
Footprint Reduction and Uniqueness
Enforcement with Hash Indices in SAP HANA

Martin Faust1, Martin Boissier1, Marvin Keller1, David Schwalb1,
Holger Bischoff2, Katrin Eisenreich2, Franz Färber2, and Hasso Plattner1

1 Hasso Plattner Institute, Potsdam, Germany
{firstname.lastname}@hpi.de
2 SAP SE, Walldorf, Germany
{firstname.lastname}@sap.com

Abstract. Databases commonly use multi-column indices for composite
keys that concatenate attribute values for fast entity retrieval. For real-
world applications, such concatenated composite keys contribute signifi-
cantly to the overall space consumption, which is particularly expensive
for main memory-resident databases. We present an integer-based hash
representation of the actual values for the purpose of reducing the overall
memory footprint of a system while maintaining the level of performance.
We analyzed the performance impact as well as the memory footprint
reduction of hash-based indices in SAP HANA in a real-world enterprise
database setting. For a production SAP ERP system, the introduction
of hash-based primary key indices alone reduces the entire memory foot-
print by 10% with comparable performance.

Keywords: in-memory databases, hash indices, footprint reduction, en-
terprise systems

1 Composite Keys in Enterprise Applications

Today’s trends in hardware development render in-memory databases as a vi-
able platform for enterprise applications. In-memory databases use compression
techniques for the purpose of reducing the required main memory. We analyzed
the primary keys of a large enterprise resource planning (ERP) installation of a
Global 20001 company. We found that most tables’ primary keys contain mul-
tiple columns as shown in Figure 1(a). To achieve fast data retrieval on these
tables, multi-column indices are used. Looking at the memory breakdown shown
in Figure 1(b), we see that composite keys account for nearly 30% of the entire
memory footprint.

In SAP HANA, these multi-column indices are stored as a simple concatena-
tion of the primary key values (hereafter called value-based indices). Although
various forms of compression are applied to these indices, they introduce addi-
tional data stored in DRAM and therefore further add to the memory footprint.
1 Global 2000: http://www.forbes.com/global2000/

27th International Conference Database and Expert Systems Applications,
DEXA 2016, Porto, Portugal, September 5-8, 2016, LNCS 9828, pp 137-151.
The final publication is available at Springer via
http://dx.doi.org/10.1007/978-3-319-44406-2_11.

2 Faust, Boissier, Keller, Schwalb, Bischoff, Eisenreich, Färber, Plattner

In this paper, we evaluate whether we can reduce the size of composite keys
by storing a hash-based integer representation of the composite values instead of
the actual values concatenated while maintaining the same level of performance.

 0

100

200

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Attributes in Primary Key

N
um

be
r

of
 T

ab
le

s

(a) Overview of the number of attributes in pri-
mary keys for tables with more than 100,000
rows. In the most recent SAP ERP version, all
of the larger tables have a primary key with at
least two attributes.

Column Data

Indices

0 200 400 600
Size in Main Memory [GB]

Column Data

Multi−Column Indices

Multi−Column Primary Key Indices

Single−Column Indices

(b) Memory consumption: index structures
consume almost as much main memory as the
actual data, whereby multi-column primary key
indices alone are responsible for over 400 GB.

Fig. 1. Statistics for a live production SAP ERP system of a Global 2000 company:
(a) overview of primary key lengths and (b) break down of memory consumption.

2 Production Enterprise System: SAP ERP & Columnar
In-Memory Databases

An Enterprise Resource Planning (ERP) application is the central management
software for large companies. We had the opportunity to analyze a live pro-
duction system of an SAP ERP system of a Global 2000 company. This system
stores over 10 billion records in 23,886 tables with a total main memory footprint
of about 1.3 TB. 90% of these tables have multi-column primary keys, empha-
sizing the impact a change of the primary key type could have. While analyzing
a single instance does not cover the whole ERP market, we consider this system
representative since SAP ERP systems have a share of 25% of the global ERP
market and are used by more than half of the Fortune 500 companies.

