
Accepted at 2019 IEEE International Conference on Distributed Computing Systems (ICDCS).
The final authenticated version is available online: DOI 10.1109/ICDCS.2019.00137.
Copyright ©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Quantitative Impact Evaluation of an Abstraction
Layer for Data Stream Processing Systems

Guenter Hesse∗, Christoph Matthies∗, Kelvin Glass†, Johannes Huegle∗ and Matthias Uflacker∗
∗Hasso Plattner Institute
University of Potsdam

Email: firstname.lastname@hpi.de
†Department of Mathematics and Computer Science

Freie Universität Berlin
Email: kelvin.glass@fu-berlin.de

Abstract—With the demand to process ever-growing data
volumes, a variety of new data stream processing frameworks
have been developed. Moving an implementation from one
such system to another, e.g., for performance reasons, requires
adapting existing applications to new interfaces. Apache Beam
addresses these high substitution costs by providing an ab-
straction layer that enables executing programs on any of the
supported streaming frameworks. In this paper, we present a
novel benchmark architecture for comparing the performance
impact of using Apache Beam on three streaming frameworks:
Apache Spark Streaming, Apache Flink, and Apache Apex. We
find significant performance penalties when using Apache Beam
for application development in the surveyed systems. Overall,
usage of Apache Beam for the examined streaming applications
caused a high variance of query execution times with a slowdown
of up to a factor of 58 compared to queries developed without the
abstraction layer. All developed benchmark artifacts are publicly
available to ensure reproducible results.

Index Terms—Data Stream Processing, Abstraction Layer,
Performance Benchmarking

I. INTRODUCTION

While the world of Big Data analysis presents a multitude
of opportunities, it also comes with unique obstacles. For
software developers, who are tasked with building Big Data
applications, the need to work with many different frame-
works, Application Programming Interfaces (APIs), program-
ming languages, and software development kits (SDKs) can
be challenging. Especially as the long-lasting paradigm ”one
size fits all” seems to be obsolete, which Stonebraker and
Çetintemel [1] already predicted back in 2005, handling and
keeping an overview of the multitude of technologies becomes
more difficult. Furthermore, flexibility is crucial in our rapidly
changing world in order to maintain or establish a leader
position. An example for that is a desired change of an
IT system for reasons such as variations in pricing policy,
changed volume or velocity of data that needs to be processed,
or altered performance characteristics of execution engines.
Ideally, this adaption should happen at minimal costs, which
is a challenging task if each system uses its own APIs.

The wide variety of available tools in the area of stream
processing has spurred the development of an abstraction
layer, which allows defining programs independent of the
technologies used. This layer is the open source project

Apache Beam [2], which provides a unified programming
model for describing both batch and streaming data-parallel
processing pipelines. Pipelines are described using a single
Software Development Kit (SDK) and can then be executed by
a variety of different frameworks, without developers needing
detailed knowledge of the employed implementations. Thus,
execution frameworks can be exchanged without the need to
adapt code. As an additional benefit, Apache Beam enables
to benchmark multiple systems with a single implementation.
Conceptually, this idea can be compared to object-relational
mapping (ORM), where data stored in database tables is
encapsulated in objects. Data can be queried and manipulated
just by using these objects instead of writing SQL [3].

A question concerning abstraction layers is if their usage has
consequences on the performance characteristics of an appli-
cation. If introduced performance penalties are too high, they
might outweigh the gained benefits. Great performance impact
variations between systems can, with regard to performance
benchmarking, lead to a distorted result. Thus, it is crucial to
understand and quantify the impact of used abstraction layers.
The following contributions are presented in this paper:

• We give a description of Apache Beam as well as the
three data stream processing systems (DSPSs) used for
the conducted measurements, which are Apache Flink [4],
Apache Spark Streaming [5], and Apache Apex [6].

• We propose a lightweight benchmark architecture for
comparing DSPSs. This benchmark covers information
on the process as well as data, query, and metric aspects.
All developed artifacts are available online which ensures
transparency and reproducibility.

• We present the measurement results with focus on the
performance impact of Apache Beam. That is done by
comparing the query implementations using native system
APIs with the implementations using Apache Beam.

The remainder of this paper is structured as follows: Sec-
tion II describes the employed technologies. Section III illus-
trates the benchmark environment and the performance results.
Section IV, gives an overview of related work and Section V
concludes, giving a summary on results and highlighting areas
for future work.



II. DATA STREAM PROCESSING SYSTEM TECHNOLOGIES

This section describes the technologies used for the pre-
sented measurements.

A. Apache Beam

Apache Beam [2] describes itself as a unified programming
model, which allows defining batch and stream processing
applications. For that, Apache Beam SDKs are provided.
Currently, three SDKs are part of the Apache Beam repository:
a Java SDK, a Python SDK, and a Go SDK [7].

Instead of developing an application for a single DSPS,
Apache Beam allows writing programs that are compatible
with any supported execution engine. Engine-specific runners
translate the Apache Beam code to the target runtime. Using
such an abstraction layer theoretically allows, e.g., for an arbi-
trary exchange of engines without the need of code adaption.
Central elements of the Apache Beam SDK are:

• Pipeline represents the entire application definition, in-
cluding data input, transformation, and output.

• PCollection embodies a distributed data set that can be
either bounded or unbounded. The latter is used for data
stream processing applications.

• PTranform is an abstraction for data transformation. It
receives one or more PCollection objects and applies the
a transformation on this data. That leads to an output of
zero or more PCollection objects. Moreover, read or write
operations on external storage systems are realized with
PTransform objects. Apache Beam provides some core
transforms. Selected ones are outlined in the following:

– ParDo is an element-by-element processing of data,
whereby the processing of a single element can lead
to zero or more output elements. In addition to
standard operations like map or flat map, a ParDo
also supports aspects such as side inputs and stateful
processing.

– GroupByKey, as the name already states, processes
key-value pairs and collects all values belonging to
the same key. It is an aggregation operation that
outputs pairs consisting of a key and a collection
of values that belong to this key. For use with data
streams, one must use an aggregation trigger or non-
global windowing in order to enable the grouping to
be applied to a finite data set.

– Flatten merges the data of multiple PCollection
objects that contain data of the same type into a
single PCollection [8]–[10]

Next to Apache Flink, Apache Spark, and Apache Apex,
other frameworks supporting Apache Beam exist [11]. These
are Apache Gearpump [12], Apache Hadoop MapReduce [13],
Apache Samza [14], Alibaba JStorm [15], IBM Streams [16],
and Google Cloud Dataflow [17]. This group covers both,
closed source systems, e.g., Google Cloud Dataflow and IBM
Streams, as well as open source systems, e.g., Apache Flink
and Apache Spark. Hence, Apache Beam can be seen as a
widely spread project with a high relevance.

Apache Beam itself resulted out of the donation of the
Cloud Dataflow SDKs and programming model [10] to the
Apache Software Foundation [18]. Therefore, as mentioned
before, Google Cloud Dataflow is one supported system.

B. Apache Flink

Apache Flink is an open source system with batch and
stream processing capabilities. It offers a Java and a Scala API
for developing applications. Additionally, there are multiple
libraries on top of Apache Flink that provide, e.g., machine
learning or graph processing functionalities [4], [19]. The
architecture of an Apache Flink cluster is shown in Figure 1.

Flink Client

Job Manager

Task Manager

Task Manager

...

Fig. 1. Architecture of an Apache Flink Runtime (based on [4], [19])

Figure 1 shows an Apache Flink Client, a Job Manager, and
Task Managers. When a program is deployed to the system,
the client transforms it into a dataflow graph, i.e., a directed
acyclic graph (DAG), and sends it to the Job Manager. The
client itself is not part of the program execution and can, after
transmitting the dataflow graph, either disconnect from the Job
Manager or stay connected in order to receive information
about the execution progress.

The Job Manager or master is responsible for scheduling
work amongst the Task Manager instances and for keeping
track of the execution. There can be multiple Job Manager
instances whereas only one Job Manager can be the leader.
Others would be standby and could take over in case of failure.

The Task Manager instances execute the assigned parts of
the program. Technically, a Task Manager is a JVM process.
There must be at least one Task Manager in an Apache Flink
installation. Thereby, they exchange data amongst each other
where needed. Each Task Manager provides at least one task
slot in which subtasks are executed in multiple threads. A
task slot can be shared by multiple subtasks as long as they
belong to the same application, even if they are part of different
tasks. While one task is executed by one thread, Apache Flink
chains multiple operator subtasks into a single task, such as
two subsequent map operations. A benefit of this optimization
is, e.g., a reduced overhead for inter-thread communication.

