present four heuristics differing in their

quality, complexity and ordering approaches. Two heuristics
try to reorder the table placing elements starting from the
top. In contrast, both other heuristics start from the bottom.

The first heuristic we are going to discuss is called Fulls
First. The idea is quite simple. Starting the placement from
the top of the table, we iteratively place the block that has
the most ones in the bit vector. If we have found multiple
blocks with the same number of ones, we decide on the block
with the highest length value.

The idea of this heuristic is to make the smallest possible
local error. Placing as many ones as possible at the top of
the table, we gather hot cells at the table’s top and appro-

ximate the best solution this way. The Fulls First heuristic
makes use of the blocking, trivial and implicitly of parent-
child rules. The complexity of the heuristic is the same as
the complexity of the best sorting approach with blocks as
input elements. Consequently, using Quicksort Fulls First
has a complexity of O(n) = n logn, where n is the number
of distinct bit vectors in the table.

The second heuristic we discuss is called Shortest Zero
Chain First (SZCF). The basic idea here is that we iterative-
ly place the block with the shortest number of zeros starting
from table’s top. The number of zeros in a block can be com-
puted as the product of number of zeros in the bit vector and
the length of the block. For example, for the block 01011×4,
we compute the number of zeros with #001011 ·4 = 2 ·4 = 8.
The reasoning for this heuristic is similar to the Fulls First
ones. We try to choose blocks keeping the error local as
small as possible. In contrast to the Fulls First heuristic,
SZCF considers the block length in each case and not only
if multiple blocks have the same number of ones.

The complexity of the second heuristic is the same as for
the first one. Since each placement decision is done only
comparing all blocks, it is enough to sort the blocks using
the heuristic criteria. The complexity for sorting is n logn.
It must be mentioned that in contrast to the Fulls First
heuristic, SZCF does not implicitly fulfil the parent-child
rule and it needs to be considered while sorting.

A more sophisticated heuristic is called Best Local Chain
heuristic (BLC). The idea is to place elements iteratively
starting from the table’s bottom while trying to make local
the smallest possible error. To reach this goal, we try to defer
the partitioning decision per column as long as possible. To
do so, we choose the block with largest number of zeros in
each placement round, which adds as few new ones as pos-
sible to the bitmask. While searching for the next elements,
we always take the parent-child and the bitmask rules into
account. The name of the heuristic describes the principle:
the approach tries to create zero chains for the column bit
vectors at the bottom of the table as long as possible.

Before we analyze the complexity, we provide an example.
Let us assume that we have to reorder the blocks:

0010× 3 – 0100× 4 – 0110× 7 – 1000× 2

The first step of the heuristic is to find the block with the
largest number of zeros. In our example case, it is the block
0100× 4, hence 0110 cannot be placed until all children are
placed. Now, we search for a continuation that has the most
zeros and adds as few new ones as possible. Each of the re-
maining three elements would add a new 1 to the bitmask
and the element with the best length, having no unplaced
children, is 0010. After the placement, we can place 0110
following the bitmask rule. The fourth element to place is
the last element: 1000. Since we have placed elements from
the bottom, we need to revert our ordering resulting in:
(1000, 0110, 0010, 0100). As we can see, BLC makes use of
all rules to reach better performance.

The complexity of this heuristic is higher than of both pre-
vious ones. In contrast to the other heuristics, BLC considers
the previous placements and needs to recheck all unplaced
elements in each round. Therefore, the complexity of this
heuristic is in the worst case: O(n) = n2.

The last and most complex heuristic we are going to pre-
sent is called Deep Dive. The method is a derivative of BLC
and is inspired by N-gram models and chess programs. The



basic idea is the following: similar to BLC we try to find the
best local chains from the table’s top but instead considering
only one element at a time, we consider all legal permutati-
ons with k elements. After finding the best k-deep permuta-
tion, we choose its first element and place it in the reordered
table. Then we repeat the procedure until all elements are
placed. The process is comparable to chess programs: calcu-
lating on a predefined depth, the best-ranked move is found,
executed and the ranks of next moves recalculated.

Like the BLC heuristic, Deep Dive also makes use of all
rules. The complexity of the approach depends on the choice
of k. In the worst case, we can estimate the complexity with:

O(n) =

n∑
i=1

(
i
k

)
< n ·

(
n
k

)
< nk+1

We found that choosing k with 2 or 3 provides acceptable
results keeping acceptable performance. In Section 4, we dis-
cuss the impact of k on results quality and runtime.