The ERP system runs on a columnar in-memory database optimized for
OLxP workloads: SAP HANA. In-memory database systems like SAP HANA [5]
and HYRISE [9] use a main/delta architecture to store database relations. Inserts
and updates are handled by a comparatively small and write-optimized partition,
called delta partition. The delta partition is frequently merged with the main
partition [5, 9]. The main partition is read-only, compressed, and read-optimized
towards analytical workloads. This allows for fast analytical queries while still
supporting sufficient transactional performance.

Each column is dictionary-encoded consisting of an attribute vector and a
dictionary. The dictionary stores all distinct values in a sorted manner while the

Footprint Reduction with Hash Indices in SAP HANA 3

attribute vector contains bit-packed valueIDs for each record. These valueIDs
reference the actual, uncompressed values stored in the dictionary by their offset.

3 Related Work

Database index structures have been optimized in many ways. The general
goal is to increase lookup performance while minimizing the additional stor-
age needed for these indices. But with changing trends in hardware, there is
the need to further optimize these index structures for their target systems. In-
memory databases require new and optimized in-memory indexing structures
since traditional indexing strategies become inefficient on modern hardware [1].

Tree-Based Indices Leis et al. [12] introduced the DRAM-optimized adaptive
radix trees (ART). By adaptively choosing efficient data structures used in ART,
they were able to achieve high space efficiency while surpassing the performance
of traditional tree-based index structures.

Athanassoulis and Ailamaki [3] introduced a method of reducing memory re-
quirements of tree-based index structures by employing probabilistic data struc-
tures (Bloom filters). By trading accuracy for size, they were able to reduce the
footprint of tree-based indices by up to 4× for real-world scenarios while keeping
the performance on par with traditional tree indexing. Their motivation was the
trend of solid-state disks emerging as a viable alternative to traditional hard
disk drives.

Hash-Based Indices An alternative to tree-based structures is a hash-based data
structure that is typically employed in two types: (1) hash tables with fixed size
and no reorganization of data and (2) hash tables with variable size and dynamic
reorganization. An example for the former is chained bucket hashing [8]. Dynamic
structures include extensible hashing [4], linear hashing [10, 13] and modified
linear hashing [11]. Ross presented a method of hash probing for typical database
workloads using SIMD instructions [16].

With the usage of in-memory databases with column stores, the problem of
efficiently accessing disk blocks is replaced by accessing the main memory and
therefore the problem of minimizing cache misses [14]. Sidirourgos and Kersten
introduced column imprints as a cache conscious secondary indexing structure
for column stores [17]. For each column, a histogram of a few equal-height bins
is created. For every cache line of data, a bit vector is created with each bit
corresponding to a bin of the histogram. A bit is set if the cache line contains at
least one value in the corresponding bin. The authors have shown significantly
improved query speed with a storage overhead of only 12%.

Composite Keys Faust et al. [6] introduced the composite group-key as an alter-
native indexing method for composite keys. They utilize the existing dictionary
compression by concatenating the compressed values (i.e., valueIDs) of the pri-
mary key column’s dictionaries and storing them in an additional data structure

4 Faust, Boissier, Keller, Schwalb, Bischoff, Eisenreich, Färber, Plattner

named key-identifier list. This structure contains integer values with 8, 16, 32,
or 64 bits per key and is stored alongside a bit-packed position list to retrieve
the record’s position. Because they are storing an integer representation of the
primary key attributes, the size of this index is significantly smaller than the
size of the previously introduced index types that store the key attributes in an
uncompressed format. Tests have shown that the composite group-key’s perfor-
mance is on par with established indexing methods while decreasing the storage
requirements.

The default method of storing composite keys in SAP HANA is adding an ad-
ditional column to the table that contains the concatenated values of all primary
key columns. For each entry, a compressed (using Golomb or Simple9 compres-
sion [2]) position list is stored for fast record retrieval. This allows database
operations to only use a single column instead of having to scan every column of
the composite primary key, but adds significantly to the overall size of the table,
because the primary key values are basically stored twice. The additional key
column consists of a sorted dictionary containing the key values, the attribute
vector and the position list. For key lookups, the primary key values are concate-
nated into a single search string that is used in a binary search on the composite
key column’s dictionary. The position list is used to find the records’ positions in
constant time. Because this is the current default method of indexing composite
primary keys in HANA, we compare the performance and storage requirements
of this index type with hash-based indices introduced in the next section.

