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ABSTRACT

As NUMA systems grow in complexity, the average distance
of memory increases. Because the number of parallel read
requests is limited, this reduces the bandwidth available to
the CPUs. Also, the cost of cache coherency increases as
atomic operations are synced across multiple hops. We ex-
plore how these problems can be alleviated by offloading
NUMA accesses to the interconnect hardware and show how
databases can profit. For cross-NUMA table scans, we re-
port a performance improvement of up to 30%; for atomic
increments as used for transaction sequencing up to 10x, and
for latches up to 8x. These experiments were performed on
an SGI UV300 system but demonstrate the general value of
explicit memory instructions.

1. INTRODUCTION

Modern business applications rely on responsive data an-
alytics and transaction processing with a single source of
truth. Motivated by this need and the availability of large
main memory capacities, more and more customers of enter-
prise software move to state-of-the-art in-memory database
systems. Due to the rapid growth of data as well as the
increasing comprehensiveness of queries, the compute re-
sources of a single server system are not sufficient anymore.
Especially for in-memory database systems, main memory
capacity and bandwidth needs to be scaled beyond the limit
of a single box. For this, databases can either be scaled out
or scaled up. While the scale-out solution requires signifi-
cant efforts to adapt the database software (e.g., fault tol-
erance, explicit communication, Two-Phase Commit), large
scale-up solutions provide an elegant way to scale existing
software at lower costs [8].

The SGI UltraViolet family (recently acquired by HPE)
is one example of such a large scale-up system. Those sys-
tems consist of multiple individual rack units (IRU) that
are connected via a NUMAlink system interconnect. Fig-
ure 1 shows a block diagram of a single IRU of an SGI
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Figure 1: SGI UV300 block diagram, based on [9].
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UV300. As illustrated, the HARP ASIC is a key compo-
nent that connects the IRU’s processors to the systemwide
NUMAIlink interconnect. Additionally, the HARP is re-
sponsible for maintaining cache coherency and providing a
common address space across the IRUs. Since NUMAlink
adds an additional layer to the interconnect hierarchy, re-
mote memory accesses are becoming more costly, similar to
a scale-out setup. Hence, such large scale-up NUMA sys-
tems face network topology related problems in terms of (1)
reduced bandwidth and increased latency for remote memory
accesses and (2) the strongly limited scalability of atomic
memory operations (e.g., latches) as a consequence of the
comprehensive cache coherency protocol. To cope with this
issue, recent database research proposed adaptive partition-
ing strategies [2, 3, 5, 6] to decrease the number of remote
memory accesses and strategies to reduce the need of atomic
memory operations in general [1, 4]. However, due to vary-
ing workload patterns as well as shared data structures and
intermediate results, neither remote memory accesses nor
atomic memory operations can be completely avoided.
Aside from these software-based approaches, hardware
vendors are also developing new features to efficiently ad-
dress the network topology related problems. For instance,
the HARPs in a SGI UV system employ a Global Reference
Unit (GRU) facilitating a proprietary API to accelerate re-
spectively offload memory operations within a NUMA ar-
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chitecture. In particular, the GRU provides functionality to
asynchronously copy memory between processors and to ac-
celerate atomic memory operations. In this paper, we treat
the SGI UV and its GRUs as a playground to investigate
the overall potential of hardware-accelerated main memory
operations for in-memory database systems. In detail, we in-
vestigate the capabilities of the GRU to speed up database
operations and remove bottlenecks in a typical in-memory
database system.

The contributions of this paper are:

(1) We give an in-depth overview of the SGI UV archi-
tecture and detail on the functionality provided by
the Global Reference Unit (GRU) API. Moreover, we
demonstrate how to program the GRU.

(2) We evaluate the capability of the GRU to accelerate
and offload processor-to-processor main memory copy
operations.

(3) We evaluate GRU-accelerated atomic memory opera-
tions to eliminate usual bottlenecks in database systems
such as obtaining transaction timestamps or protecting
critical sections.