Every task slot has a subset of the resources that belong
to its corresponding Task Manager. Particularly, the available
memory is split amongst task slots. CPU separation does not
happen in the current Apache Flink version [4], [19], [20].

C. Apache Spark Streaming

Apache Spark is another open source system for distributed
data processing. It offers, next to batch processing functional-



ities, stream processing features as part of its library Apache
Spark Streaming. However, stream processing is implemented
using micro-batches, i.e., it is not a tuple-by-tuple processing
as in Apache Flink. Apache Spark Streaming applications can
be written in Java, Scala, or Python. Besides Apache Spark
Streaming, there are other libraries built on top of Apache
Spark, e.g., similar to Apache Flink’s ecosystem, a library for
machine learning as well as for graph processing [5], [21].

The architecture of an Apache Spark installation is shown
in Figure 2. An application is executed in the form of mul-
tiple independent processes distributed across a cluster. The
SparkContext coordinates these processes. This coordinator is
an object in the main() function of the application, which is
called Driver Program. Moreover, the SparkContext connects
to a Cluster Manager that takes care of resource allocation.

Driver Program

SparkContext
Cluster

Manager

Worker Node

Worker Node

...

Fig. 2. Architecture of Apache Spark in Cluster Mode (based on [19], [22])

Currently, there are four Cluster Managers supported by
Apache Spark - Spark Standalone, Apache Mesos [23],
Apache Hadoop YARN (Yet Another Resource Negotia-
tor) [24], and Kubernetes [25]. As soon as a connection
is established, the SparkContext acquires so-called executors
on the Worker Node instances. Each executor is a process
belonging to exactly one application, which stores data and
performs computations. So different applications running on
the same Apache Spark Cluster are executed in different
JVMs, which is different to, e.g., the execution concept in
the previously illustrated Apache Flink. Thus, data cannot
be exchanged between different Apache Spark application
without making use of an external storage system.

Once executors are acquired, the SparkContext transmits
the program in the form of a JAR or Python files to them.
Afterwards, it sends tasks to the executor processes. One
process can run multiple tasks in several threads [22], [26].

A central data structure that is used in Apache Spark is the
Resilient Distributed Dataset (RDD). An RDD can be viewed
as a distributed memory abstraction. To be more concrete, it
is a partitioned and read-only collection of records. Apache
Spark Streaming leverages a processing model called dis-
cretized streams (D-Streams). Such a D-Stream is a sequence
of RDDs. An incoming data stream is divided into batches
stored in RDDs. Data transformations are then performed on
these RDDs, which again output a D-Stream [27], [28].

D. Apache Apex

Apache Apex is based on Apache Hadoop [29] with its
components Apache Hadoop YARN and Hadoop Distributed

File System (HDFS) [30]. Similar to Apache Flink, it offers
batch as well as stream processing functionalities. Moreover,
stream processing is also implemented in a way of processing
data in a tuple-by-tuple fashion [31], [32].

Apex Malhar, built on top of Apex Core, is a library
containing different input/output operators and compute oper-
ators. The former group includes, e.g., connectors to Apache
Kafka [33] and other messaging systems [6]. The high-level
architecture of Apache Hadoop 2, which is the version that is
used for the presented measurements, is depicted in Figure 3.
HDFS at the bottom is a distributed file system as its name
already states and serves as the storage layer. Apache Hadoop
YARN acts as a resource manager on top of HDFS. On top of
YARN, there are multiple data processing frameworks avail-
able from various areas such as batch or stream processing.
Two of those are Hadoop MapReduce and Apache Apex. The
latter is the stream processing system used for measurements
described in this paper [34].

Apex Flink Spark MapReduce ...

YARN
Yet Another Resource Negotiator

HDFS
Hadoop Distributed File System

Fig. 3. Architecture of Apache Hadoop 2 (based on [34])

The two other DSPSs used for those measurements, i.e.,
Apache Spark (Streaming) and Apache Flink, can also run
on Apache Hadoop YARN as one of multiple deployment
options [35], [36]. However, for the presented measurements
we use the standalone cluster deployment option that is
available in both systems, Apache Flink and Apache Spark.

Figure 4 illustrates the architecture of an Apache Hadoop
YARN deployment. The depicted installation runs one appli-
cation. Its components are marked with dashed lines.

Client

Resource
Manager

Node Manager Container

App Master

Node Manager
Container

...

Fig. 4. Architecture of an Apache Hadoop YARN (based on [24], [37])
Two major components are part of Apache Hadoop YARN,

a Resource Manager and Node Manager instances. Both are
daemons running on defined nodes. A client submits an
application to the Resource Manager. It is responsible for
distributing cluster resources amongst applications. Particu-
larly, the Resource Manager allocates so-called containers on
dedicated cluster nodes for applications. A container is defined
as a logical bundle of resources, e.g., a bundle of 4GB RAM



and 1 CPU, that is tied to a certain node. Communication be-
tween the Resource Manager and the Node Manager daemons
happens via a heartbeat mechanism [24].

There is one special container spawned for each program,
the Application Master. It manages application execution with
respect to, e.g., resource needs, execution flow, or fault han-
dling. The Application Master can be written in any program-
ming language, though many applications make use of higher-
level frameworks such as MapReduce or Apache Apex. Other
containers may communicate directly with the Application
Master if necessary. This communication would need to be
managed by the application as YARN does not arrange that.
The Application Master implemented in Apache Apex is called
Streaming Application Manager (STRAM) [24], [38].

E. Similarities and Differences Between the Presented Systems

Table I gives an overview of the presented DSPSs. Apache
Beam is not listed as it is not a DSPS but an SDK for
developing stream processing programs.

Criteria Apache Flink Apache Spark
Streaming

Apache Apex

Mainly Written in Java, Scala Scala, Java,
Python

Java

Languages for App
Development

Java, Scala,
Python

Scala, Java,
Python

Java

Data Processing Tuple-by-
tuple

Batch Tuple-by-
tuple

Processing Guarantees Exactly-once Exactly-once Exactly-once

TABLE I
COMPARISON OF APACHE FLINK, APACHE SPARK STREAMING, AND

APACHE APEX (BASED ON [19], [39]–[41])

All systems are mainly developed in a JVM language,
specifically Java or Scala [39]–[41]. Programs can be written
in either Java, Scala, or Python on Apache Flink and Apache
Spark Streaming. Apache Apex only offers the possibility to
write applications in Java. However, there are plans to also
support the development of programs in Scala 1. With respect
to data processing characteristics, Apache Flink and Apache
Apex process data in a tuple-by-tuple fashion. Contrary,
Apache Spark Streaming makes use of a batch processing
approach. Furthermore, all three systems guarantee exactly-
once processing, i.e., each input tuple is processed exactly
once. This ensures correct results also in recovery scenarios.

III. PERFORMANCE ANALYSIS

This section describes the conducted performance analysis.
First, the general benchmark setup as well as the data used for
the benchmark are presented. Afterwards, the executed queries
are highlighted. Lastly, the performance results are discussed.
That particularly includes an analysis of the execution times,
standard deviation, and a detailed view of the performance
impact of Apache Beam. Query implementations and other
used programs and scripts can be found online 2.

1https://malhar.atlassian.net/browse/APEX-175
2http://hpi.de/fileadmin/user upload/fachgebiete/plattner/publications/

papers/gh/StreamBenchOnApacheBeamBenchmark.zip

A. Benchmark Architecture and Process

The proposed benchmark setting is depicted in Figure 5.
The benchmark process is divided into three separate and
consecutive phases. The components that are involved in the
corresponding part of the process are marked in the figure by
dashed curly brackets.

System Under Test

Message Broker
(Apache Kafka)Data SenderInput Data Benchmark Query 

Implementation 

Result 
Calculator

1

2

3

Fig. 5. Overview About the General Benchmark Architecture and Process
Based on Fundamental Modeling Concepts (FMC)

On the left-hand side there is the input data which is read by
the data sender and forwarded to the message broker, which
in particular is Apache Kafka. The data sender is a program
written in Scala with multiple configuration parameters such as
the data ingestion rate or the level of Kafka Producer acknowl-
edgments. The system under test (SUT) on the right-hand side,
i.e., the DSPS to be benchmarked, executes the implemented
query. Thereby, it reads from and writes to the message
broker. Moreover, there is a result calculator tool developed
in Scala that reads the query output from the message broker
and leverages Apache Kafka functionality for the execution
time computation. The three different benchmark process steps
marked in Figure 5 are described in the following:

1) Data Ingestion: Firstly, data is inserted into an Apache
Kafka topic using the data sender. Particularly, 1,000,001
records of the AOL Search Query Log [42] dataset that is
also used in [43] are sent. The input topic is created with a
replication factor of one and one partition in order to ensure
the correct order of messages. Apache Kafka only guarantees
the correct order for entries within one partition [44]. The data
file consists of records with five tab-separated columns. These
columns contain a user ID, the query issued by the user, the
time at which the query was issued, the search result rank the
user clicked on if applicable, and the search result Uniform
Resource Locator (URL) the user clicked on if applicable [42].