4 Hash-based Unique Index

Hash-based indices hash the attributes of a composite-key to obtain a single,
fixed-length representation.

4.1 Index Structure

The index is modeled as a dictionary-compressed column, and therefore contains
a main and a delta partition. For the main partition, the sorted dictionary DM

stores hashed keys and is extended with an inverted index IM to provide a
mapping to row identifier. For this work, we assume that the inverted index
establishes a one-to-one mapping of dictionary entries to position lists, hence, no
additional logic is needed to support variable length position lists. Per definition,
storing primary key values means there are 100% unique values in the dictionary
what makes traditional dictionary encoding pointless. To reduce the dictionary
size, delta encoding is used. The inverted index has the same length like DM and
is bit-packed. The attribute vector is a bit-packed list of offsets in DHash. The
hash index dictionary of the delta partition is unsorted and again each entry is
extended by a position list. Figure 2 shows the schematic process to create the
inverted hash-based index.

Footprint Reduction with Hash Indices in SAP HANA 5

Assumption: 000 R5 020 and
321 R1 010 hash to the same key.

Hash Dictionary
32 bit hash
64 bit count

321 R1 020
R1321 010
R4 020321

040000 R3
R2321 030
R5000 020

Relational Table
C1 C2 C3

Hash
Values +
Count Sort

0xFF 0

0xEE 1
0xDD 0

0xCC 0
0xBB 0

0xEE 0

0xFF 0

0xEE 1
0xDD 0
0xCC 0
0xBB 0

0xEE 0 0
4

1

5
2
3

4
3

5

2
1
0

Inverted Index

100
011

101

010
001
000

Dict
Position
(implicit)

Hash Dictionary unsorted

IDHash

Hash
Function
CRC32

Fig. 2. Schematic overview of the hash-based multi-attribute index on the main parti-
tion (delta encoding not shown).

4.2 Lookup Algorithm

The index allows efficient point queries, i.e. the lookup of a key. For a primary
key lookup, the predicate has to be translated into its hash representation for
comparison with the values in the hash dictionary. This is achieved by concate-
nating the values of the primary key columns and applying the hash function to
it. The resulting hash value is used in a binary search to find matching hashes
in the hash dictionaries of the main partition as well as the delta partition. The
position of the matching rows is extracted from the inverted index. Because of
possible hash collisions, the actual values of all matching tuples have to be com-
pared to find the tuples matching all predicates. The lookup algorithm, including
the handling of collisions is shown in Algorithm 1.

4.3 Insert Algorithm

A frequent operation accessing the index is the lookup of a non-existing key for
uniqueness constraints, when a new tuple is about to be inserted. The lookup
has to be performed first to find rows that would potentially cause uniqueness
violations (see Section 4.2). For every matching hash that was found, the actual
attribute values are compared to ensure the uniqueness constraint. If the actual
values are different, the hash is inserted into the hash dictionary with an 8-
byte collision counter. If the values match, the new record will not be inserted,
because of a violation of uniqueness for the primary key. The insert algorithm
with verification is detailed in Algorithm 2.

4.4 Limitations

Because the used hash is an integer representation of the whole primary key and
does not store the actual attribute values, it is not possible to use hash-based in-
dices for range queries or partial key lookups. SAP HANA automatically creates

6 Faust, Boissier, Keller, Schwalb, Bischoff, Eisenreich, Färber, Plattner

Algorithm 1 Lookup of key with n attributes
h← crc32(concat(k0, ..., kn−1))
matchM ← IM [DM [(h,min)..(h,max)]]
matchD ← ID[DD[(h,min)..(h,max)]]
MVCCverify(matchM),MV CCverify(matchD)
results← []
for P in (M,D) do

for rowID in matchP do
equal← True
for i← 0...(n− 1) do

equal← equal & DP i[AVi[rowID]] == ki
end for
if equal then

results← [results.rowID]
end if

end for
end for
return results

single-column indices on all attributes of the primary key that are hence used to
answer non-full primary key selects. For the value-based index in contrast, range
selects and partial key lookups can often be executed directly on the index via
binary substring searches (depending on the selected attributes). Consequently,
depending on the query filters on multiple columns have to be evaluated for
the case of a hash-based primary key while a single access to the value-based
index is sufficient for many typical OLTP queries. Further, for partitioned tables
hash-based primary keys are only beneficial if the complete key is included in
the partitioning criteria.