Outline. The remainder of this paper is structured as
follows. In Section 2 we discuss the necessary background
of the SGI UV and the GRU API. Afterwards, we evaluate
the processor-to-processor copy operations and use cases for
databases in Section 3 as well as atomic memory operations
in Section 4. Finally, we discuss the related work in Section 5
and conclude the paper in Section 6.

2. BACKGROUND

As already mentioned, the HARP is the main compo-
nent that connects multiple four-socket units (called IRUs
or blades). This is achieved by bringing together two inter-
connect networks: QPI on the side of the IRUs, and the pro-
prietary NUMAIlink between all HARPs in the system. To
plug into the coherent interconnect between the four CPUs
within one IRU, the QPI connections between CPUs 0-2
and 1-3 are removed. This frees up one QPI port, which
is then used to connect the CPUs to the HARPs (see Fig-
ure 1). Each HARP serves two CPUs, so that two HARPs
are needed per IRU. On the NUMAlink side, the HARPs are
fully connected. The two HARPs within one blade are also
connected with each other via two NUMAlink connections.

A key component of the HARP is the Global Reference
Unit. Every HARP contains two GRUs, each connected
with one of the IRU’s nodes via a QPI link. Their main
function is allowing the connected CPU to address off-blade
memory. The GRU presents itself as another participant in

the QPI network. As such, it is responsible for translating
addresses that are outside of the local IRU. This is done by
looking up the data’s location in the coherency directory (or
a cached version thereof). Additionally, the GRU is respon-
sible for transparently wrapping QPI stores and loads into
NUMALlink network packages and unwrapping them on the
receivers side.

In normal operation, HARP and GRU work together to
provide a transparent extension of the memory space. Pro-
grammers do not need to be aware that the target system
is comprised of multiple, cache-coherently connected four-
socket systems. During execution, the only hint that the
program is executed on such a machine is the increased la-
tency of off-blade memory accesses, which is just under 500
nanoseconds. This latency also affects the maximum band-
width because the number of concurrent read requests issued
by the CPU is limited and longer waits mean more expensive
memory stalls.

To better utilize the NUMAlink network, it can be prof-
itable not to use the transparent translation, but to explic-
itly instruct the GRU. For this, SGI provides an API that
can be used both in user and in kernel mode to directly inter-
act with the GRU. The first part of the API consists of meth-
ods that create and manage the hardware resources needed
for explicit GRU memory operations. The steps needed to
prepare for GRU operations are documented in man 7 gru.
We will focus on the second part of the API, which includes
the memory instructions as described in Table 1.

In this paper, we will use the memory transfer and the
atomic memory operations. These will be described in the
appropriate sections in detail. All discussions are based on
experiments that we ran on a UV 300 with four IRUs, each
having four Intel E7-8890 v2 processors with 768 GB of
DRAM at 1333 MHz. This sums up to 240 physical cores
(480 logical) and 12 TB of main memory.

3. BCOPY

The first operation that we evaluate towards its potential
for in-memory databases is gru_bcopy. Its function signature
can be found in Table 2. Not to be confused with the depre-
cated string copy method from the C library, it is a method
that uses the GRU to copy data from system memory to
system memory. As such, its end result can be compared
to that of memcpy. While memcpy causes the executing pro-
cessor to execute a number of load operations from remote
memory and blocks execution until all cache lines have been
transferred, gru_bcopy handles the memory transfer asyn-
chronously and outside of the processor. Since the nodes

Memory Transfer
gru__bcopy, gru__bstore, gru_ [i]vload,
gru_ [i]vset, gru_ [i]vstore

Transferring data between system memory to the GRU or to a different area of system
memory, initializing system memory with a set value; "i" versions use indirect (i.e.,
indexed) addressing.

nan

Atomic Memory Operations (AMO)
gru__game[r], gru_ gami[r], gru_ gamxr,
gru_ ivramiw, gru_ ivramew

Support atomic changes to remote memory. Other than regular x64 atomic opera-
tions, which retrieve the memory and perform operations locally, these are executed
by sending the appropriate command to the remote GRU.