2) Program Execution: During the execution phase, each
query is run ten times for each execution setup. Meanwhile,
there are no other programs executed on the system and each
system is restarted at the beginning of this benchmarking
step. The stream processing program computes the output and
sends it to an Apache Kafka topic that is also created with
a replication factor of one and one partition for the same
reasons as mentioned previously. Each query is executed with
a parallelism of one and two, ten times each. Moreover, every
query is implemented using the APIs provided by the DSPS
as well as using Apache Beam. So for each query, as we
analyzed three different systems, there are twelve different
query execution setups as it can be seen in Section III-C.

https://malhar.atlassian.net/browse/APEX-175
http://hpi.de/fileadmin/user_upload/fachgebiete/plattner/publications/papers/gh/StreamBenchOnApacheBeamBenchmark.zip
http://hpi.de/fileadmin/user_upload/fachgebiete/plattner/publications/papers/gh/StreamBenchOnApacheBeamBenchmark.zip


The mentioned parallelism is set differently depending on
the system and the used APIs. Regarding Apache Flink,
it is configured using the command line option -p or -
-parallelism that is offered when submitting an applica-
tion for specifying parallelism [45]. For programs executed
on Apache Spark Streaming, the configuration parameter
spark.default.parallelism is used [46].

Apache Apex does not provide an option for configuring
parallelism, so instead the number of VCOREs is set accord-
ingly in the Apache Hadoop YARN configuration 3 as well as
within the Apache Apex application as a DAG attribute [47].
The approach of using this configuration is also applied for the
programs running on Apache Apex that are developed using
Apache Beam APIs. Details can be found in the mentioned
archive that is provided online.

3) Result Calculation: Lastly, the result records are read
from Apache Kafka for each query and the time difference
between the firstly inserted and the lastly inserted record is
computed. Apache Kafka is configured to use LogAppendTime,
i.e., the timestamp when a record is appended to the Apache
Kafka log is stored together with the record itself [44]. For
execution time calculation, we use these timestamps which
allows keeping the measurements application- and system-
independent. That is a crucial benefit with respect to result
correctness as definitions of performance criteria vary among
systems. Thus, one cannot rely on performance data provided
by DSPSs [48]. The overhead between having the correct
result computed within the SUT and having it appended to
Apache Kafka log is identical for every system and hence,
results are comparable.

With regard to the hard- and software setup, virtual ma-
chines are used for all nodes. Apache Kafka version 2.11-
0.10.1.0 is installed on a three node cluster with 64GB
main memory and an Intel(R) Xeon(R) CPU E5-2697 v3
@ 2.60GHz CPU with eight cores each. The DSPSs are
installed on a two node cluster where both nodes act as worker
nodes or the equivalent. These two nodes are identical to the
Apache Kafka nodes with regard to both, main memory and
CPU. Ubuntu 14.04 is installed as the operating system on all
virtual machines. Regarding system and framework versions,
Apache Apex 3.7.0, Apache Hadoop 2.7.3, Apache Spark
2.3.0, Apache Flink 1.4.0, and Apache Beam 2.3.0 are used.
The configuration files for the different systems can be found
in the previously linked archive.

B. Benchmarked Queries

The executed queries are taken from the StreamBench [43]
benchmark. StreamBench defines seven different queries. Four
of these are stateless, i.e., it is not required to keep a state for
producing the correct answer. The remaining three queries are
stateful. The stateless queries used for the benchmark pre-
sented in this paper are listed in Table II. Stateful queries are
excluded as Apache Beam does not support stateful processing
when executed on Apache Spark, see [11].

3http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-common/
yarn-default.xml

Query Description

Identity Read input and output it without performing any data trans-
formation. Can be seen as a baseline query with respect to
computational complexity.

Sample Read input and output only a certain percentage of data that
is randomly chosen. The number of output tuples is as big as
about 40% of the number of input tuples.

Projection Read input and output only a certain column of the input
record. In the presented measurements, the values of the first
column are chosen for being included in the output.

Grep Read input and output only records that match a certain regex.
The search string used for the measurements is ”test”, which
leads to an output of 3,003 records or about 0.3% of the
number of input records.

TABLE II
OVERVIEW OF THE BENCHMARK QUERIES (BASED ON [43])

C. Performance Results

This section illustrates the performance results regarding
execution times and the performance impact of Apache Beam.

1) Execution Times: The following charts visualize the
measured average execution times. On the y-axis, the com-
binations of system, parallelism, and kind of implementation,
i.e., using Apache Beam or system APIs, are listed. The x-axis
shows the times in seconds. The letter P stands for parallelism.

Figure 6 shows the results for the identity query. It can
be seen that the query implementations using Apache Beam
are slower compared to the implementations using the APIs
provided by the corresponding system in all cases. That is true
for almost all measurements presented in the following.

The overall shortest execution time belongs to queries run
on Apache Spark Streaming, closely followed by Apache Apex
and Apache Flink, both of which have a noticeable slower
average runtime for one kind of parallelism. That could be
due to outliers in the corresponding series of runs. Details on
that can be found in Section III-C2.

When looking at the runtimes of queries implemented using
on Apache Beam, differences are much larger. Apache Beam
queries running on Apache Apex have by far the highest
execution times with around 240s. So the differences between
the execution times of the analyzed systems are significantly
higher for the queries implemented using Apache Beam com-
pared to those developed using native system APIs. In com-
parison to these variances, distinctions between parallelism
factors are very small.

Nevertheless, the result differences between parallelism
factors of the Apache Beam query running on Apache Spark
Streaming is noticeable. The average execution time for the
parallelism of two is close to 70% higher compared to these
for the parallelism factor of one. As the relative standard
deviation for these benchmark runs is low as illustrated later
on in Figure 10, that is not due to outliers. A reason for this
observation could be the introduced overhead with respect to,
e.g., data transfer, that comes with splitting up tasks and that
may not pay off for simple queries like the identity query.

Figure 7 displays the results for the sample query. Again,
it can be seen that implementations using native system APIs
outperform these using Apache Beam. Moreover, results of
queries using the system APIs do not differ significantly be-

http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-common/yarn-default.xml
http://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-common/yarn-default.xml


0 50 100 150 200 250

Apex Beam P1
Apex Beam P2

Apex P1
Apex P2

Flink Beam P1
Flink Beam P2

Flink P1
Flink P2

Spark Beam P1
Spark Beam P2

Spark P1
Spark P2

237.53
241.01

3.35
5.71

30.28
32.97

6.52
3.74
7.51
12.75

3.26
3.23

237.53
241.01

3.35
5.71

30.28
32.97

6.52
3.74
7.51
12.75

3.26
3.23

Average Execution Time in s

Fig. 6. Average Execution Times - Identity Query

0 50 100 150

Apex Beam P1
Apex Beam P2

Apex P1
Apex P2

Flink Beam P1
Flink Beam P2

Flink P1
Flink P2

Spark Beam P1
Spark Beam P2

Spark P1
Spark P2

118.74
125.67

4.1
3.55

26.62
26.88

2.09
3

11
11.48

2.23
2.16

118.74
125.67

4.1
3.55

26.62
26.88

2.09
3

11
11.48

2.23
2.16

Average Execution Time in s

Fig. 7. Average Execution Times - Sample Query

tween the analyzed systems and parallelism factors. Compared
to identity query results, times are slightly lower overall, which
could be a result of the lower number of output records as
described in Section III-B. The Apex Beam implementation
is an exception as there is a major difference. To be more
concrete, the average execution times for the sample query
amount to only about 50% of the identity query times.

With average execution times of about 2.09s and 3s for
the sample query developed using Apache Flink APIs for
parallelisms of one and two respectively, these numbers are
below the corresponding times for Apache Apex. Thus, the
performance ranking between systems is identical for the
sample query. That means, the times for Apache Spark are
lowest, followed by these of Apache Flink and Apache Apex
for both kinds of implementation.

The projection query results are shown in Figure 8. They
are similar to the numbers for the identity query in all aspects.
This closeness leads to the conclusion that splitting a string
and accessing one column of the resulting list does not
introduce a noticeable overhead. Regarding the number of
output tuples, both queries are identical, though the tuple size
for the projection query is smaller as only a subset of columns
is sent to the output topic. However, this reduction in output
size does not have a noticeable impact on the times either.