3.4 Clustering
In this section, we want to discuss a heuristic approach

to reduce the underlying complexity of the sorting problem.
As already mentioned, the complexity heavily depends on
the number of distinct bit vectors. The number of distinct
bit vectors in turn depends on the number of columns and
the query behavior. If we were able to reduce the number of
columns, we would also reduce the problem’s complexity. In
our research, we discovered that many columns have similar
querying behavior and could be regarded during sorting as
single column without a significant loss of hotness informa-
tion. For that reason, we propose to cluster columns with
similar hotness behavior and to combine columnar vectors
of each cluster into a single vector using logical disjunction.
The reasoning for the use of the disjunction operation is the
same as for chunks: we do not lose information about the
hot state, at most about the cold state. To follow this ap-
proach, it is necessary to discover similar hotness behavior
of columns. We see three possibilities for similarity metrics:

• Similarity between sets of templates affecting columns

• Distances between state-based column vectors

• Distances between frequency-based column vectors

The choice of an appropriate similarity metric is a field of
further research. The first approach is complex in implemen-
tation and parameter tuning. The second approach also has
an important disadvantage: it is not possible to differentia-
te key columns from columns requested in OLAP style. For
these reasons, we prefer to use the latter named approach.
Nevertheless, it must be mentioned that this method re-
quires the computation of frequency-based column vectors,
which cannot be directly used for the sorting problem. But
as already pointed out, each frequency-based vector can be
easily transformed into a state-based one.

In addition, we propose using k-Means as clustering ap-
proach for a simple reason. The parameter k allows control-
ling the number of resulting columns and consequently the
number of potentially distinct bit vectors. Thus, k-Means
allows controlling the worst-case complexity.

During our research we applied the clustering approach
to the BSEG table and found that 6 artificial column vec-
tors would be enough to represent all 345 real columns in
acceptable quality.

4. EXPERIMENTS
In this section, we examine the performance and the qua-

lity of the presented methods: the optimal solver and the
heuristics. For solid reasoning, we use two test data sets.
The first data set is the one described in Section 1.4. The
second data set is generated randomly to simulate different
parameters not occurring in our real world example, but
whose impact should be determined. We assume that each
random decision is made following a uniform distribution.

We have outlined in Section 3.2 that the presented stra-
tegies have less effect on the performance the fewer parent-
child relations can be found in the lattice. To provide fair
measurements, we use the following strategy for the gene-
ration of the random data. We define two parameters: the
column count n and the fraction p describing the number
of randomly chosen lattice elements allowed to be used. For
example, setting n = 5 and p = 0.25, we retrieve a table
with 5 columns and 0.25 · 25 = 8 randomly chosen blocks.
The length of each block is set to one, ensuring a better
comparability between generated tables.

4.1 Optimal Solver
Relating to the optimal solution’s search, two questions

are of importance. How does the column count influence
the runtime and how does the number of distinct elements
influence the runtime? To answer both questions we used the
following experiment. For each column count in the interval
[4, 7], we generated for each fraction p ∈ {0.25, 0.5, 0.75, 1.0}
100 random tables and measured the minimal, maximal and
average runtime. The computation of the optimal solution
was aborted when the runtime exceeded one minute and
these timeouts were counted.

Table 1 shows the results of the experiment. As expected,
we see that the average runtime grows significantly with the
number of columns. One interesting observation is that the
runtime difference between four and five columns broad ta-
bles is marginal but between five and six the difference is
significant. The reason for this behavior is the following one.
Tables with only four or five columns have so few distinct
blocks that the parent-child rule and the bitmask rule can
be applied nearly for each table reducing the task comple-
xity. The second interesting observation is that the fraction
parameter influences not only the average runtime but also
the deviation of runtime values. As we can see from mea-
surements with 6 columns, fraction values of 0.5 and 0.75
cause a high variation in the runtime behavior. The reason
for this behavior has already been outlined: the fewer ele-
ments from the lattice are in the table, the lower the chance
for parent-child relationships.