4.5 Hash Function

The hash function for the index ought to be fast and provide well-distributed
hashes for continuously ascending keys. We use CRC32(C) as the hashing func-
tion for several reasons. First, cryptographic properties are not needed. Also,
other hashing alternatives yield fewer collisions, but the number of expected
collisions is limited anyway by SAP HANA’s partition size limit of 231 rows
per partition. Second, recent Intel CPUs implement the CRC32 instruction in
hardware (see Section 4.6) with a latency of only three CPU cycles.

Cyclic Redundancy Check (CRC) is a code commonly used for error-detection
in digital networks or storage devices to detect unintentional changes in data. A
message is encoded by appending a fixed-length check value. The check value is
the remainder of the division of a given message by a specified polynomial. The
receiver of a message can check its integrity by performing the same division
and comparing the check values. The length of the remainder determines the
name of the CRC. A CRC with a check value of n bits is called an n-bit CRC or
CRCn. We use CRC32, i.e., the remainder has a length of 32 bits. For hash-based

Footprint Reduction with Hash Indices in SAP HANA 7

Algorithm 2 Insertion of key with n attributes
h← crc32(concat(k0, ..., kn−1)
collisionsD, collisionsM ← []
if (h,min) in DM then

collisionsM ← IM [DM [(h,min)..(h,max)]]
end if
if (h,min) in DD then

collisionsD ← ID[DD[(h,min)..(h,max)]]
end if
MVCCverify(collisionsM)
MVCCverify(collisionsD)
for P in (M,D) do

for c in collisionsP do
equal← True
for i← 0...(n− 1) do

equal← equal & & DP i[AVi[c]] == ki
end for
if equal then

abort: unique violation
end if

end for
end for
count← |collisionsM |+ |collisionsD| #all collisions refer to different keys
InsertDelta(h, count)

indices, we do not use CRC-32 to check data integrity. We use the check value
as a shorter (32 bits) integer representation of the primary key values.

The message used as dividend in the polynomial division is the concatenation
of the primary key values. To concatenate the key, we create a prefix-free en-
coding, by prefixing each key attribute with its length. The concatenated string
follows the form ”<len(key1)>,key1;<len(key2)>,key2;”. Since single partitions
do not grow larger than two billion records, a hash length of 32 bits is sufficient.

4.6 CRC32: Hardware-Assisted Hashing

With the SSE4.2 instruction set, Intel added support for hardware-assisted
CRC32C to their processors. Traditional CRC32, used for example in ZIP and
Ethernet, uses the polynomial 0x04C11DB7 as divisor while CRC32C, which is
supported by SSE4.2, uses the Castagnoli polynomial 0x1EDC6F41. The SSE4.2
instruction uses a precalculated, built-in lookup table for the Castagnoli poly-
nomial and is therefore limited to this specific polynomial while software im-
plementations can choose the polynomial best suited for their use case. Using
different polynomials results in different checksums, i.e. different hashes for the
same key.

The CRC32 instruction expects two parameters: a destination operand and
a source operand. It uses the fixed polynomial (Castagnoli) to accumulate the

8 Faust, Boissier, Keller, Schwalb, Bischoff, Eisenreich, Färber, Plattner

CRC32 value for the source operand (i.e., the concatenated key values) and stores
the result in the destination operand. The source operand can be a register
or a memory location while the destination operand must be a register. This
instruction can operate on a maximum data size of 64 bits and is implemented
with a latency of three CPU cycles and a throughput of a single CPU cycle.
To incrementally accumulate a CRC32 value, the result of the previous CRC32
operation is used to execute the CRC32 instruction again with new input.

The hardware implementation is 2-3× faster than highly optimized software
implementations and its performance can be further increased by parallelizing
the CRC computations [7]. These capabilities emphasize the viability of CRC32
for the use case of hash-based indices.