Message Passing
gru_ mesq

A method specifically for MPI message queues, this method sends a message to a re-
mote queue. Compared to software implementations that take five network traversals,
this hardware-supported method only needs two.

Operative

gru_nop, gru_vflush the network.

As all GRU methods are executed asynchronously, nop is needed as a method to
abort running instructions. vflush flushes one or more cacheline(s) from all nodes in

Table 1: List of the data manipulation methods supported by the GRU API
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void gru_bcopy(gru_control_block_t *cb, const gru_addr_t src, gru_addr_t dest, unsigned int triO, unsigned
int xtype, unsigned long nelem, unsigned int bufsize, unsigned long hints);

cb Pointer to the GRU ressource that controls execution, a so called control block.

src Pointer to the data source.

dest Pointer to the data destination.

trio0 Offset in the current GRU buffer. Can usually be ignored, i.e., set to zero.

xtype Type of elements that should be copied. It’s easiest to use XTYPE_B, i.e., bytes, here and specify the number of bytes in the

next parameter, nelem. Using a larger type, e.g., XTYPE_DW, does not seem to have any impact on the performance.

nelem Number of xtype elements that should be copied.

the smallest possible buffer size of 4 cache lines.

Number of cache lines that can be used as a buffer.

This size has significant influence on the performance. With the
bufsize | current maximum of 128 cache lines for a buffer size, i.e. around 8K, we observed a 22x higher throughput compared to

hints Bit mask for execution hints, currently only for ordering certain read references. Unused in this paper.

Table 2: The function parameters of gru_bcopy.

within one IRU are connected via QPI, using gru_bcopy can
only bring a benefit when out-of-blade memory is accessed.
How this is done is shown in Figure 2: (1) The gru_bcopy
instruction is issued by the requesting CPU and sent to its
HARP. (2) The GRU within the HARP identifies the remote
node where the data is located and requests the cache line
(CL) from the appropriate HARP. (3) The remote HARP
uses its QPI network to load the cache line from the appro-
priate CPU. (4-6) That CPU uses a regular memory load to
retrieve the memory from its system memory and returns
it to its HARP. (7) The remote HARP sends the cache line
to the local HARP, where it is stored in the HARP’s buffer.
(8-9) The local HARP transfers the cache line from its buffer
to the targeted memory address.

gru_bcopy has three advantages over regular CPU loads
from remote nodes: First, because its execution is asyn-
chronous and can transfer multiple cache lines at once, the
CPU gets freed up and can perform other computation in
the time that would otherwise be lost in memory stalls. Sec-
ond, CPUs are limited in their memory access performance
by their maximum number of outstanding read requests. For
current x86 CPUs, this means that ten L1D cache misses can
be worked on at the same time. After this, the core has to
wait for one request to finish. The effects of this can be seen
when measuring the maximum bandwidth of a single core,
which does not reach the possible bandwidth of the entire
CPU. This problem gets worse with increased NUMA dis-
tances, as experienced in a massive scale-up system. When
the memory latency doubles, the maximum number of out-
standing requests would have to double as well to keep the
bandwidth the same. Since this is not the case, the band-
width of a single core is limited. The HARP, on the other
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Figure 2: How gru_bcopy moves a cache line (CL) from
remote memory to local memory.

hand, supports a significantly higher number of outstand-
ing requests and can achieve a higher bandwidth when ac-
cessing remote memory. Third, using the GRU utilizes the
directory-based cache coherency protocol in a more efficient
way. While this does not directly affect a single memory
access, it reduces the coherency effort, increasing the amor-
tized performance. We will now look at how these three
reasons translate into a measurable performance impact.

