
Analyzing Data Relevance and Access Patterns of
Live Production Database Systems

Martin Boissier, Carsten Meyer, Timo Djürken, Jan Lindemann, Kathrin Mao,
Pascal Reinhardt, Tim Specht, Tim Zimmermann, Matthias Uflacker

Hasso Plattner Institute, University of Potsdam, Germany
{firstname.lastname}@hpi.de

ABSTRACT
Access to real-world database systems and their workloads is an
invaluable source of information for database researchers. How-
ever, usually such full access is not possible due to tracing over-
heads, data protection, or legal reasons. In this paper, we present a
tool set to analyze and compare synthetic and real-world database
workloads, their characteristics, and access patterns. This tool set
processes SQL workload traces and collects fine-grained access in-
formation without requiring direct read access to the production
system. To gain insights into large real-world systems, we traced
a live production enterprise system of a Global 2000 company and
compare it with the synthetic benchmarks TPC-C and TPC-E.

Keywords
Mixed Workloads; OLxP; Data Smartist; Data Relevance; Data
Tiering; Access Patterns; ERP; Production Systems

1. INTRODUCTION
Database researchers regularly face the problem of how to eval-

uate new ideas or algorithms. Synthetic benchmarks do not accu-
rately reflect the properties of real-world systems [2]. To under-
stand why some research projects provide only limited benefits in
realistic scenarios, access to production systems is required. An
example for the mismatch between real-world systems and bench-
marks is the often employed partitioning along the warehouse iden-
tifier in TPC-C with an almost perfect distribution of both data and
workload. A scenario barely found in real-world systems.

Insights from real-world applications help to make better and
more profound assumptions. In some cases, it is possible to access
the data of a system or the database plan cache (i.e., cached storage
of execution plans without predicate bindings). But neither facili-
tates the ability to answer questions, such as “Which queries join
tables X and Y and return data older than three years?” or evaluate
different partitioning schemas. For those questions, access to both
– data as well as the full SQL workload trace – is needed.

We present a tool set that answers such questions by parsing SQL
workload traces and obtaining access information without the need
of direct read access to the production database system and thus

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CIKM’16 October 24–28, 2016, Indianapolis, IN, USA
© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4073-1/16/10.

DOI: http://dx.doi.org/10.1145/2983323.2983336

without access to business-critical information. With this tool set,
we can analyze access patterns and quantify the relevance of data
down to the level of accesses per tuple.

1.1 Motivation
Mixed workloads (OLxP) and in-memory databases are two of

the major trends in enterprise systems computing. Both led to a
dramatic shift in the workload modern database systems are ex-
pected to handle. This change has vast implications for research
topics such as data aging/tiering or partitioning. For data aging, the
classification of relevant/hot data is comparatively straightforward
for classical OLTP systems with single tuple-focused accesses. But
modern applications with OLxP characteristics – such as complex
joins and aggregations – exhibit completely different access pat-
terns [1]. Hence, data relevance questions cannot be studied using
OLTP-oriented benchmarks as TPC-C/-E.

In this project, we want to provide profound insights into real-
world enterprise resource planning (ERP) systems by analyzing
both, single tuple accesses as well as complex analytical queries
in order to quantify data relevance down to the finest level of gran-
ularity based on production database workloads.

1.2 Analyzed Workloads
Krueger et al. have analyzed ERP systems and shown that syn-

thetic benchmarks as TPC-C do not reflect the properties found in
real-world enterprise applications accurately [2]. This was our ma-
jor motivation to focus on complete SQL workload traces of pro-
duction systems instead of synthetic benchmarks or plan cache ex-
ports. Using SQL workload traces allows the analysis of topics as
partitioning and query pruning, which is not possible using solely
the database plan cache. Hence, we think it is crucial to look at
1) real-world data instead of synthetically created data and 2) real-
world workloads to analyze and evaluate database systems.

Besides synthetic benchmarks, we have analyzed real-world sys-
tems, i.a., the following live production SAP-based Enterprise Re-
source Planning (ERP) system of a Global 2000 company:

• Over seven terabytes of uncompressed data
• Handles ∼1.5 billion queries each day
• Sampled SQL workload traces of the financial and control-

ling modules over several days, resulting in ∼50M queries
• One of the most recent versions of an SAP ERP system in-

cluding operational reporting on transactional data (i.e., OLxP)
• Plan cache exports over a time span of several weeks

2. WORKFLOW
In short, the workflow of our analyses looks as follows: First,

the logging functionality of the traced database is activated to log

all queries. Depending on the system load, the tracing can be it-
eratively activated for short intervals. The resulting query logs are
copied to another system, which runs the analyses to keep the load
on the production system as low as possible. On the analysis sys-
tem, the query logs are parsed to extract relevant information (e.g.,
selections, predicates, projections, join partners, et cetera).

In case it is possible to access a snapshot of the database – di-
rectly or indirectly – a SQL log replay on a mirrored source system
is performed to obtain tuple access information (Section 3). The
results of the analyses are visualized in an HTML-based front end.