4.7 Collision Handling

By definition, any function that maps an unlimited range to a fixed range is
prone to collisions. Collisions occur when a hash function creates the same hash
for different values. Using CRC32, there are 232 possible hash values. Although
this is sufficient for the SAP HANA’s maximum of two billion records that can
be stored per partition, hash collisions are inevitable and have to be dealt with.

SAP HANA appends an 8-byte counter to the hashes before adding them to
the dictionary. The value of this counter is unique and thereby ensures that all
values in the dictionary are unique even if hashes for different values match. If a
collision occurs while inserting a new record, the insert algorithm compares the
actual values to enforce uniqueness, as described in Section 4.3. Collisions also
have to be expected during key queries. As a consequence, lookups need to verify
the actual key components against the predicate, as outlined in Section 4.2.

4.8 Column Merge

When merging the content of the delta partition into the main partition, a
new main dictionary for the primary key is created. This dictionary contains
all distinct hashed key values from the delta dictionary as well as from the old
main dictionary. Since any insert into the table has to check for uniqueness in
the main partition as well as in the delta partition, primary keys are ensured to
be unique and thus the dictionaries can be directly merged. When a hash value
of the delta partition already exists in the main partition, the collision counters
are simply added and the inverted position list is updated.

4.9 Memory Footprint

Per dictionary entry, a 4-byte hash value is stored along with an 8-byte collision
counter to resolve hash collisions. As mentioned earlier, the dictionary containing
the hash values is compressed using delta encoding. Since there are only unique
values stored in the dictionary, traditional dictionary encoding would have a
negative effect on compression. Instead of storing the full values or compressing

Footprint Reduction with Hash Indices in SAP HANA 9

single values, delta encoding stores only the difference of consecutive values. As
a rule of thumb, after compressing the hash-index’s dictionary, the average size
per entry is 8-10 bytes.

5 Evaluation

 0

25

50

75

2 4 6 8 10 12 14 16
Number of Attributes in Primary Key

B
yt

es
 p

er
 In

de
xe

d
E

nt
ry

(a) ERP system of a Global 2000 company:
space consumption for value-based primary
keys (tables with over 100,000 entries).

hash (10)
value (10)
hash (9)
value (9)
hash (8)
value (8)
hash (7)
value (7)
hash (6)
value (6)
hash (5)
value (5)
hash (4)
value (4)
hash (3)
value (3)
hash (2)
value (2)

0 10 20 30 40 50
Bytes per Indexed Entry

Im
pl

em
en

ta
tio

n
(#

A
ttr

ib
ut

es
 in

 K
ey

)

(b) Bytes per indexed item for a table with
1M integer values.

Fig. 3. Space consumption of composite keys.

We evaluate the potential memory footprint reductions of the hash-based
index both on tables of the analyzed live production enterprise system and on a
synthetic table of the TPC-C benchmark.

We evaluated three tables to cover a broad range of use cases for hash-based
indices (an overview of the primary keys is shown in Table 1). The tables BSEG
and SKA1 are both table copies of the production SAP ERP system. BSEG is
a transactional table storing accounting documents and is the central part of
the financial module. SKA1 is a master data table storing the chart of accounts
of the general ledger module. Since it is a master data table, it is considerably
smaller than the BSEG table. The third table is TPC-C’s largest transactional
table ORDERLINE, which we created with a scaling factor of 2,000.

The benchmarks have been executed on the same system with a varying
number of benchmark processes. Each benchmark process runs 16 threads (8
for the insert benchmarks) that share the same database connection. SELECT
queries solely project the first attribute of the primary key in order to exclude
time required for tuple materialization. The benchmark system was a four-socket
server equipped with Intel Xeon E7-4880 v2 CPUs and 2 TB of DRAM running
SAP HANA SPS 11, revision 111. Error bars denote the standard error.

10 Faust, Boissier, Keller, Schwalb, Bischoff, Eisenreich, Färber, Plattner

Primary Key Attributes

BSEG
70 M tuples

MANDT
varchar(3)
Distinct values:

1

BUKRS
varchar(4)
Distinct values:
476

BELNR
varchar(10)
Distinct values:
7,777,105

GJAHR
varchar(4)
Distinct values:
31

BUZEI
varchar(3)
Distinct values:
999

ORDERLINE
600 M tuples

OL_W_ID
integer
Distinct values:

2,000

OL_D_ID
integer
Distinct values:
10

OL_O_ID
integer
Distinct values:
3,000

OL_NUMBER
integer
Distinct values:
15

-

SKA1
67,618 tuples

MANDT
varchar(3)
Distinct values:
1

KTOPL
varchar(4)
Distinct values:
54

SAKNR
varchar(10)
Distinct values:
53,598

- -

Table 1. Overview of the primary keys and their characteristics of benchmarked tables.