3.1 Performance Comparison with memcpy

To get a baseline for the benefit of replacing CPU reads
with GRU-supported memory transfers, we measured the
maximum bandwidth when copying data from off-blade
memory to local system memory. The results are shown
in Figure 3, with the x-axis displaying the size of the trans-
ferred memory block and the y-axis the achieved memory
throughput on a single core. Our findings are the following:
(1) As expected, memcpy does not saturate the maximum
NUMAIlink bandwidth of 7.5 GB/s [9]. (2) Using gru_bcopy
brings us significantly closer to the theoretical maximum, at
least when large amounts of memory are transferred. (3) In
that case, gru_bcopy has a 2.4x performance advantage over
memcpy, which uses regular CPU stores and loads. For
smaller chunks of data, gru_bcopy suffers from a performance
hit of up to 4x.

These benchmarks have been executed without taking the
constant cost of initializing the GRU control structures (i.e.,
control blocks and contexts) into account. This is because
for databases, the initial subsecond cost is incurred only once
during DBMS startup. The spike measured between 10 and
10% Bytes for memcpy is seen only on our test machine and
has not been observed on single-blade systems. As it is not
relevant to our findings, we will not discuss it further.
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Figure 3: Performance comparison of gru_bcopy and memcpy.
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3.2 GRU-Accelerated Off-Blade
Scan for Database Systems

A main advantage of a column-oriented in-memory
database is the support for unindexed table searches. This is
made possible by having the prefetcher load data before it is
needed, not loading parts of cache lines that hold irrelevant
data (i.e., data from other columns), and a combination of
an efficient dictionary compression and bit-packed attribute
vectors [10]. Fast scans allow users to formulate queries that
the database has not been optimized for and, in return, al-
lows them to explore their data with new levels of freedom.
As such, optimizing their performance translates to direct
benefits for the users. While the maximum performance has
already been achieved for node-local scans, this is not the
case for off-blade scans in scale-up systems. These suffer
significantly from the higher latency, which translates to a
loss in bandwidth due to the memory stalls caused by a low
number of supported parallel reads.

One might argue that in these cases, the execution of the
scan should be moved closer to the data, and that optimizing
the off-blade scan performance is unnecessary. Of course,
performing only local scans is preferable. Still, there are
cases in which, even with a NUMA-aware database, off-blade
scans cannot be avoided: (1) if the cores of the remote node
are busy themselves and moving the execution would lead
to higher load imbalances, (2) if the scan is part of a larger
chain of operators that is better suited for a different node,
e.g., as an input to a following operator or in a JIT-compiled
operator chain.

In these cases, gru_bcopy helps us by providing a higher
bandwidth from the remote memory. Instead of directly
accessing the remote memory, we first copy it to local, fixed-
size buffers using a double buffering approach. This is shown
in Figure 4. While gru_bcopy is moving data into one buffer,
we can scan the data in the other. This is made possible by
the asynchronous nature of the GRU operations. The scan
is done by calling the regular scan operation on the buffers.
As long as the buffer boundaries do not cut any values in
half, this does not require any code modifications in the scan
itself. For database vendors, this means that the deviation
in the code base is limited to a single place, the GRU proxy.
Listing 1 gives an example.

3.3 Benchmarks

For evaluating the performance of the GRU-accelerated
column scan, we use the proprietary scan implementation of
a commercial DBMS. Three questions are of interest here:
(1) What is the maximum performance gain? (2) For which
column sizes does the GRU scan make sense? (3) How must
parameters, such as the GRU buffer size, be tuned for opti-
mal throughput?