3. SQL LOG REPLAY
Having the complete SQL workload trace of a live production

system is already a tremendous source of information. However, to
discuss issues such as data aging/tiering, data relevance, and parti-
tioning, further analyses are necessary. We replay SQL workload
traces on a database snapshot with which we can determine for ev-
ery tuple, which queries have accessed it, when, and how often.

Indirect Snapshot Access. Our research focuses on produc-
tion ERP systems. Consequently, getting direct access to a snapshot
of the enterprise system for the replay is hardly possible as it con-
tains business-critical financial data. Therefore, we implemented
the replay process in a way that the process can be run by the owner
of the ERP system and will output only statistical data (i.e., indi-
rect access). This data includes database meta data as table sizes,
existing indices et cetera. But more importantly, we exported the
internal tuple identifiers (i.e., the row identifier) of each replayed
query. We use the tuple identifiers of the result set of each query to
answer questions as “Which data is actually relevant and regularly
accessed?”. To obtain the tuple identifiers for returned tuples, we
replace the projected columns by the internal system column (e.g.,
ROW_ID for SAP HANA) storing tuple identifiers.

−− o r i g i n a l que ry
SELECT CUSTOMER_NAME, PRODUCT_ID , AMOUNT, CURRENCY
FROM CUSTOMER_ORDERS_VIEW
WHERE CUSTOMER_ID=17
GROUP BY CUSTOMER_ID ;
−− r e w r i t i n g t o a c c e s s base t a b l e s and o b t a i n t u p l e
−− i d e n t i f i e r s i n s t e a d o f t h e a c t u a l p r o j e c t i o n
SELECT REWR_VIEW. ORDERS_ROWID, REWR_VIEW.CUSTOMERS_ROWID
FROM (SELECT O. CUST_ID , O. ROW_ID AS "ORDERS_ROWID" ,

C . ROW_ID AS "CUSTOMERS_ROWID"
FROM ORDERS__TIMESLOT_004 AS O JOIN CUSTOMERS AS C

ON O. CUSTOMER_ID=C . CUSTOMER_ID
) AS REWR_VIEW WHERE REWR_VIEW. CUSTOMER_ID=17;

Listing 1: Rewriting of queries using views.

3.1 Data Growth
Another issue is missing information about data growth when

only a single database snapshot is available. Due to data protec-
tion, the obtained traces include full SELECT statements but only
masked INSERT/UPDATE statements (i.e., no values) as they po-
tentially include business data. If we now replay the SQL work-
load traces that have been traced over a long period, queries such
as ’SELECT * FROM ORDERS WHERE CUSTOMER_ID = 3 ORDER BY DATE
DESC LIMIT 0, 10’ would always return the same set of tuples even
though the data might have changed in the meanwhile.

To deal with that issue we recorded the maximum and minimum
tuple identifiers of each traced table each time the SQL workload
trace was started or stopped (i.e., twice every ten minutes in the case
of the ERP system). This information is used to create a logical
view on top of the base table of the static snapshot, limiting the

SELECT (joining1) UPDATE INSERT DELETE

SAP ERP 97.10% (21.20%) 0.25% 2.65% 0.00%
TPC-C 69.48% (2.52%) 18.57% 9.76% 2.20%
TPC-E 88.14% (15.91%) 6.66% 4.79% 0.4%

Table 1: Distribution of reading and modifying statements.

size of the table to an approximation its size at the traced point of
time. For each traced table, a view accessing the original table is
created that selects on the tuple identifier column to limit the table
to the corresponding table size at that point in time.

3.2 Views
Plattner [4] discussed modern enterprise applications that make

increasing use of logical database views as they ease the transition
to new systems. Most interestingly, most complex OLxP queries
including aggregations and joins are written using views. We found
views in the financial module that join up to five tables and refer-
ence other views themselves (up to six layers of views). In order to
obtain all accesses on a particular table for our analyses, we rewrite
queries on views to directly access the actual base tables. There are
several issues to consider when rewriting views as handing down
tuple identifiers from the base tables up to the top level projection,
including resolving potential attribute name collisions and more.
An exemplary rewrite of a query on a view to directly access the
base tables and project tuple identifiers is shown in Listing 1.

4. REPLAY PERFORMANCE
The performance of the query replay is crucial since there are

hard time constraints whenever the ERP system owner has to pro-
vide a system copy (e.g., a standby system). Besides obvious mea-
sures as proper parallelization and efficient storing of results, our
focus is on the reduction of queries (e.g., recognition of semantic
duplicates), which are to be executed.

In short, the replay works as follows:

1. To group queries, the interval length is defined. As a lower
bound, the interval length depends on the granularity of which
the table size information is exported (e.g., every ten minutes
for 90 seconds). Shorter intervals improve accuracy but in
parallel impede performance (cf. Step 2).

2. Per time slot the following steps are taken:

(a) For each query, we sort search arguments lexically by
attribute name and replace projections by ROW_ID.

(b) A mapping between distinct replay queries and their
initial trace instances is created. For the replay, only
distinct replay queries have to be executed, because the
initial queries that map to that replay query yield the
same tuple accesses anyways.