5.1 Main Memory Footprint

We measured the space consumption of all multi-column indices of the analyzed
production enterprise system. Figure 3(a) shows a box plot of the bytes per
indexed entry. For the 1,736 tables with more than 100,000 entries, the average
size of an indexed key is about 24 bytes.

The size of value-based indices in large (>100,000 entries) tables in our ana-
lyzed system amounts to 386 GB. If we conservatively assume a size of 10 bytes
per entry for the hash-based index (see Section 4.9), the memory footprint of all
composite primary key indices can be reduced by up to 36% (or 148 GB).

BSEG ORDERLINE SKA1

 0

1,000

2,000

3,000

4,000

 0

 5,000

10,000

15,000

20,000

25,000

0.0

0.5

1.0

1.5

2.0

BSEG
(hash)

BSEG
(value)

ORDERLINE
(hash)

ORDERLINE
(value)

SKA1
(hash)

SKA1
(value)

Table

A
llo

ca
te

d
S

pa
ce

 [M
B

]

Table Data PK Column Vector PK Dictionary PK Index

Fig. 4. Break down of memory consumptions for benchmarked tables.

The potential space savings depend on the characteristics of the primary
key. Larger keys (i.e., longer concatenations of attribute values) result in larger
savings when compressed to 10-byte hashes than smaller keys. Further, with in-
creasing share of primary key columns compared to the total number of columns,

Footprint Reduction with Hash Indices in SAP HANA 11

the potential space savings of the whole table increase as well. Figure 3(b) illus-
trates the high impact, the size of the primary key has on memory savings.

Figure 4 shows a breakdown of the memory used by the three benchmarked
tables. As discussed, the total memory savings by using the hash-based index
depend on both the number of attributes of the primary key and on the data
types of the attributes. For the BSEG table with five varchar attributes, the
footprint reduction for the whole table is around ∼10% due to a 3× smaller
dictionary. The reduction of the ORDERLINE table with four integer attributes is
smaller with ∼1% for the whole table. To assess hash-based indices for SAP ERP
systems it is important to know that the majority of primary key attributes are
of type varchar. After analyzing the number of primary key attributes in all
large tables of our ERP system (depicted in Figure 1(a)), we saw that most of
these large tables have primary keys with four or more attributes. By using the
hash index instead of the value-based index we estimate a footprint reduction of
the whole ERP system by 10%.

5.2 Lookup Performance

We analyzed the latency for three kinds of select queries, all of which are typical
for OLTP workloads. We discard OLxP and OLAP queries, because they are
usually not accessing primary key indices.

Full Primary Key Selects A full primary key select describes a lookup query
that filters on all attributes of the composite primary key and therefore returns
a single record or an empty result set. Our benchmark script executed 10,000
queries per thread and measured the end-to-end latency from sending the query
till receiving the data records. The results are shown in Figure 5. For full primary
key selects, we saw a latency increase between 5-15% for hash-based indices.

Partial Key Selects Partial key queries describe SELECT statements that
select on a true subset of the primary key attributes. These queries are very
common in real-world applications and in particular in ERP systems. We modi-
fied the full primary key queries to not select on the last attribute of the primary
key (e.g., ORDERLINE.OL_NUMBER).

As mentioned in Section 4.4, hash-based indices are not accessed for queries
selecting anything but the complete primary key. For those queries, the single-
column indices created on each primary key attribute are accessed instead. The
query latencies are shown in Figure 5. Depending on the size of the table, the
hash-based index in on par with the value-based index (SKA1 table) or is clearly
outperformed by up to two orders of magnitude (ORDERLINE table).