Figure 5 shows the results of scanning a single off-blade
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Figure 4: Double-buffered Column Scan.
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column with a varying size being scanned either with or
without GRU support. The y-axis displays the time spent
per row during the scan. This allows for easier interpre-
tation than absolute numbers, which would obviously in-
crease with growing vectors. The results are very similar to
those shown for the memcpy comparison in Figure 3. Again,
the GRU shows a significant performance improvement over
regular CPU loads. Here, we were not able to reach the
maximum of 2.4x; instead, we see a performance improve-
ment of 30% for two reasons. Firstly, the memcpy benchmark
has a read:write ratio of 1:1, while the ratio of the scan de-
pends on its selectivity (here 1000:1). For the CPU case, this
means that more time can be spent reading data. Thus, the
worst-case bandwidth of the CPU is 3.5 GB/s, compared
to 2 GB/s. The gru_bcopy instruction, on the other hand,
performs a streaming copy, which is why this effect does
not play as much of a role. Secondly, the test machine only
supports AVX, not AVX2, and we expect a more significant
performance improvement with AVX2 [11]. A second find-
ing is that using the GRU only makes sense for vectors with
more than twenty million entries. With a bit case of 10, this
makes 10/8 * 20,000,000 ~ 23M B. While this appears to
be a lot at first, many tables in an enterprise system as tar-
geted by this architecture are bigger by orders of magnitude
and easily reach multiple gigabytes.

We found one parameter to be of high importance for good
performance with gru_bcopy: the size of our local buffers.
As there is a certain fixed cost associated with each GRU
transfer, the time needed to copy to a buffer that is too small
is dominated by the fixed cost. For a buffer that is too large,
offloading and double-buffering does not work properly, as
there are longer time slots in which either the GRU or the
CPU are idle. Figure 6 shows this effect. In this case, the
optimal block size is around 262K.

4. ATOMIC MEMORY OPERATIONS

The GRU API provides instructions for executing atomic
memory operations on a single double word or on multiple
double words. In the following, we will focus on the sin-
gle double word instructions as they are commonly used in
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uintX_t *buffer_1

(uintX_t) (numa_alloc_local(block_size));

uintX_t *buffer_2 = (uintX_t) (numa_alloc_local(block_size));

uintX_t *buffers[] = {buffer_1, buffer_2};

gru_bcopy (cbs[0], remote, buffers[0], 0, XTYPE_B,

block_size, 128, 0);

for (size_t block = 0; block < block_count; ++block) {

if (block < block_count - 1) {
// fetch nezxt

gru_bcopy (cbs[(block + 1) % 2], remote + elements_per_block * (block + 1),
buffers [(block + 1) % 2], 0, XTYPE_B, block_size, 128, 0); }

// process current
gru_wait (cbs[block % 2]);
uintX_t *current_buffer = buffers[block % 2];

for (int block_offset = 0; block_offset < elements_per_block; ++block_offset) {
// regular scan operator comes here - this one is very simple
if (current_buffer[block_offset] == search_value) {
matches_out.emplace_back(RowID{0, block_offset}); }}}

Listing 1: A simplified implementation of a GRU-supported column scan

database systems and experimentally evaluate their feasibil-

ity. In particular, we will present the results for two critical

components of an in-memory database system:

Atomic Counter Increments Atomically incrementing a
single counter value is a critical operation for the trans-
action management but usually does not scale within
a single processor and even less so in an entire NUMA
system. For instance, multi-version concurrency con-
trol (MVCQC) relies on counters for obtaining a trans-
action timestamp in a sequential order.

Latches Database systems employ latches to protect non-
parallelized code sections against the concurrent access
of multiple threads. Those code sections are usually
global critical sections or fine-grained latches within
single data structures such as trees or columns.

Table 3 lists the four available atomic single double word
instructions of the GRU. Each instruction takes a pointer to
the target double word as well as the specific operation as
parameters. The return value of an instruction is written to
the issuing control block after a successful completion. The
respective instructions differ in two ways from each other:
Explicit Operands. Operands for the respective instruc-

tion are either given implicitly or explicitly. Hence, in-
structions with implicit operands only support rather
basic operations such as fetch-and-increment where
the operand is implicitly given as a 1. Instructions
with explicit operands allow more sophisticated op-
erations such as compare-and swap, which needs two
additional operands.

[ Caches \ [ Caches \ [ Caches \ [ Caches \

(a) CPU

(b) GRU

Figure 7: Internal functioning of atomic memory opera-
tions. Schematic view of a 4-TRU NUMA system. Red sys-
tem components are involved in the execution.