0 50 100 150 200 250

Apex Beam P1
Apex Beam P2

Apex P1
Apex P2

Flink Beam P1
Flink Beam P2

Flink P1
Flink P2

Spark Beam P1
Spark Beam P2

Spark P1
Spark P2

229.91
241.35

4.75
3.52

33.54
33.33

6.1
5.47
10.07
14.73

3.18
3.48

229.91
241.35

4.75
3.52

33.54
33.33

6.1
5.47
10.07
14.73

3.18
3.48

Average Execution Time in s

Fig. 8. Average Execution Times - Projection Query

Figure 9 visualizes the results for the grep query measure-
ments. These times are overall the lowest ones whereas there
are differences between systems and used APIs. Especially
the implementations using the native APIs offered by Apache
Spark Streaming and Apache Flink have relatively low execu-
tion times in comparison to the corresponding numbers for the
other three queries. With about 20s, the Apache Beam version
for Apache Flink is close to 7s faster than the corresponding
sample query result with about 27s. There is no noticeable
difference between parallelism factors.

Contrary to Apache Flink, the average execution times for
queries developed using Apache Beam and running on Apache
Spark Streaming differ amongst parallelism factors. Similar
to the corresponding times for the identity query depicted in
Figure 6, the average execution time for a parallelism factor of
two is noticeably higher. In particular, with absolute times of
about 11.8s and 6.34s, a parallelism factor of two slows down
the average execution time by more than 85% in comparison
to the time measured for a parallelism of one. Reasons for that
can be as described for the identity query results.

A surprising result is the Apex Beam performance for
Apache Apex. While the times for the native Apache Apex
implementation is about on the same level as the corresponding
results for all other queries, the ones for the query developed
using Apache Beam are drastically lower. For the projection
and the identity query, Apex Beam results are approximately
between 230s and 240s. With about 120s, the sample query
performance is already significantly better. However, with
2.58s and 3.76s, the execution times for the Apex Beam grep
query implementation are orders of magnitude lower.

A reason for the relatively low execution times could lie
in the number of output records and the resulting smaller
effort that is needed for emitting query outcomes. To be
more concrete, the output for the grep query is significantly
lower than for the other three queries, though, as described in
Section III-B, the sample query already outputs fewer tuples
than the projection and the identity query.

2) Standard Deviation in Measured Execution Times:
Figure 10 visualizes the relative standard deviations for the
measurements. These values are calculated for every system-



0 5 10 15 20

Apex Beam P1
Apex Beam P2

Apex P1
Apex P2

Flink Beam P1
Flink Beam P2

Flink P1
Flink P2

Spark Beam P1
Spark Beam P2

Spark P1
Spark P2

3.76
2.58

3.58
3.37

20.03
20.46

1.58
1.43

6.34
11.8

1.28
1.21

3.76
2.58

3.58
3.37

20.03
20.46

1.58
1.43

6.34
11.8

1.28
1.21

Average Execution Time in s

Fig. 9. Average Execution Times - Grep Query

query-SDK combination. By SDK it is distinguished between
using Apache Beam or native system APIs for application
development. Deviations for the two parallelism factors are
averaged and condensed in this way. This is done since
separate visualizations for different parallelisms would not
reveal any further insights. Additionally, the reduced number
of values simplifies analysis of standard deviations.

0 0.2 0.4

Apex Beam Grep
Apex Beam Identity

Apex Beam Projection
Apex Beam Sample

Apex Grep
Apex Identity

Apex Projection
Apex Sample

Flink Beam Grep
Flink Beam Identity

Flink Beam Projection
Flink Beam Sample

Flink Grep
Flink Identity

Flink Projection
Flink Sample

Spark Beam Grep
Spark Beam Identity

Spark Beam Projection
Spark Beam Sample

Spark Grep
Spark Identity

Spark Projection
Spark Sample

0.12
3.15 · 10−2
4.57 · 10−2

0.14
9.04 · 10−2

0.15
0.11
9.12 · 10−2

4.43 · 10−2
3.12 · 10−2
6.25 · 10−2
4.89 · 10−2

0.11
0.54

8.7 · 10−2

0.23
4.3 · 10−2

9.14 · 10−2
9.32 · 10−2

5.51 · 10−2
8.16 · 10−2

0.15
0.23

0.2

0.12
3.15 · 10−2
4.57 · 10−2

0.14
9.04 · 10−2

0.15
0.11
9.12 · 10−2

0.12
3.15 · 10−2
4.57 · 10−2

0.14
9.04 · 10−2

0.15
0.11
9.12 · 10−2

4.43 · 10−2
3.12 · 10−2
6.25 · 10−2
4.89 · 10−2

0.11
0.54

8.7 · 10−2

0.23
4.3 · 10−2

9.14 · 10−2
9.32 · 10−2

5.51 · 10−2
8.16 · 10−2

0.15
0.23

0.2

Relative Standard Deviation

Fig. 10. Relative Standard Deviation for System-Query-SDK Combinations
There is one value that is notably higher than others, which

belongs to the identity query executed on Apache Flink.
Figure 6, which is visualizing the identity query execution
times, makes visible that there is a noticeable difference be-
tween the numbers for the two parallelism factors for Apache
Flink. Particularly, the execution time for Apache Flink with
a parallelism of one is almost 75% higher than the one for

Number of Run Parallelism = 1 Parallelism = 2

1 6.25s 4.15s
2 21.56s 3.77s
3 3.42s 2.71s
4 3.31s 5.29s
5 3.73s 3.00s
6 12.69s 3.93s
7 3.90s 2.90s
8 3.96s 3.66s
9 3.42s 3.57s

10 3.01s 4.45s

TABLE III
EXECUTION TIMES FOR THE IDENTITY QUERY ON APACHE FLINK

Apache Flink with a parallelism of two. Although it seems to
be plausible at a first glance that higher parallelism leads to
better performance, this correlation is absent for other results.

Table III shows the execution times for the benchmark runs
of the identity query on Apache Flink, i.e., numbers for the
corresponding ten runs with a parallelism of one as well as
for the ten runs with a parallelism of two. When looking
at these measurements it becomes clear that there are two
to three outliers that cause this relatively high coefficient of
variation. While results for the higher parallelism are relatively
homogeneous, there are outliers in the list of execution times
for runs with a parallelism of one. Particularly, seven out of
ten execution times range from three to four seconds. The
results for the remaining benchmark runs differ significantly.
To be more concrete, these runs lasted about 6s, 12.5s, and
21.5s. The highest execution time, e.g., is more than seven
times higher than the lowest one. These outliers cause the
comparatively high relative standard deviation. Apart from the
identity query executed on Apache Flink, there are no further
values that stand out in Figure 10.

3) Performance Impact of Apache Beam: The performance
impact factors are calculated based on the arithmetic means
of the execution times. These times are measured as defined
in Section III-A. The averages are determined as follows:

t̄(dsps, query, k, p) =
1

Nrun

Nrun∑
r=1

t(dsps, query, k, p, r),

where t̄(dsps, query, k, p) denotes the average over the execu-
tion times for a certain data stream processing system, query,
kind of implementation, i.e., using Apache Beam or native
system APIs, and a certain parallelism. Variable k represents
the mentioned kind of implementation and p stands for the
used degree of parallelism. The number of benchmark runs is
expressed as Nrun, which is equal to ten for the context of this
paper. The execution time for a single query run of a certain
benchmark scenario is shown as t(dsps, query, k, p, r).

The slowdown factor calculation makes use of these arith-
metic means. Specifically, it is computed as follows:

sf(dsps, query) =
1

Np

Np∑
p=1

t̄(dsps, query,Beam, p)

t̄(dsps, query, native, p)
,

where sf(dsps, query) denotes the slowdown factor for a
given data stream processing system and a given query. Np



0 20 40 60

Apex Identity
Apex Sample

Apex Projection
Apex Grep

Flink Identity
Flink Sample

Flink Projection
Flink Grep

Spark Identity
Spark Sample

Spark Projection
Spark Grep

56.58
32.17

58.46
0.91

6.73
10.87

5.79
13.51

3.13
5.13

3.7
7.37

56.58
32.17

58.46
0.91

6.73
10.87

5.79
13.51

3.13
5.13

3.7
7.37

Slowdown Factor sfdsps,query

Fig. 11. Slowdown Factor for the Analyzed Systems and Queries

depicts the number of parallelisms tested, which equals two
in the previously discussed benchmark scenario, particularly a
parallelism factor of one as well as a parallelism of two. So
in simplified terms, the ratio of average execution times for
Apache Beam implementations and these using native system
APIs is calculated and again averaged over parallelisms, all for
a given query and data stream processing system combination.