Range Queries As a third reading access pattern, we evaluated range queries.
Similar to partial key selects, range queries select on a subset of the primary key
attributes but additionally execute a range selection (e.g., ORDERLINE.OL_NUMBER

12 Faust, Boissier, Keller, Schwalb, Bischoff, Eisenreich, Färber, Plattner

Full PK Select

BSEG

Full PK Select

ORDERLINE

Full PK Select

SKA1

Partial PK Select

BSEG

Partial PK Select

ORDERLINE

Partial PK Select

SKA1

 0

10

20

30

 0

 5

10

15

 0

 5

10

15

 0

 5

10

15

20

25

 0

 500

1,000

 0

 5

10

15

20

16 64 128 16 64 128 16 64 128

16 64 128 16 64 128 16 64 128
Number of Concurrent Threads

S
in

gl
e

Q
ue

ry
 L

at
en

cy
 [m

s]

HASH VALUE

Fig. 5. Latency comparison of full and partial primary key selections.

> 10 AND ORDERLINE.OL_NUMBER < 20). We select all rows with BSEG.BELNR
and ORDERLINE.OL_NUMBER in a specified range. The size of the ranges was set
to return 100 tuples on average.

As mentioned before, hash-based indices cannot be used for range queries.
That means, that we are again testing the performance of the additional single
columns indices compared to direct binary searches on the dictionary of the
value-based index. Similar to the partial select, the performance is depending
on the size of the table with decreasing performance for increasingly large tables
(see Figure 6).

5.3 Insert Performance

We measured the insert latency on the following three synthetic tables.

SYNTH3: a table with three attributes (varchar and two integers), all are part
of the primary key.

SYNTH8: a table with eight attributes (three varchars and 5 integers), all are
part of the primary key.

SYNTH100: a table with 100 attributes (30 integers, remainder varchars) of
which eight are primary key columns (similar to SYNTH8).

All three tables contain 100 M tuples at the beginning of each test run. The
results are shown in Figure 7. The graphs show that the hash-based index is on
par performance-wise with the value-based index for a variety of insert scenarios.

Footprint Reduction with Hash Indices in SAP HANA 13

Range Select

BSEG

Range Select

ORDERLINE

0

5

10

0

500

1000

1500

16 64 128 16 64 128
Number of Concurrent Threads

S
in

gl
e

Q
ue

ry
 L

at
en

cy
 [m

s]

HASH VALUE

Fig. 6. Latency comparison of range selections.

SYNTH100 SYNTH3 SYNTH8

 0

 40

 80

120

 0

25

50

75

 0

 25

 50

 75

100

5 20 40 80 5 20 40 80 5 20 40 80
Number of Concurrent Threads

S
in

gl
e

Q
ue

ry
 L

at
en

cy
 [m

s]

HASH VALUE

Fig. 7. Comparison for INSERT operations on synthetic tables (100 M tuples) with
varying widths.

5.4 Applicability on Enterprise Workloads

The analysis of enterprise system workload by Krueger et al. [9] has shown a
trend towards read-dominated workloads. Contrary to benchmarks like TCP-C,
OLAP as well as OLTP workloads in modern enterprise applications consist of
mostly read queries. Further, applications optimized for a column-based archi-
tecture and without materialized aggregates as in SAP’s simplified Financials
(sFIN) applications emphasize that trend [15]. The analysis of the sFIN work-
load, which is illustrated in Figure 8, has shown that over 98% of the application’s
total execution time is spent on read queries. 14% of the total time are spent
on primary key selects while the remaining 84% are more complex select queries
like joins and aggregations. Insert statements only account for 1.3% of the total
execution time.

14 Faust, Boissier, Keller, Schwalb, Bischoff, Eisenreich, Färber, Plattner

We estimate the overall impact of hash indices based on the analyses in Sec-
tion 5 to be rather low from a performance perspective. With the exception of
range queries, the hash-based indices perform on par with the value-based in-
dices for OLTP-like queries. Since the share of range queries on the (partial)
primary key is rather low, the performance drop is neglectable. With an in-
creasing share of complex and computation-intensive OLxP and OLAP queries
in future systems, the performance of the primary key will have a decreasing
impact. Especially since query run times are often bound to the calculation of
aggregates rather than bound to the selection.

