

Author version of the paper, the final version has been published under Copyright of the IEEE as:

Ralf Teusner, Thomas Hille: On the Impact of Programming Exercise Descriptions, In Proceedings of
2018 Learning With MOOCS (LWMOOCS2018), 26-28 Sept. 2018, Madrid, Spain,

DOI: 10.1109/LWMOOCS.2018.8534676,
Link to published version: https://ieeexplore.ieee.org/document/8534676

On the Impact of
Programming Exercise Descriptions

Effects of Programming Exercise Descriptions
to Scores and Working Times

Ralf Teusner
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
ralf.teusner@hpi.de

Thomas Hille
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
thomas.hille@student.hpi.de

Abstract—This paper examines the effects of exercise
descriptions and supplied hints to achieved scores and required
working times of programming exercises within a MOOC. We
conducted an A/B test on more than 2.400 students using an
exercise with four descriptions differing in clarity, description
detail, order of presented instructions and presence or absence
of exemplary program output. Results show that the
expressiveness and structure of the instructions influence the
required work times as well as the number of issued program
runs. We suggest further experimentation to outline effects on
programming errors and to determine guidelines for optimal
exercise descriptions.

Keywords—programming, exercise, description, working time

I. INTRODUCTION
Recalling school, when asked which exercises students

perceived as the most difficult ones, the typical answer is:
word and real life problems. They require students not just to
calculate results or apply given instructions, but demand
understanding of a problem, combination of the given facts,
determining a suitable approach and finally solving the
problem. The hardest parts are usually: understanding the
problem and finding a suitable approach. When offering
practical programming exercises within MOOCs, the
requirements are similar: students have to understand the
problem, build on the given code snippets, apply the
explained concepts and code the solution. Therefore, the
exercise descriptions play a vital role in the success of an
offered exercise. In this paper, we analyze the effect of
different exercise descriptions, each offering different levels
of guidance and hints, on the same practical programming
exercise with regards to exercise completion rates, scores and
the time required.

II. RELATED WORK
The effect of structure, wording, and topic of so-called

word or real world problems is mostly evaluated on math
problems and in school classes. Palm investigated the impact
of authenticity in a 5th graders math class and found
improved reasoning and more detailed answers were effects
on more authentic exercises [1]. Nortvedt, Gustafsson, and
Lehre found a strong correlation between reading and
mathematics in a study on grade four students in 34
countries. However, the effect of the instructional quality of
teachers could not be evaluated towards a general conclusion
[2]. Vicente and Manchado also analyzed the effects of
authentic wording in math problems and concluded that

authentic problems improve the results especially for high
skilled students [3]. Heidelberger evaluated the impact of
word problems on high school students. However, his studies
were mostly focused on the task of creating own word
problems and therefore training the opposite direction of
typical word problems. It improved their understanding and
transferring from problem description from to mathematical
models and vice versa [4].

Our experiment is not covering the entire range of a real
world problem, requiring students to map a complete
situation or story to program code. We only require our
students to transfer the more or less detailed information of
an already mostly mapped exercise description to program
code. This experiment is therefore also impacted by research
conducted in the field of instructional scaffolding and
hinting, as we offer different levels of details for our
problem, by including or excluding examples and hints and
formulating the question on different levels of clarity.
Scaffolding approaches are often used for learning
programming in general, but literature lacks examples of the
effects of. Ismail, Ngah, and Umar identify and describe the
main problems of novice programmers in general, such as a
lack of skills to analyze and represent abstract issues [5].
However, they do not go much further than stating the
problem. Caspersen and Bennedsen also identify these
problems, but approach them from the perspective of
different learning theories and propose a comprehensive
course structure to tackle these problems [6]. Also, Lindner,
Abbott, and Fromber designed a full series of tasks to teach
their students software design using a scaffolding approach
[7]. Thus, existing literature mostly approaches the macro
level of course design, but lacks detail on the micro level,
such as specific exercise construction. While these findings
imply some hypotheses on the macro level, research is sparse
for computer science problems on a micro level and nearly
non-existent for the specific field of programming tasks in
MOOCs. With this work, we therefore contribute some first
experimental findings to a vast but currently open field to
give some general directions for future research.

III. PRACTICAL PROGRAMMING EXERCISES

A. Implementation and Grading
Our programming exercises are automatically graded on

our code execution platform CodeOcean1 and seamlessly

1https://github.com/openHPI/codeocean

integrate into the MOOC through LTI2 . Unit tests are
executed on students’ requests. In addition to scores and
completion rates, the coding platform implicitly gathers
approximate working times as students progress through the
exercises by submitting time-stamped solutions.

B. Characteristics
Our programming exercises are a vital part of the course

and are interleaved with video lectures. For every new
concept, for example “method calls”, we start with a video
lecture to impart theoretical knowledge. Afterwards, we
establish and fortify practical knowledge with hands-on
exercises: the first exercise asks to re-implement the exact
steps shown in the video, the second exercise usually alters
some parameters, and the third exercise challenges the
student to apply the concept in a suitable but different
situation, to train students to discover applicable use cases
themselves. At the end of each course week, we occasionally
offer exercises that require students to revisit and combine
different taught concepts.