Concretely, the average execution times for a certain system,
query, and parallelism are determined, separately for the
Apache Beam version as well as the implementation using
native system APIs. The average execution time belonging to
the Apache Beam variant is then divided by the corresponding
average for the native query. That is done for every parallelism.
The resulting factors for each parallelism are finally averaged
by dividing their sum by the number of parallelisms.

All in all, the result tells how much slower or faster the
Apache Beam version for a certain query and data stream
processing system performed in the conducted measurements.
That is with regard to execution times as defined in Sec-
tion III-A and independent of parallelism. A result greater
than one marks a slowdown, whereas a result smaller than
one means that the Apache Beam implementation was faster
than the one using native system APIs.

The results for the computed slowdown factors are vi-
sualized in Figure 11. It can be seen that Apache Beam
implementations are slower for almost all DSPSs and queries
in comparison to these developed using native system APIs.

Generally, one can recognize differences between the stud-
ied systems and queries. When looking at Apache Flink and
Apache Spark, factors are similar, especially with respect to
relative distinctions amongst queries. Particularly, the perfor-
mance penalty for the fastest query, namely the grep query,
is highest. Accordingly, it is lowest for the longest-running
queries projection and identity for both systems. Overall, the
performance impact on Apache Flink is slightly higher.

In contrast, the Apache Apex results show a different
pattern. The highest performance impact can be seen, contrary
to Apache Flink and Apache Spark, for the longest-running
queries projection and identity. The query with the shortest
execution time, the grep query, is overall the only query

Data Source
Source:

Custom Source
—————

Parallelism: 1

Operator
Filter

—————
Parallelism: 1

Data Sink
Sink:

Unnamed
—————

Parallelism: 1

Fig. 12. Apache Flink Execution Plan for the Grep Query

where the Apache Beam implementation is even faster than
the one using native system APIs according to the calculated
slowdown factor. However, this speedup is very low, i.e., it is
about as fast as the implementation without Apache Beam.

When looking at the absolute slowdown factors, there are
also noticeable differences between Apache Apex and the
other two analyzed systems. Except for the grep query slow-
down, all slowdown factors are significantly higher compared
to Apache Flink or Apache Spark Streaming. The slowdown
factor for the projection query, e.g., is about 58 and so more
than four times higher than the highest slowdown factor for
either Apache Flink or Apache Spark Streaming.

Summarizing, the conducted benchmark shows that Apache
Beam has a negative performance impact for almost all
scenarios. Averaged over systems, the performance penalty is
lowest on Apache Spark, closely followed by Apache Flink.
Patterns between these two systems and executed queries are
similar. The performance impact on Apache Apex is much
different, meaning the impact is significantly higher in most
of the cases and the previously mentioned pattern is vice-versa.
So the more output or the higher the execution time on Apache
Apex, the higher impact of Apache Beam on performance. The
grep query running on Apache Apex is an exception to that as
explained before. Except for this exceptional case, slowdown
factors range from about three to almost 60. Thus, in most of
the studied cases, Apache Beam has a significant influence on
performance when looking at the calculated slowdown factors.

Figure 12 and Figure 13 visualize the execution plans
for the grep query executed with a parallelism of one on
Apache Flink, implemented without and with Apache Beam
respectively. Information on execution plans are retrieved from
the Apache Flink system and visualized using the Apache
Flink Plan Visualizer 4. These two plans serve as an example
highlighting differences between the execution of applications
developed with native APIs and those using Apache Beam.

The first execution plan depicted in Figure 12 contains
three elements, a data source, an operator, and a data sink.
Particularly, the source is shown as a custom source, the sink
as an unnamed sink, and the operator is a filter, which fits the
definition of the grep query as it basically filters data. Data is
forwarded along these three elements.

The second execution plan is presented in Figure 13. It
comprises seven elements in total. In particular, these el-
ements are a data source followed by six operators. The
data source at the beginning is named PTransformTrans-
lation.UnknownRawPTransform. PTransformTranslation is a
registry of familiar transforms and uniform resource names

4https://flink.apache.org/visualizer/

https://flink.apache.org/visualizer/


Data Source
Source:

PTransformTranslation.
UnknownRawPTransform

—————

Parallelism: 1

Operator
Flat Map

—————
Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Operator
ParDoTranslation.

RawParDo
—————

Parallelism: 1

Fig. 13. Apache Flink Execution Plan for the Grep Query Implemented Using
Apache Beam

(URNs) [9]. As outlined in Section II-A, a PTransform is used,
e.g., for reading or writing to an external storage system [8].

The data source forwards data to the first operator, a
flat map, which performs an action on each input value
and produces zero or more output values. Its Apache Beam
counterpart is the read() method of the KafkaIO class, which
creates a Read PTransform. The remaining five ParDoTransla-
tion.RawParDo operators follow the flat map. A ParDoTrans-
lation comprises tools for working with instances of ParDo.
A ParDo is one of the core transforms provided by Apache
Beam and described in Section II-A. The first ParDo represents
calling withoutMetadata() on the Read PTransform, which
drops the Kafka metadata as it is not needed. Moreover, the
method again returns a PTransform containing a PCollection
of key-value pairs. The downstream operator represents the
call of the create() method belonging to the class Values.
This operator takes the previously created PCollection of key-
value pairs and returns a PCollection containing only the
values. Further downstream, the grep query logic is applied
and resulting values are sent to Apache Kafka [7]–[10].

When comparing both execution plans it becomes visible
that the plan for the query implemented using Apache Beam
is significantly larger, i.e., it contains more elements in com-
parison to its counterpart. That is due to the more complex
management of communication with Apache Kafka and could
cause a lower performance. Both plans have in common
that they start with a data source and that all elements are
executed with a parallelism of one, due to the defined degree
of parallelism. Moreover, a dedicated data sink is not identified
for the program developed using Apache Beam. Thus, the sink
must be represented as an operator.

Overall, the performance of Apache Beam applications
highly depends on the runner implementations. Effort put
into this development is likely to vary between systems. The
closeness of the DSPSs’ programming model to the under-
lying concepts of Apache Beam also impacts the application
execution. Further details, e.g., with respect to the concrete
impact of the additional operator, could be uncovered through
profiling applications. However, all measurements are a snap-

shot in time and results may differ with different versions of
Apache Beam, other DSPSs versions, or alternative system
configurations. Moreover, changed workloads characteristics
might also influence performance results.

IV. RELATED WORK

For supporting Apache Beam, a system has to implement
a so-called runner. The development of the runner for IBM
Streams is described in [49]. Next to highlighting three imple-
mented optimizations with regard to the IBM Streams runner,
performance evaluations between IBM Streams, Apache Flink,
and Apache Spark are presented.

Besides abstraction layers such as Apache Beam that allow
for developing data stream processing applications using a
programming language such as Java, there is the idea of
leveraging or extending SQL to be able to do that.

Continuous Query Language (CQL) [50] is a comprehensive
approach for such an SQL extension. To be more concrete,
CQL is a SQL-based language for defining continuous queries
over data streams as well as updatable relations. It is not only
a concept but also integrated into the STREAM [51] system, a
data stream management system developed at Stanford Univer-
sity. Next to describing the CQL implementation in STREAM,
the semantics of CQL are outlined and a comparison to other
languages is included in the linked paper.

Apache Calcite [52] is another approach that was devel-
oped more recently. It is a framework that comprises various
functionalities, e.g., with respect to query processing, query
optimization, and query language support, which is the rele-
vant aspect in this context. Amongst others, the architecture
of Apache Calcite is presented in the mentioned work as well
as developed SQL extensions for different areas such as semi-
structured data or geospatial queries. Another depicted exam-
ple is the extensions for data stream processing queries that
are called STREAM extensions. They are inspired by the men-
tioned CQL and also explained on their website [53]. However,
not all the presented concepts have been implemented yet [53].
A few DSPSs already integrate Apache Calcite, Apache Apex
and Apache Flink being two of them [52].

Jain et al. [54] discuss the differences of two SQL-based
languages for defining streaming queries, particularly Oracle
Continuous Query Language [55] and StreamBase Stream-
SQL [56]. Moreover, an approach for unifying both languages
is proposed. However, they highlight that for achieving a
complete standard, further challenges needs to be tackled.

Besides, there are more SQL extensions for stream process-
ing scenarios developed for certain systems, e.g., streaming
SQL for Apache Kafka called KSQL [57], Continuous Com-
putation Language (CCL) that is the extended SQL used in
SAP HANA Smart Data Streaming [58], or SamzaSQL [59]
as extended SQL for the DSPS Samza [60].