From the experiments, we can conclude that the optimal
solution can be computed only for tables not broader than 6
columns in an acceptable time. Using better computational
resources and accepting longer waiting times, the number
of columns could be increased but not by an order of ma-
gnitude. Nevertheless, this low number of columns may be
sufficient if the column vectors represent bit vectors build
from business rules or created via the clustering approach,
which was described in Section 3.4.

4.2 Heuristics
We performed three experiments to measure the quality

and the efficiency of different heuristics. For these measu-
rements, we used both data sets: the data set derived from



Table 1: Run time measurements for the optimal solver.

columns fraction min. [s] avg. [s] max. [s] timeouts

4 0.25 0.24 0.29 0.55 0
4 0.5 0.24 0.25 0.26 0
4 0.75 0.25 0.32 0.56 0
4 1.0 0.30 0.32 0.37 0
5 0.25 0.29 0.32 0.45 0
5 0.5 0.32 0.38 1.22 0
5 0.75 0.36 0.52 0.96 0
5 1.0 0.50 0.54 0.83 0
6 0.25 0.40 0.69 2.35 0
6 0.5 2.00 4.87 22.98 0
6 0.75 4.20 12.76 54.25 0
6 1.0 7.93 9.08 12.34 0
7 0.25 8.18 30.20 57.66 5
7 0.5 55.65 55.65 55.65 99
7 0.75 - - - 100
7 1.0 - - - 100

the BSEG table data and random generated tables of appro-
priate size. The experiments on the BSEG table show how
the heuristics perform on distinct bit vectors appearing in
a real world application. Such vectors cannot be randomly
generated because the underlying data distribution is un-
known. The main purpose of these experiments is to show
that the heuristics can be applied with success in business
applications. In contrast, experiments with smaller random
tables allow analyzing the behavior of the heuristics on ta-
bles not independent of any data distributions. These expe-
riments are necessary to make statements about quality and
efficiency valid for all varying scenarios.

The BSEG table has 345 columns and therefore too ma-
ny elements to provide an optimal solution. To observe the
impact of the chunking method on the data, we applied the
heuristics to the BSEG table, creating chunks for each order of
magnitude between 1 and 10,000. Table 3 provides the mea-
surement results. The error rates of the heuristic are compu-
ted as the fraction of the error after sorting comparing to the
original error. It must be mentioned that the original error is
computed directly on tables resulting from chunking becau-
se we want to measure the quality of the heuristics and not
the quality of chunking. The runtime is provided in seconds.
For the Deep Dive heuristic the depth parameter was set to
two because higher values led to unacceptable runtimes.

The chunk size influences the number of distinct elements
significantly. The original table contains 1,053 distinct ele-
ments. We would expect that this number decreases with the
size of the chunks but the opposite is the case. Each chunk
of size b consists of b bit vectors. The higher b becomes, the
higher is the probability that the disjunction of these b crea-
tes a new bit vector differing from previous ones. As we can
see from the table, this reasoning is not always valid. For
b = 1, 000 and b = 10, 000 the number of elements decreases
again. Therefore, we need to take into account that previous-
ly only thousand distinct elements existed. Combining them
to chunks of such large sizes, the probability increases to
have all distinct vectors in each chunk always producing the
same vector after the disjunction. Consequently, the number
of distinct vectors decreases after chunking. The low number
of distinct vectors for the chunk size of 10, 000 suggests that
chunk sizes should be chosen smaller. Otherwise, the result
of the sorting will be less expressive because too many cold
table cells would be masked as hot.

The Deep Dive heuristic performs best closely followed by
the Shortest Chain First approach (Table 3). Expectably, the

Table 2: Comparison of error rates for different heuristics on
a 6 columns wide table.

heuristic fraction minimal average maximal
error [%] error [%] error [%]

DDk=3 0.25 0.00 3.10 27.27
DDk=3 0.5 0.00 10.25 32.00
DDk=3 0.75 0.00 11.64 34.48
DDk=3 1.0 0.00 0.00 0.00

DDk=2 0.25 0.00 7.46 36.36
DDk=2 0.5 0.00 14.94 37.93
DDk=2 0.75 0.00 13.58 34.48
DDk=2 1.0 0.00 0.00 0.00