(c) Registered

Registered /Buffered. While non-registered instructions
directly operate on the main memory the targeted
double word is located in, registered operations try to
buffer referenced double word (DW) within the local
GRU memory. Thus, the double word is likely to be
cached in multiple GRUs.

In Figure 7, we visualized the difference between CPU,
GRU, and registered GRU atomic memory instructions. It
schematically depicts a NUMA system consisting of four di-
rectly connected IRUs as well as the internal memory hi-
erarchy of an IRU ranging from GRU memory, over local
socket main memory, up to the local CPU caches.

The traditional way of executing atomic memory opera-
tions is via locked CPU instructions (e.g., a LOCK ADD). As
shown in Figure 7(a), the actual operation is performed by
the local hardware threads causing the referenced double
word to be cached by multiple processors on multiple IRUs.
The major drawback of this approach is that the processors
and GRUs spend high efforts for maintaining the cache co-
herency across the individual caches of the hierarchy, which
results in a high interconnect activity and instruction la-
tency. In contrast, a basic GRU atomic memory instruction
is exclusively executed by the GRU that is connected to
the processor respectively memory that hosts the referenced
double word. As shown in Figure 7(b), the referenced double
word is cached nowhere, which saves the high overhead of
the cache coherency protocol. Finally, the registered GRU
instruction depicted in Figure 7(c) additionally buffers the
referenced double word in the local memory of the individual
GRUs and does not operate on the memory itself. Hence,
the effective atomic memory operation is executed on the
instruction issuing GRU, which requires additional efforts
to ensure the internal memory coherency across the GRUs.

Experimental Setup. The overall aim of our following
evaluation is to measure the scalability as well as the ab-
solute throughput of the three different ways of executing
atomic memory operations. As previously discussed (cf.,
Figure 7), the performance of the instructions depend on
where the executing threads and the collocated GRUs are
placed. Therefore, we employ the following two thread allo-
cation orders for our evaluation:
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GRU Instruction | Explicit Operands | Registered /Buffered Supported Operations
GRU_GAMIR
= Fetch, Clear, Fetch-and-Incr, Fetch-and-Decr
GRU_GAMIRR v
GRU_GAMER v
= Swap, Or, And, Xor, Add, Compare-and-Swap
GRU_GAMERR v v
Table 3: Overview of single double word atomic memory operations.
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(a) High contention; interleaved thread allocation.
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(¢) Medium contention; interleaved thread allocation.
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(b) High contention; natural thread allocation.
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(d) Low contention; interleaved thread allocation.

Figure 8: Comparison of atomic counter increments using LOCK ADD, GRU GAMIR and GRU GAMIRR.

Natural Thread Allocation. This thread allocation or-
der starts with filling the first socket (physical cores
followed by HyperThreading siblings) and afterwards
continues with the next socket.

Interleaved Thread Allocation. The interleaved thread
allocation order allocates the threads in a round-robin
fashion across the sockets, also starting with the phys-
ical cores followed by the HyperThreading siblings.

Moreover, we modify the contention on the referenced
double word by adding artificial delays during the atomic
memory operations. While the high contention setup uses
no delay, the medium contention and low contention setups
induce a medium respectively high delay. In the follow-
ing, we will present our scalability and throughput results
for atomic counter increments and latches as use cases for
database systems.

4.1 Atomic Counter Increments

Obtaining sequentially ordered values respectively times-
tamps at a global level is a crucial bottleneck for database
systems. Hence, in this section, we investigate if GRU-based
instructions are able to relax the bottleneck compared to
traditional atomic CPU instructions. In our experiments,
the active threads try to increment a global counter while
obtaining the previous value. The appropriate CPU instruc-

tion is a LOCK ADD'. The corresponding GRU instruction is
GRU_GAMIR using the fetch-and-increment operation.