With respect to benchmarking DSPSs in general, the Linear
Road benchmark by Arasu et al. [61] is a very well-known
work. It is an application benchmark that provides a bench-
marking toolkit. This toolkit consists of a data generator, a
data sender, and a result validator. The underlying idea of the



benchmark is a variable tolling system for a metropolitan area.
This area covers multiple expressways with moving vehicles.
The amount of accumulated tolls depends on various aspects
concerning the traffic situation.

The mentioned data sender emits data to the DSPS, which is
mostly car position reports. Depending on the overall situation
on the expressways, car position reports may require the DSPS
to create an output or not. Next to car position reports, the
remaining input data represent an explicit query which always
requires an answer. Linear Road defines four distinct queries,
whereas the query lastly presented in [61] was skipped in the
two presented implementations due to complexity reasons.

The benchmark result for a system is summarized as a so
called L-rating. This metric defined by Linear Road expresses
how many expressways the system could handle while meeting
the defined response time requirements for each query. A
higher number of expressways corresponds to a higher data
input rate for the SUT. When generating data, the amount of
expressways can be configured.s The Linear Road benchmark
was applied to the DSPS Aurora [62] and a commercial
relational database. Results are presented in the paper.

Another related benchmark is the already mentioned
StreamBench [43]. It aims at benchmarking distributed DSPSs.
Regarding its category in the area of performance benchmarks
it can be viewed as a microbenchmark, i.e., it measures atomic
operations such as a projection rather than more complex
applications as in, e.g., Linear Road.

The seven queries defined by StreamBench partly contain
a single computational step and partly comprise multiple
computational steps. Three queries require to keep a state
in order to calculate correct results while the remaining
four queries are stateless. One query uses numerical data
as input while the others process textual data. With respect
to the benchmark architecture, StreamBench makes use of a
message broker, specifically Apache Kafka, for decoupling
data generation and consumption. That is different to Linear
Road but similar to the benchmark architecture proposed in
Section III-A. As part of the evaluation section, the DSPSs
Apache Storm [63] and Apache Spark Streaming are compared
by applying StreamBench.

NEXMark [64] is a benchmark aiming to benchmark
streaming queries in the context of an online auction system.
It seems the benchmark was never finished as the website
still states that it is ”work in progress” [64] and there is
only a draft version of a paper that was published a couple
of years ago [65]. However, in the context of Apache Beam
this benchmark was used as inspiration and foundation for a
NEXMark-based benchmark suite [66]. This suite extends the
eight NEXMark queries by five additional ones. A complete
implementation of all queries for all runners is work in
progress according to [66].

The work presented in [67] compares Apache Flink and
Apache Spark. The conducted measurements include different
queries, a grep query being one of them. One focus area that
is analyzed is the scaling behavior with regard to different
numbers of nodes in the cluster. However, studying both

systems from a data stream processing point of view is out
of scope in the performed measurements.

Lopez et al. [68] compare Apache Storm, Apache Flink, and
Apache Spark Streaming in their paper. Besides describing
the architecture of these three systems, the performance is
studied in a network traffic analysis scenario. Additionally,
the behavior in case of a node failure is investigated.

V. CONCLUSION AND FUTURE WORK

This paper describes the characteristics of three state-of-
the-art DSPSs, particularly Apache Apex, Apache Flink, and
Apache Spark Streaming, as well as the abstraction layer
Apache Beam for implementing stream processing programs.

To study the performance impact of Apache Beam, we
propose a lightweight benchmark architecture that uses a
recognized workload and a novel approach for measuring
execution times using Apache Kafka. All benchmark imple-
mentations are provided in order to ensure reproducibility.

Our benchmark results show that Apache Beam has a
noticeable impact on the performance of DSPSs in almost all
cases. Programs developed using Apache Beam suffered from
a slowdown of up to a factor of 58 in the worst case. At the
same time, there is one scenario where the query developed
using Apache Beam is about as fast as its counterparts using
the APIs of the corresponding DSPS. However, for most
scenarios we observed a slowdown of at least a factor three.

The results lead to two major conclusions. Firstly, using
Apache Beam as an abstraction layer for application devel-
opment comes at a cost in terms of runtime performance.
Secondly, the results of benchmarking different DSPSs using
a program developed with Apache Beam are not likely to
represent the performance differences that are to be expected
from a benchmark with programs developed using native
system APIs. While using Apache Beam certainly provides a
greater flexibility to switch underlying DSPSs with relatively
low effort, one needs to be aware of the fact that this
advantage comes with a negative impact on performance. This
performance penalty varies among systems and applications
and is currently unpredictable.

Future work in this area involves studying the reasons
for performance differences in greater detail. Particularly, the
applications could be profiled in order to see how much time
is spent in which part of the execution plans and thus, to
identify possible performance bottlenecks. Finding potential
reasons for the comparatively large performance penalties
when employing Apache Apex represents another interesting
area for future work. In the best case, it is possible to identify
factors that influence the performance penalty applications
suffer from and make them predictable. Additionally, measure-
ments can be extended with respect to various aspects such as
the number of studied systems or query complexity as well as
scaling, parallelism, or fault-tolerance behaviors. Furthermore,
upcoming Apache Beam versions and other abstraction layers
can be compared against the presented results to supplement
the initial overview presented here.



REFERENCES

[1] M. Stonebraker and U. Çetintemel, “”one size fits all”: An idea whose
time has come and gone (abstract),” in Proc. International Conference
on Data Engineering, ICDE, 2005, pp. 2–11. [Online]. Available:
https://doi.org/10.1109/ICDE.2005.1

[2] “Apache Beam Overview,” https://beam.apache.org/get-started/
beam-overview/, accessed: 2018-10-30.

[3] M. Lorenz, J. Rudolph, G. Hesse, M. Uflacker, and H. Plattner, “Object-
Relational Mapping Revisited - A Quantitative Study on the Impact of
Database Technology on O/R Mapping Strategies,” in Hawaii Interna-
tional Conference on System Sciences, HICSS, 2017.

[4] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache Flink™: Stream and Batch Processing in a
Single Engine,” IEEE Data Eng. Bull., vol. 38, no. 4, pp. 28–38, 2015.
[Online]. Available: http://sites.computer.org/debull/A15dec/p28.pdf

[5] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi,
J. Gonzalez, S. Shenker, and I. Stoica, “Apache Spark: A Unified
Engine for Big Data Processing,” Commun. ACM, vol. 59, no. 11, pp.
56–65, 2016. [Online]. Available: http://doi.acm.org/10.1145/2934664

[6] “Apache Apex,” https://apex.apache.org/docs/apex/, accessed: 2018-09-
11.

[7] “Apache Beam,” https://github.com/apache/beam, accessed: 2018-08-17.
[8] “Apache Beam Programming Guide,” https://beam.apache.org/

documentation/programming-guide/, accessed: 2018-10-18.
[9] “Runner Authoring Guide,” https://github.com/apache/beam/blob/

master/website/src/contribute/runner-guide.md, accessed: 2018-10-18.
[10] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. Fernández-

Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and
S. Whittle, “The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale, Unbounded, Out-of-
Order Data Processing,” PVLDB, vol. 8, no. 12, pp. 1792–1803, 2015.
[Online]. Available: http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf

[11] “Beam Capability Matrix,” https://beam.apache.org/documentation/
runners/capability-matrix/#cap-summary-what, accessed: 2018-09-19.

[12] “Apache Gearpump,” https://gearpump.apache.org/overview.html, ac-
cessed: 2018-10-15.

[13] “MapReduce Tutorial,” https://hadoop.apache.org/docs/stable/
hadoop-mapreduce-client/hadoop-mapreduce-client-core/
MapReduceTutorial.html, accessed: 2018-10-15.

[14] “What is Samza?” https://samza.apache.org, accessed: 2018-10-15.
[15] “Alibaba JStorm,” http://jstorm.io, accessed: 2018-10-15.
[16] “IBM Streams,” https://www.ibm.com/de-en/marketplace/

stream-computing, accessed: 2018-10-15.
[17] “CLOUD DATAFLOW - Simplified stream and batch data processing,

with equal reliability and expressiveness,” https://cloud.google.com/
dataflow/, accessed: 2018-08-17.

[18] “Cloud Dataflow, Apache Beam and you,” https://cloud.google.com/
blog/products/gcp/cloud-dataflow-apache-beam-and-you, accessed:
2018-10-15.