IV. CONCEPT AND STUDY DESIGN
The experimental task discussed in this paper can be

solved within one method of one class in Java and was
integrated into a German MOOC with 9.242 registered
students, 5.839 of them actively participating. We split our
students into four evenly distributed groups based on their
artificial user id and offered all of them the additional
exercise as an optional bonus task during the second course
week. The exercise asks students to use a for-loop to print
out 50 lines and to adjust the output depending on the current
loop iteration3. If the counter is divisible by 3, it should print
“ding”; if it is divisible by 7, it should print “dong”; if it is
divisible by 3 as well as 7, it should print “ding-dong”. In all
other cases it should just print “ping”. The exercise requires
the student to have understood for-loops, as well as if-
conditions, divisions and the modulo operator. All
prerequisites were explained and fortified with distinct
exercises beforehand. Depending on the experiment group,
we gave the students more or less direct instructions and
alternated the order in which we presented the conditions
necessary to consider to solve the task correctly. The
differences between the four experiment groups a) to d) are
summarized below.

a) Instructions were given in optimal order, so first
check whether dividable by 3 and 7, then only by 3 or 7,
then the else case. This resembles the order the conditions
have to be placed in the if-conditions. We further gave the
students the hint that the divisibility without remainder can
be checked with the modulo operator. These students were
given the first 10 lines of expected output.

b) Instructions were in incorrect order, first checking
by 3, then by 7, then by 3 and 7, then the else case. The else
case was presented more complicated then necessary, by
saying “if it is neither divisable by 3 or 7, …”. The students
were also given the first 10 lines of expected output.

2 Learning Tools Interopability, see
https://www.imsglobal.org/activity/learning-tools-interoperability
3 A variation of the so called FizzBuzz exercise, used to train
division.

c) We gave the instructions in incorrect order, and
added unnecessary information. We first asked them to
check whether the counter can be divided by 3, but not by 7,
then to check whether its dividable by 7, but not by 3, and
then check whether the counter can be divided by both. In
all other cases, the ping output should be presented. The
students were not given any expected output, but we gave
them the hint that they should think about the order in which
the checks should be done, before implementing it.

d) The shortest description just stated: “for every
iteration dividable by 3, print out ‘ding’, for every iteration
dividable by 7 ‘dong’, and for iterations that are dividable
by 3 as well as 7 print ‘ding-dong’. If an iteration is neither
dividable by 3 nor by 7, print ‘ping’.“ The description did
not contain any expected output or further hints.

V. EVALUATION

A. Results
2,444 students accessed the exercises, most of them

finishing within less than 15 minutes. The starting numbers
were necessarily similar around 650, as we distributed the
students evenly. The completion rates also did not differ
significantly; they ranged between 79% and 83%. For the
following analysis, we sanitized the data by only considering
solutions that took between 1 minute and 1 hour to complete,
thus removing extreme outliers. Results are shown in Table
1. The working times and program runs moderately correlate
for the four exercises under consideration (Pearson
correlation coefficient = 0.68, p = 0.3). For just four items,
there is no statistical significance. However, over all
exercises of the complete course, the working times and
program runs have a strong correlation of 0.99 (p < 0.005).
The standard deviations of all measurements are relatively
high, especially for the working times and average number of
runs, ranging between 76% and 94%.

TABLE I. CORE METRICS OF THE EXPERIMENT EXERCISES,
STANDARD DEVIATIONS IN PERCENTAGE OF THE MEAN METRIC

Exer-
cise

∅ score,
rel. stdev

∅working time
[min], rel. stdev

∅ runs,
rel. stdev

A 0.973, 29% 11:40 (base), 79% 7.1 (base), 85%

B 0.976, 29% 12:58 (+11%), 78% 6.8 (- 4%), 83%

C 0.974, 36% 13:10 (+13%), 76% 7.5 (+ 6%), 74%

D 0.967, 26% 13:09 (+13%), 82% 8.8 (+24%), 94%

With regards to statistical tests, we conducted Welch two
sample t-tests on the mean working times. Each test
compared the more complicated exercise versions B, C, and
D with the baseline exercise A. The test supports that for the
combination of working times of exercises A and C, we can
reject the null hypothesis that the true difference in means is
equal to 0 (and thereby the two samples are likely to
originate populations with the same mean), with significance
as it resulted in p < 0.005. For combinations A and B (p =
0.02), as well as A and D (p = 0.01), we can’t conclude this
with statistical significance.

We further gathered additional feedback by surveying
10% of our participants after their final submission. When
asked for difficulty ratings, the impressions did not differ
between the exercises and ranged between simple and
average difficulty. Free text answers repeatedly mentioned
that they liked the exercise as it combined several learned
constructs and thus repeated the learned concepts in a suited
context. Statistical significance of these answers is not given,
as the number of surveyed participants was too low.