Figure 8 visualizes the results of the experiment. Each
chart shows the throughput in millions of atomic incre-
ments per second for the CPU instruction (LOCK ADD), GRU
instruction (GRU_GAMIR), and registered GRU instruction
(GRU_GAMIRR). For all experiments, we varied the number
of active threads allocated in the respective order.

Figure 8(a) gives the measurements for the high con-
tention setup using the interleaved allocation order. We
observe that the CPU instruction achieves its peak perfor-
mance with only a single thread and is continuously decrea-
sing when activating more threads. In contrast, we observe
an ideal scalability of the GRU instruction until the point
of 184 threads is reached and the throughput remains al-
most constant. Due to the additional overhead of issuing
GRU instructions compared to CPU instruction, we also
observe a higher throughput of the CPU instruction with a
low number of threads until the equilibrium is reached with
44 threads. The registered GRU instruction exhibits a low
absolute throughput as well as a bad scalability.

Figure 8(b) shows the results for the natural thread al-
location order. In general, we observe the same behavior
as for the interleaved allocation order. Nevertheless, there

elele __sync_fetch_and_add intrinsic.
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(b) NUMA socket 1-5 (IRU 1 and 2).

Comparison of atomic counter increments for a mix of LOCK ADD and GRU GAMIR. One thread of the respective

NUMA sockets uses LOCK ADD. Remaining threads use GRU GAMIR. High contention and interleaved thread allocation.
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Figure 10: Comparison of a latch using test-and-set and GRU GAMER (CSWAP). Interleaved thread allocation order.

exist two differences. (1) The GRU instruction scales step-
wise, because threads of the same socket share the same
GRU, and thus reaches its maximum throughput later with
232 threads. (2) For the CPU instruction, we observe two
points where the throughput suddenly rises (31 threads) re-
spectively drops (121 threads). Since each socket comprises
of 30 hardware threads, the first effect happens when switch-
ing to the second socket of the first IRU and the second effect
occurs as soon as a thread on the second IRU is activated.

In Figure 8(c) and 8(d) we stay with the interleaved allo-
cation order and present the results for the medium and
low contention setup. As both measurements show, the
GRU instruction clearly outperforms the CPU instruction
in terms of scalability and absolute throughput. However,
the CPU instruction still exhibits a better throughput with
a low number of threads, but the turning point is already
reached with 6 threads. The registered GRU instruction
remains at a low throughput.

In a final experiment, we reflect on the internal function-
ing of the GRU by mixing CPU and GRU instructions. As
a specific test setup, we use the interleaved allocation order
under high contention. However, we modify the experiment
in a way that all threads use the GRU instruction, except
for the first thread on a socket which uses the CPU instruc-
tion. This causes the referenced double word to be cached
by the respective processor.

In Figure 9 we visualize the measurements for the CPU
instruction-only setup (LOCK ADD) as well as the GRU in-
struction mixed with some CPU instructions (CPU/GRU Mix).
In the experiment shown in Figure 9(a), we execute CPU
instructions only on the first thread of socket 1-4, which

belong to the same IRU. We observe that the mix of CPU
and GRU instructions starts with a higher absolute through-
put, because the first four threads use the CPU instruction.
Nevertheless, adding threads that use the GRU instruction
results in a worse scalability, but still reaches the same peak
throughput as the GRU instruction-only experiment (cf.,
Figure 8(a)). If we additionally allow the first thread of the
5th socket (different IRU) to use the CPU instruction in-
stead of the GRU instruction, we obtain the measurements
shown in Figure 9(b). As shown, both configurations — CPU-
only and instruction mix — behave almost the same leading
to the conclusion that the cache coherency protocol over QPI
and NUMAlink is the root cause for the lack of scalability
and solely using GRU instructions bypasses this bottleneck.

Conclusions. With the help of GRU instructions we
are able to speed up atomic counter increments, which are
used in database systems to obtain timestamps, up to an
order of magnitude. Our experiments revealed that GRU
instructions scale up almost ideally for realistic medium and
low contention scenarios. Moreover, we identified the cache
coherency protocol as the main bottleneck CPU instruction-
based counter increments.