[19] G. Hesse and M. Lorenz, “Conceptual Survey on Data Stream
Processing Systems,” in IEEE International Conference on Parallel and
Distributed Systems, ICPADS, 2015, pp. 797–802. [Online]. Available:
https://doi.org/10.1109/ICPADS.2015.106

[20] “Flink - Distributed Runtime Environment,” https://ci.apache.org/
projects/flink/flink-docs-master/concepts/runtime.html, accessed: 2018-
09-27.

[21] “Spark Streaming Programming Guide,” https://spark.apache.org/docs/
latest/streaming-programming-guide.html, accessed: 2018-09-26.

[22] “Apache Spark - Cluster Mode Overview,” https://spark.apache.org/
docs/2.3.1/cluster-overview.html, accessed: 2018-09-10.

[23] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for
Fine-Grained Resource Sharing in the Data Center,” in Proc. USENIX
Symposium on Networked Systems Design and Implementation, NSDI,
2011. [Online]. Available: https://www.usenix.org/conference/nsdi11/
mesos-platform-fine-grained-resource-sharing-data-center

[24] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet Another Resource Negotiator,” in ACM Symposium
on Cloud Computing, SOCC, 2013, pp. 5:1–5:16. [Online]. Available:
http://doi.acm.org/10.1145/2523616.2523633

[25] E. A. Brewer, “Kubernetes and the Path to Cloud Native,” in Proc.
ACM Symposium on Cloud Computing, SoCC, 2015, p. 167. [Online].
Available: http://doi.acm.org/10.1145/2806777.2809955

[26] X. Lu, M. Wasi-ur-Rahman, N. S. Islam, D. Shankar, and
D. K. Panda, “Accelerating Spark with RDMA for Big Data
Processing: Early Experiences,” in IEEE Annual Symposium on High-
Performance Interconnects, HOTI, 2014, pp. 9–16. [Online]. Available:
https://doi.org/10.1109/HOTI.2014.15

[27] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets: A
Fault-Tolerant Abstraction for In-Memory Cluster Computing,” in Proc.
USENIX Symposium on Networked Systems Design and Implementation,
NSDI, 2012, pp. 15–28. [Online]. Available: https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/zaharia

[28] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica,
“Discretized Streams: Fault-Tolerant Streaming Computation at Scale,”
in ACM SIGOPS Symposium on Operating Systems Principles, SOSP,
2013, pp. 423–438. [Online]. Available: http://doi.acm.org/10.1145/
2517349.2522737

[29] “Apache Hadoop,” https://hadoop.apache.org, accessed: 2018-09-11.
[30] “HDFS Architecture,” http://hadoop.apache.org/docs/current/

hadoop-project-dist/hadoop-hdfs/HdfsDesign.html, accessed: 2018-
09-11.

[31] M. Bhandarkar, “AdBench: A Complete Benchmark for Modern Data
Pipelines,” in TPC Technology Conference, TPCTC, 2016, pp. 107–120.
[Online]. Available: https://doi.org/10.1007/978-3-319-54334-5 8

[32] T. Dunning and E. Friedman, Streaming Architecture: New Designs Us-
ing Apache Kafka and MapR Streams. O’Reilly Media, 2016. [Online].
Available: https://books.google.de/books?id=EU8kDAAAQBAJ

[33] J. Kreps, N. Narkhede, and J. Rao, “Kafka: a Distributed Messaging
System for Log Processing,” in Proc. International Workshop on Net-
working Meets Databases, NetDB, 2011, pp. 1–7.

[34] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. C. Murthy,
and C. Curino, “Apache Tez: A Unifying Framework for Modeling
and Building Data Processing Applications,” in Proc. International
Conference on Management of Data, ACM SIGMOD, 2015, pp. 1357–
1369. [Online]. Available: http://doi.acm.org/10.1145/2723372.2742790

[35] “Flink - YARN Setup,” https://ci.apache.org/projects/flink/
flink-docs-master/ops/deployment/yarn setup.html, accessed: 2018-09-
23.

[36] “Running Spark on YARN,” https://spark.apache.org/docs/latest/
running-on-yarn.html, accessed: 2018-09-23.

[37] “Apache Hadoop YARN,” https://hadoop.apache.org/docs/r3.0.3/
hadoop-yarn/hadoop-yarn-site/YARN.html, accessed: 2018-09-25.

[38] “Apache Apex Documentation - Application Developer Guide,”
http://apex.apache.org/docs/apex-3.7/application development/,
accessed: 2018-09-26.

[39] “Apache Flink,” https://github.com/apache/flink, accessed: 2018-10-21.
[40] “Mirror of Apache Apex core,” https://github.com/apache/apex-core,

accessed: 2018-10-21.
[41] “Mirror of Apache Spark,” https://github.com/apache/spark, accessed:

2018-10-21.
[42] “AOL Search Query Logs,” http://www.researchpipeline.com/

mediawiki/index.php?title=AOL Search Query Logs, accessed:
2018-09-28.

[43] R. Lu, G. Wu, B. Xie, and J. Hu, “StreamBench: Towards
Benchmarking Modern Distributed Stream Computing Frameworks,”
in Proc. IEEE/ACM International Conference on Utility and Cloud
Computing, UCC, 2014, pp. 69–78. [Online]. Available: https:
//doi.org/10.1109/UCC.2014.15

[44] “Documentation - Kafka 0.10.2 Documentation,” https://kafka.apache.
org/documentation/, accessed: 2017-04-24.

[45] “Flink - Command-Line Interface,” https://ci.apache.org/projects/flink/
flink-docs-release-1.6/ops/cli.html, accessed: 2018-09-27.

[46] “Spark Configuration,” https://spark.apache.org/docs/latest/
configuration.html#spark-properties, accessed: 2018-09-27.

[47] “Interface Context.OperatorContext,” https://ci.apache.org/projects/
apex-core/apex-core-javadoc-release-3.6/com/datatorrent/api/Context.
OperatorContext.html, accessed: 2018-10-29.

[48] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, and
V. Markl, “Benchmarking Distributed Stream Data Processing Systems,”
in IEEE International Conference on Data Engineering, ICDE, 2018,
pp. 1507–1518. [Online]. Available: http://doi.ieeecomputersociety.org/
10.1109/ICDE.2018.00169

https://doi.org/10.1109/ICDE.2005.1
https://beam.apache.org/get-started/beam-overview/
https://beam.apache.org/get-started/beam-overview/
http://sites.computer.org/debull/A15dec/p28.pdf
http://doi.acm.org/10.1145/2934664
https://apex.apache.org/docs/apex/
https://github.com/apache/beam
https://beam.apache.org/documentation/programming-guide/
https://beam.apache.org/documentation/programming-guide/
https://github.com/apache/beam/blob/master/website/src/contribute/runner-guide.md
https://github.com/apache/beam/blob/master/website/src/contribute/runner-guide.md
http://www.vldb.org/pvldb/vol8/p1792-Akidau.pdf
https://beam.apache.org/documentation/runners/capability-matrix/#cap-summary-what 
https://beam.apache.org/documentation/runners/capability-matrix/#cap-summary-what 
https://gearpump.apache.org/overview.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html
https://samza.apache.org
http://jstorm.io
https://www.ibm.com/de-en/marketplace/stream-computing
https://www.ibm.com/de-en/marketplace/stream-computing
https://cloud.google.com/dataflow/
https://cloud.google.com/dataflow/
https://cloud.google.com/blog/products/gcp/cloud-dataflow-apache-beam-and-you
https://cloud.google.com/blog/products/gcp/cloud-dataflow-apache-beam-and-you
https://doi.org/10.1109/ICPADS.2015.106
https://ci.apache.org/projects/flink/flink-docs-master/concepts/runtime.html
https://ci.apache.org/projects/flink/flink-docs-master/concepts/runtime.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://spark.apache.org/docs/2.3.1/cluster-overview.html
https://spark.apache.org/docs/2.3.1/cluster-overview.html
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
https://www.usenix.org/conference/nsdi11/mesos-platform-fine-grained-resource-sharing-data-center
http://doi.acm.org/10.1145/2523616.2523633
http://doi.acm.org/10.1145/2806777.2809955
https://doi.org/10.1109/HOTI.2014.15
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
http://doi.acm.org/10.1145/2517349.2522737
http://doi.acm.org/10.1145/2517349.2522737
https://hadoop.apache.org
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://doi.org/10.1007/978-3-319-54334-5_8
https://books.google.de/books?id=EU8kDAAAQBAJ
http://doi.acm.org/10.1145/2723372.2742790
https://ci.apache.org/projects/flink/flink-docs-master/ops/deployment/yarn_setup.html
https://ci.apache.org/projects/flink/flink-docs-master/ops/deployment/yarn_setup.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://spark.apache.org/docs/latest/running-on-yarn.html
https://hadoop.apache.org/docs/r3.0.3/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/r3.0.3/hadoop-yarn/hadoop-yarn-site/YARN.html
http://apex.apache.org/docs/apex-3.7/application_development/
https://github.com/apache/flink
https://github.com/apache/apex-core
https://github.com/apache/spark
http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs
http://www.researchpipeline.com/mediawiki/index.php?title=AOL_Search_Query_Logs
https://doi.org/10.1109/UCC.2014.15
https://doi.org/10.1109/UCC.2014.15
https://kafka.apache.org/documentation/
https://kafka.apache.org/documentation/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/ops/cli.html
https://ci.apache.org/projects/flink/flink-docs-release-1.6/ops/cli.html
https://spark.apache.org/docs/latest/configuration.html#spark-properties
https://spark.apache.org/docs/latest/configuration.html#spark-properties
https://ci.apache.org/projects/apex-core/apex-core-javadoc-release-3.6/com/datatorrent/api/Context.OperatorContext.html
https://ci.apache.org/projects/apex-core/apex-core-javadoc-release-3.6/com/datatorrent/api/Context.OperatorContext.html
https://ci.apache.org/projects/apex-core/apex-core-javadoc-release-3.6/com/datatorrent/api/Context.OperatorContext.html
http://doi.ieeecomputersociety.org/10.1109/ICDE.2018.00169
http://doi.ieeecomputersociety.org/10.1109/ICDE.2018.00169