SAP ERP sFIN

SAP ERP FIN

0 25 50 75 100
Execution Share [%]

Deletes

Inserts

Selects (OLTP)

Selects (OLxP/OLAP)

Updates

Upserts

Fig. 8. Workload analysis: accumulated execution time of query types in a live pro-
duction SAP ERP system.

From a main memory footprint perspective, hash-based indices provide a
clear advantage over value-based indices for the current system with the domi-
nance of varchar columns. In case many of the current varchar columns will be
converted to numeric columns (their actual value domain) in the future, which is
also advisable for query performance and compression, the potential footprint re-
duction by introducing hash-based indices will be significantly smaller (compare
table ORDERLINE with integer attributes in Figure 4). In that case, the composite
group-key is a viable alternative (see Section 3).

6 Conclusion

Hash-based primary key indices can be used to reduce the main memory footprint
of an enterprise application while maintaining the level of performance for typical
OLTP query patterns. We saw that footprint reductions and performance of
hash-based indices depend on the characteristics of the tables they are applied
to and the workload of the application. For recent enterprise systems optimized
for column-based architectures, we expect a comparable performance when using
hash-based indices over value-based indices while decreasing the entire main
memory footprint by 10%.

Footprint Reduction with Hash Indices in SAP HANA 15

References

1. Anastassia Ailamaki et al. DBMSs on a modern processor: Where does time go?
In VLDB’99, Proceedings of 25th International Conference on Very Large Data
Bases, 1999, pages 266–277, 1999.

2. Vo Ngoc Anh and Alistair Moffat. Inverted index compression using word-aligned
binary codes. Inf. Retr., 8(1):151–166, 2005.

3. Manos Athanassoulis and Anastasia Ailamaki. BF-Tree: Approximate tree index-
ing. Proceedings of the VLDB Endowment, 7, 2014.

4. Ronald Fagin, Jurg Nievergelt, Nicholas Pippenger, and H Raymond Strong. Ex-
tendible hashing—a fast access method for dynamic files. ACM Transactions on
Database Systems (TODS), 4(3):315–344, 1979.

5. Franz Färber et al. SAP HANA database: data management for modern business
applications. ACM Sigmod Record, 40(4):45–51, 2012.

6. Martin Faust, David Schwalb, and Hasso Plattner. Composite group-keys. In In
Memory Data Management and Analysis, pages 139–150. Springer, 2015.

7. Vinodh Gopal et al. Fast CRC computation for iSCSI Polynomial using CRC32
instruction. Technical report, Intel Corporation, 2011.

8. Donald Ervin Knuth. The art of computer programming: sorting and searching,
volume 3. Pearson Education, 1998.

9. Jens Krueger et al. Fast updates on read-optimized databases using multi-core
cpus. Proceedings of the VLDB Endowment, 5(1):61–72, 2011.

10. Per-Ake Larson. Linear hashing with separators—a dynamic hashing scheme
achieving one-access. ACM Transactions on Database Systems (TODS), 13(3):366–
388, 1988.

11. Tobin J Lehman and Michael J Carey. A study of index structures for main memory
database management systems. In Conference on Very Large Data Bases, volume
294, 1986.

12. Viktor Leis, Alfons Kemper, and Thomas Neumann. The adaptive radix tree:
Artful indexing for main-memory databases. In Data Engineering (ICDE), 2013
IEEE 29th International Conference on, pages 38–49. IEEE, 2013.

13. Witold Litwin. Linear hashing: a new tool for file and table addressing. In VLDB,
volume 80, pages 1–3, 1980.

14. Stefan Manegold, Martin L Kersten, and Peter Boncz. Database architecture evo-
lution: mammals flourished long before dinosaurs became extinct. Proceedings of
the VLDB Endowment, 2(2):1648–1653, 2009.

15. Hasso Plattner. The impact of columnar in-memory databases on enterprise sys-
tems. Proceedings of the VLDB Endowment, 7(13), 2014.

16. Kenneth A Ross. Efficient hash probes on modern processors. In Data Engineer-
ing, 2007. ICDE 2007. IEEE 23rd International Conference on, pages 1297–1301.
IEEE, 2007.

17. Lefteris Sidirourgos and Martin Kersten. Column imprints: a secondary index
structure. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pages 893–904. ACM, 2013.