4.2 Latches

Highly parallel in-memory database systems try to avoid
latches as much as possible. However, the usage of locks
is still inevitable, because threads need to synchronize the
work and their access to shared data structures, for instance,
while materializing intermediate results. Hence, we investi-
gate scalability and throughput of latches in this section
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by comparing CPU instruction-based and GRU instruction-
based latch implementations.

Both latch implementations are user space spinlocks. The
CPU instruction implementation uses the test-and-set to
acquire the lock instruction and sets the latch to zero to
release it. The GRU implementation uses the compare-and-
swap operation via the GRU_GAMER instruction for lock acqui-
sition and the clear operation via the GRU_GAMIR instruction
for lock release. During the experiments, we measure the
number of successful entries and the failed attempts.

Figure 10(a) and 10(b) show the measurements (latch en-
tries per second) of both implementations for the interleaved
allocation order and both high and low contention setups.
For both contention setups, we observe a similar behavior.
The CPU instruction-based implementation shows a higher
throughput for a low number of threads until the break-even
point of 20 threads is reached. While the CPU instruction’s
throughput continuously decreases, the GRU instruction-
based implementation is able to scale up until its plateau
is quickly reached and starts to slowly decrease afterwards.
Nevertheless, starting from the break-even point, the GRU
implementation always outperforms the CPU implementa-
tion. The chance to successfully acquire the lock (normal-
ized to the number of threads) is 32% for the CPU imple-
mentation and 99% for the GRU implementation.

Conclusions. Employing GRU instructions for imple-
menting inevitable latches in database systems significantly
increases the number of successful latch entries per second.
This performance advantage originates from bypassing the
cache coherency efforts in the CPUs, which induces a signi-
ficant overhead for CPU instruction-based latch implemen-
tations as the normalized chance to enter a latch reveals.

S. RELATED WORK

Recent works propose adaptive partitioning strategies to
reduce remote memory accesses [2, 3, 5, 6]. The same ap-
proach applies for atomic operations, which are distributed
or avoided by better parallelization strategies [1, 4]. How-
ever, since operators need to exchange data, synchronization
and cross-socket data transfers are usually inevitable.

The discussed HARP that hosts the GRUs is a represen-
tative of the ASIC family. For instance, Wu et al. proposed
a new instruction set specifically designed for database op-
erations implemented in a ASIC called Q100 [12]. The in-
struction set is very similar to SQL operators and can handle
most TPC-H queries showing a performance increase of fac-
tor 2-3, while only consuming 15% of the energy drawn by
CPU implementations. Such ASICs are usually very focused
on a specific set of application. In contrast, the HARP ASIC
virtually improves any scenario that heavily relies on moving
large amounts of data across the NUMA systems.

A comparable solution for scale-out database setups is
RDMA [7] sharing the paradigm of offloading memory trans-
fers between individual nodes of a cluster. The GRU is the
pendant for scale-up setups and additionally provides a co-
herent cache across all nodes.

6. CONCLUSIONS AND FUTURE WORK

In this work, we showed how databases on large NUMA
systems can profit from offloading their distant memory
loads and utilizing explicit access instructions to increase

their effective throughput. We showed how using SGI’s
gru_bcopy operation can bring a 30% performance improve-

ment to full table scans, how the GRU’s atomic memory
operations can improve transaction sequencing by an order
of magnitude and reduce the cost of latches by a factor of
eight. Furthermore, we explain what factors have an in-
fluence on the effectiveness of these improvements and in
which cases they are best used. These results warrant fur-
ther research into coupling core database operations closer
with the memory hardware.

With regards to the bcopy operation, we are looking into
using it for more algorithms. More specifically, we are ex-
perimenting with a GRU-accelerated join that moves inter-
mediary results between nodes using bcopy. This is relevant
for large databases, where intermediary results are some-
times in the hundreds of gigabytes or even terabytes and
their move across the NUMA network cannot be avoided.
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