[49] S. Li, P. Gerver, J. Macmillan, D. Debrunner, W. Marshall, and K. Wu,
“Challenges and Experiences in Building an Efficient Apache Beam
Runner For IBM Streams,” PVLDB, vol. 11, no. 12, pp. 1742–1754,
2018. [Online]. Available: http://www.vldb.org/pvldb/vol11/p1742-li.pdf

[50] A. Arasu, S. Babu, and J. Widom, “The CQL Continuous
Query Language: Semantic Foundations and Query Execution,”
VLDB J., vol. 15, no. 2, pp. 121–142, 2006. [Online]. Available:
https://doi.org/10.1007/s00778-004-0147-z

[51] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani,
I. Nishizawa, U. Srivastava, D. Thomas, R. Varma, and J. Widom,
“STREAM: The Stanford Stream Data Manager,” IEEE Data
Eng. Bull., vol. 26, no. 1, pp. 19–26, 2003. [Online]. Available:
http://sites.computer.org/debull/A03mar/paper.ps

[52] E. Begoli, J. Camacho-Rodrı́guez, J. Hyde, M. J. Mior, and D. Lemire,
“Apache Calcite: A Foundational Framework for Optimized Query
Processing Over Heterogeneous Data Sources,” in Proc. International
Conference on Management of Data, ACM SIGMOD, 2018, pp. 221–
230. [Online]. Available: http://doi.acm.org/10.1145/3183713.3190662

[53] “Streaming,” https://calcite.apache.org/docs/stream.html, accessed:
2018-10-19.

[54] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan,
U. Çetintemel, M. Cherniack, R. Tibbetts, and S. B. Zdonik, “Towards
a Streaming SQL Standard,” PVLDB, vol. 1, no. 2, pp. 1379–1390,
2008. [Online]. Available: http://www.vldb.org/pvldb/1/1454179.pdf

[55] “Oracle® CEP CQL Language Reference 11g Release 1 (11.1.1),” https:
//docs.oracle.com/cd/E16764 01/doc.1111/e12048/intro.htm, accessed:
2018-10-19.

[56] “StreamSQL Overview,” https://docs.tibco.com/pub/sb-lv/2.1.8/doc/
html/streamsql/ssql-intro.html, accessed: 2018-10-19.

[57] “KSQL and Kafka Streams,” https://docs.confluent.io/current/
streams-ksql.html, accessed: 2018-10-19.

[58] “SAP HANA Smart Data Streaming: Developer Guide,”
https://help.sap.com/doc/25fc8560420d4d5099d6df02f7cbff9e/1.0.
12/en-US/streaming developer guide.pdf, accessed: 2018-10-19.

[59] M. Pathirage, J. Hyde, Y. Pan, and B. Plale, “SamzaSQL: Scalable Fast
Data Management with Streaming SQL,” in IEEE International Parallel
and Distributed Processing Symposium Workshops, IPDPS, 2016, pp.
1627–1636. [Online]. Available: https://doi.org/10.1109/IPDPSW.2016.
141

[60] S. A. Noghabi, K. Paramasivam, Y. Pan, N. Ramesh, J. Bringhurst,
I. Gupta, and R. H. Campbell, “Samza: Stateful Scalable Stream
Processing at LinkedIn,” PVLDB, vol. 10, no. 12, pp. 1634–1645, 2017.
[Online]. Available: http://www.vldb.org/pvldb/vol10/p1634-noghabi.
pdf

[61] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey,
E. Ryvkina, M. Stonebraker, and R. Tibbetts, “Linear Road: A Stream
Data Management Benchmark,” in (e)Proc. International Conference
on Very Large Data Bases, 2004, pp. 480–491. [Online]. Available:
http://www.vldb.org/conf/2004/RS12P1.PDF

[62] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. B. Zdonik, “Aurora:
a new model and architecture for data stream management,”
VLDB J., vol. 12, no. 2, pp. 120–139, 2003. [Online]. Available:
https://doi.org/10.1007/s00778-003-0095-z

[63] “Apache Storm,” http://storm.apache.org, accessed: 2018-10-23.
[64] “NEXMark Benchmark,” http://datalab.cs.pdx.edu/niagara/NEXMark/,

accessed: 2018-10-20.
[65] P. Tucker, K. Tufte, V. Papadimos, and D. Maier, “NEXMark – A

Benchmark for Queries over Data Streams DRAFT,” http://datalab.cs.
pdx.edu/niagara/pstream/nexmark.pdf, accessed: 2018-10-20.

[66] “Nexmark benchmark suite,” https://beam.apache.org/documentation/
sdks/java/nexmark/, accessed: 2018-10-20.

[67] O. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernández,
“Spark versus Flink: Understanding Performance in Big Data
Analytics Frameworks,” in IEEE International Conference on Cluster
Computing, CLUSTER, 2016, pp. 433–442. [Online]. Available:
https://doi.org/10.1109/CLUSTER.2016.22

[68] M. A. Lopez, A. G. P. Lobato, and O. C. M. B. Duarte, “A Performance
Comparison of Open-Source Stream Processing Platforms,” in IEEE
Global Communications Conference, GLOBECOM, 2016, pp. 1–6.
[Online]. Available: https://doi.org/10.1109/GLOCOM.2016.7841533

http://www.vldb.org/pvldb/vol11/p1742-li.pdf
https://doi.org/10.1007/s00778-004-0147-z
http://sites.computer.org/debull/A03mar/paper.ps
http://doi.acm.org/10.1145/3183713.3190662
https://calcite.apache.org/docs/stream.html
http://www.vldb.org/pvldb/1/1454179.pdf
https://docs.oracle.com/cd/E16764_01/doc.1111/e12048/intro.htm
https://docs.oracle.com/cd/E16764_01/doc.1111/e12048/intro.htm
https://docs.tibco.com/pub/sb-lv/2.1.8/doc/html/streamsql/ssql-intro.html
https://docs.tibco.com/pub/sb-lv/2.1.8/doc/html/streamsql/ssql-intro.html
https://docs.confluent.io/current/streams-ksql.html
https://docs.confluent.io/current/streams-ksql.html
https://help.sap.com/doc/25fc8560420d4d5099d6df02f7cbff9e/1.0.12/en-US/streaming_developer_guide.pdf
https://help.sap.com/doc/25fc8560420d4d5099d6df02f7cbff9e/1.0.12/en-US/streaming_developer_guide.pdf
https://doi.org/10.1109/IPDPSW.2016.141
https://doi.org/10.1109/IPDPSW.2016.141
http://www.vldb.org/pvldb/vol10/p1634-noghabi.pdf
http://www.vldb.org/pvldb/vol10/p1634-noghabi.pdf
http://www.vldb.org/conf/2004/RS12P1.PDF
https://doi.org/10.1007/s00778-003-0095-z
http://storm.apache.org
http://datalab.cs.pdx.edu/niagara/NEXMark/
http://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf
http://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf
https://beam.apache.org/documentation/sdks/java/nexmark/
https://beam.apache.org/documentation/sdks/java/nexmark/
https://doi.org/10.1109/CLUSTER.2016.22
https://doi.org/10.1109/GLOCOM.2016.7841533