3. The queries of each time slot are executed in parallel. The
eventually executed query projects its own query identifier to
allow for later identification and the tuple identifiers.

4. After the replay, tuple accesses are again mapped to the orig-
inal query trace instances and stored.

5. DEMONSTRATION
Our demonstration allows to browse through our HTML-based

workload analyses and investigate the differences between synthetic
workloads and a traced production SAP ERP system. We provide
1Percentage of SELECT queries that join tables.

guided access to both our visualization for easy browsing and to
the database storing the trace information to answer more detailed
questions from the audience.

The following two sections present the two main analyses of the
front end that the audience, amongst others, can walk through.

5.1 Partitioning Evaluation
Effective partitioning is crucial for analytical applications, which

usually access data without indices and hence profit from effective
pruning. We provide a tool that allows evaluating different parti-
tioning schemas interactively. With the help of that tool, we were
also able to evaluate several published automated partitioning ap-
proaches, e.g., aggressive data skipping [6] or PREF [7].

5.2 Workload Characteristics
We revisited the numbers of Krueger et al. [2] who compared

TPC-C with a production ERP system. For the ERP system, we
calculated workload fractions for tables corresponding to the TPC-
C benchmark. As listed in Table 1, the examined part of the ERP
system is even more read-dominated than expected and executes
joins significantly more often than TPC-C. Comparing TPC-C and
TPC-E solely by these numbers, TPC-E does a better job reflect-
ing production ERP systems. To further ease the comparison of
workloads, we visualize the distribution of queries over time, query
selections and their particular value distributions (Fig. 1), and the
ratios of query types per table. Such analyses of read/write ratios
and the composition of expensive queries are of particular inter-
est for OLxP-optimized databases, which deploy read-optimized
(columnar) data structures [1, 3, 5].

Figure 1: Demo screen showing which columns of SAP ERP’s
main accounting table BSEG have been selected with which val-
ues.

Time-Correlation of Data Accesses. Apart from calculat-
ing access frequencies, access skew, et cetera, we tried to visualize
data access patterns, which we have obtained from the workload re-
play. We decided to combine time series and heat maps to visualize
decreasing relevance of transactional data over time.

Fig. 2 shows a heat map visualizing accesses to a table storing
customer master data. For this particular example, it can be seen
that recent data is not accessed at a significantly higher frequency
than less recent data. In contrast, transactional data (e.g., TPC-C’s
ORDER or SAP EPR’s BSEG table) exhibit more time-correlated
patterns where recent data is accessed at a much higher frequency
while accesses decrease over time as tuples age.

However, comparing the heat maps of the traced ERP system
and synthetic workloads shows a significant difference in the num-
ber of accesses to non-recent data. One reason is the increasing
analytical load of such OLxP systems. More interestingly, another
reason is the removal of materialized aggregates in favor of on-the-
fly aggregations in modern enterprise systems [4]. Without ma-

Figure 2: Heat map visualization of tuple accesses for an SAP
ERP master data table. Each column shows the accesses to the
table for an 8h long time slot.

terialized aggregates, the fraction of frequently accessed tuples is
much larger, because aggregations are not longer lookups to re-
cently modified tuples (thus probably cached) but complex scans
and joins of large sets of data. This development can be nicely
observed and compared using the heat maps and is particularly in-
teresting for research areas as buffer management or data tiering.

6. CONCLUSION
The presented tool set analyzes large SQL workload traces and

gathers access information down to the finest level of granularity
without the need of direct access to the production system. It visu-
alizes various aspects that allow exploring and comparing workload
characteristics and thus enable thorough evaluations in a realistic
OLxP scenario.

Our analyses show that both TPC-C and TPC-E fall short of
representing production systems accurately. The demo provides
valuable insights for the audience to spur research towards real-
world-optimized database systems, especially for upcoming enter-
prise systems without materialized aggregates and OLxP workloads.
We will include the audience’s feedback into a publication, which
analyses and quantifies the differences between synthetic and real-
istic systems in detail.

7. REFERENCES
[1] F. Funke, A. Kemper, and T. Neumann. Compacting transactional data

in hybrid OLTP & OLAP databases. PVLDB, 5(11):1424–1435, 2012.
[2] J. Krueger et al. Fast updates on read-optimized databases using

multi-core CPUs. PVLDB, 5(1):61–72, 2011.
[3] J. Lee et al. High-performance transaction processing in SAP HANA.

IEEE Data Eng. Bull., 36(2):28–33, 2013.
[4] H. Plattner. The impact of columnar in-memory databases on

enterprise systems. PVLDB, 7(13):1722–1729, 2014.
[5] V. Raman et al. DB2 with BLU acceleration: So much more than just a

column store. PVLDB, 6(11):1080–1091, 2013.
[6] L. Sun et al. Fine-grained partitioning for aggressive data skipping. In

Proc. ACM SIGMOD, pages 1115–1126, 2014.
[7] E. Zamanian et al. Locality-aware partitioning in parallel database

systems. In Proc. ACM SIGMOD, pages 17–30, 2015.