BLC 0.25 0.00 27.38 62.50
BLC 0.5 16.00 49.95 105.56
BLC 0.75 28.85 55.57 100.00
BLC 1.0 48.33 59.92 90.48

SZCF 0.25 15.62 44.07 92.31
SZCF 0.5 35.48 64.63 113.64
SZCF 0.75 37.74 77.21 127.59
SZCF 1.0 66.67 75.03 105.00

FF 0.25 9.09 45.23 92.86
FF 0.5 35.56 74.07 135.29
FF 0.75 36.00 73.14 128.57
FF 1.0 70.00 76.41 120.00

Fulls First heuristic shows the worst error values because it
does not regard block lengths in contrast to other methods.
The runtimes of all approaches depend on the number of
blocks. For the chunk size of 10, 000 the runtimes are the
lowest, for a size of 100 the highest. This behavior confirms
our theoretical assumptions presented in previous sections.
The measured runtimes also show three different complexity
classes: the similar runtimes of SZCF and FF, the runtimes
of BLC and the runtimes of DD.

Summarizing the experiments, we can state that SZCF
and DD are both applicable for the sorting problem in tables
similar to the BSEG. Deep Dive allows slightly better results
but requires significantly more time.

In the next experiment, we compare the heuristics’ quali-
ty. For this experiment, we use random data generated with
the previously described method. We use six columns broad
tables to be able to find the optimal solution and to com-
pare the heuristics against. We vary the number of distinct
elements setting the fraction parameter as we have done in
Section 4.1. Table 2 shows the results. As we can see, the De-
ep Dive heuristic performs best. With increasing depth, the
heuristics seems to perform better. We investigate this in a
further experiment. In contrast to the previous experiment,
SZCF shows a very low success rate rarely finding a good
solution. This means that SZCF shows good performance
in special cases, but is not a good heuristic in average. The
majority of distinct vectors of the BSEG are sparse or almost
full. Therefore, placing the full vectors at the top of the ta-
ble, the SZCF heuristic can achieve very good results, but
in other cases the results are worse.

A further insight we gain from this experiment is that a
fraction of distinct elements in the interval [0.5, 0.75] leads
to worst results for all heuristics. This means that such frac-
tions provide enough elements for a high probability of a
wrong decision in a heuristic step but not enough elements
to make sufficient use of parent-child rules. For fraction va-
lues of 0.25 and 1.0 the heuristics perform at best. Especially
the Deep Dive heuristic is able to find the optimal solution



Table 3: Heuristical error rate for the full BSEG table (error as percent of original error, runtime in seconds).

chunk size blocks error runtime error runtime error runtime error runtime
SZCF SZCF FF FF BLC BLC DDk=2 DDk=2

10,000 121 5.26% 0.735 10.18% 0.872 8.45% 1.015 6.65% 10.253
1,000 1,233 8.51% 64.920 12.44% 75.178 11.54% 99.410 5.77% 755.656
100 2,495 6.16% 229.684 11.99% 284.282 7.78% 397.048 4.10% 1,822.058
10 2,219 3.39% 192.575 8.78% 235.940 3.84% 340.963 2.66% 2,182.305
1 1,053 2.71% 51.240 11.12% 59.598 2.90% 73.799 2.41% 864.433
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Figure 5: Run times of the Deep Dive heuristic on varying
depths.
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Figure 6: Error rates of the Deep Dive heuristic on varying
depths.

in each case of a full lattice.
In the last experiment, we observe the influence of the

depth parameter k on quality and runtime of the Deep Dive
heuristic. Again, we use the randomly generated data set
with six columns to measure the error rate in comparison
to the optimal ordering. As expected, Figure 5 shows that
the runtime of the heuristics increases with the depth. Fur-
thermore, we can state that the number of distinct elements
influences the runtime for higher depth values stronger than
for lower values. As we can see in Figure 6, the quality of
the solution is also strongly depending on the depth. But as
we have already observed in the first experiment, for larger
problems a depth of three causes runtime problems.

5. CONCLUSION
We presented our data tiering ansatz and discussed how

table reordering can improve tuple reconstruction for tiered
in-memory column stores. We implemented multiple heuri-

stics to tackle the sorting problem for real-world applications
with acceptable run time overheads. Our reordering approa-
ches outperform the näıve method significantly. Especially
the Deep Dive and SZCF heuristics have shown to be feasible
approaches finding accurate table orders with run times of
few seconds for a production ERP database table with over
100M tuples. Chunking and clustering are two approaches
to further reduce complexity of the sorting problem.
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