B. Discussion
As with all our exercises, average scores are of limited

value. Students show high diligence, so our measurements
show a ceiling effect and there is not much room for
improvement. Average working times and the mean number
of program runs better reflect students’ difficulties as well as
general progress. The high standard deviations reflect large
differences in individual students skills. Some students
finished their exercises within slightly more one minute,
others needed nearly an hour, and several outliers of each
group needed almost two hours. The outliers were however
also uniformly distributed. The explanations of exercises A
and B are very descriptive and showed the output of the
required program. The descriptions of exercises C and D are
much shorter and less straightforward, without showing the
expected output. In contrast to D, exercise C includes a hint.
The results show that longer, more helpful descriptions may
need longer to read, but in the end, cause shorter average
working times. We also notice that more complicated texts
increase the difficulty for students to solve an exercise,
reflected by an increase in average working time and even
more prominent, the number of exercise submissions (runs).
This is also further supported by the minor decrease in
average score. If exercise A is taken as a baseline, as it had
the most helpful exercise description, the more difficult
exercise descriptions caused an increase of up to 13% in
working time, while students furthermore needed up to 24%
more program runs on average. The high increase in program
runs for exercise D is likely caused by the rather minimal
description, thereby requiring the students to conduct more
trial runs to gauge desired behavior and more checks against
the supplied tests.

The t-tests support that exercise C resulted in
significantly different behavior with regards to the average
working times compared to our baseline exercise A. We
therefore conclude that the quality of the exercise
descriptions has a considerable effect towards the students’
experiences. Although every exercise description contains all
required information, a less guiding description increases the
actual difficulty, reflected by the required completion time.
In our case, the perceived difficulty, reflected by students’
responses in the survey, did not differ. Our assumption is that
either the increase in difficulty was not high enough to be
noticed, or the students determine the perceived difficulty on
the basis of the general problem category of a FizzBuzz
exercise. When reaching the survey, the participants already
solved the exercise, thus had understood the problem and
therefore were no longer dependent on the exercise
description.

Comparing our findings with those in related work, we
argue that the results are consistent with the ones brought up
by Nortvedt, Gustafsson, and Lehre. Artificially impeding
initial problem comprehenshion by presenting a harder text

affects students’ performance. Our expectation is that
existing findings from classic education literture are in
general transferrable to the domain of programming
exercises, even though word problems and programming
exercise descriptions differ in abstraction levels. This
hypothesis is supported by our measurements.

VI. FUTURE WORK
Existing, faulty runs can be used in order to improve

exercise descriptions, if common errors can be outlined. As
of now, this is a manual, and therefore tedious as well as
error-prone, task. In the future, we plan to automatically
analyze and group occurred errors in order to determine
whether specific descriptions cause certain errors to be more
likely in a repeated experiment.

VII. CONCLUSION
When designing a MOOC or a learning resource in

general, much effort is spent on the didactic concept, the
order that learning resources are presented in, as well as the
time spent on specific concepts. We explored the domain of
practical programming exercises with regards to learning
success. Working times and the number of trails against the
solution are a valid and suitable approach to complement
user surveys on self-stated success. Our results emphasize
that educators should keep in mind that the results of
programming exercises depend on the difficulty of the task,
which is in term is significantly influenced by wording,
structure and given hints. When investigating potential
weaknesses in course material, these factors thus should be
taken into serious consideration, together with the quality of
the core instructional resources. The optimal balance
between challenge, guidance, and repetition for
programming content has to be found on an individual basis
per topic. However, general insights on the minimum and
maximum of text lengths and expressiveness of small, well
defined training exercises seem to be detectable. We
therefore strongly encourage future experimentation in this
field.

REFERENCES
[1] T. Palm, "Impact of authenticity on sense making in word problem

solving" Educational Studies in Mathematics, vol. 67, 2008, pp. 37-
58.

[2] G. A. Nortvedt, J. Gustafsson, and A. W. Lehre, “The Importance of
Instructional Quality for the Relation Between Achievement in
Reading and Mathematics.”, 2016. Vol. 2. pp. 97-113.

[3] S. Vicente and Eva Manchado, “Arithmetic word problem solving.
Are authentic word problems easier to solve than standard ones?” in
Infancia y Aprendizaje, vol. 39, Routledge, 2016, pp. 349-379.

[4] J. Heidelberger, "Student-Authored Word Problems and Their Impact
on High School Mathematics Students’ Engagement" (2013). Masters
of Arts in Education Action Research Papers. Paper 8.

[5] M. N Ismail, N. A. Ngah, and I. N. Umar, "Instructional Strategy in
the Teaching of Computer Programming: A Need Assessment
Analyses" The Turkish Online Journal of Educational Technology,
vol. 9/2, 2010

[6] M. Caspersen and J. Bennedsen, "Instructional Design of a
Programming Course ⎯ A Learning Theoretic Approach" Proceedings
of the Third International Workshop on Computing Education
Research, pp. 111-122, 2007

[7] S. P. Linder, D. Abbott, and M. Fromber, "An Instructional
Scaffolding Approach to Teaching Software Design", ournal of
Computing Sciences in Colleges, vol. 21, issue 6, pp. 238-250, 2006

