
Effects of Automated Interventions
in Programming Assignments:

Evidence from a Field Experiment
Ralf Teusner

Hasso Plattner Institute
Potsdam, Germany
ralf.teusner@hpi.de

Thomas Hille
Hasso Plattner Institute

Potsdam, Germany
thomas.hille@student.hpi.de

Thomas Staubitz
Hasso Plattner Institute

Potsdam, Germany
thomas.staubitz@hpi.de

© Paper Authors 2018. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in L@S 2018, http://dx.doi.org/10.1145/3231644.3231650.

ABSTRACT
A typical problem in MOOCs is the missing opportunity for
course conductors to individually support students in overcom-
ing their problems and misconceptions. This paper presents
the results of automatically intervening on struggling students
during programming exercises and offering peer feedback and
tailored bonus exercises. To improve learning success, we
do not want to abolish instructionally desired trial and error
but reduce extensive struggle and demotivation. Therefore,
we developed adaptive automatic just-in-time interventions to
encourage students to ask for help if they require considerably
more than average working time to solve an exercise. Addi-
tionally, we offered students bonus exercises tailored for their
individual weaknesses. The approach was evaluated within a
live course with over 5,000 active students via a survey and
metrics gathered alongside. Results show that we can increase
the call outs for help by up to 66% and lower the dwelling
time until issuing action. Learnings from the experiments can
further be used to pinpoint course material to be improved and
tailor content to be audience specific.

ACM Classification Keywords
K.3.2 Computers and Education: Computer and Information
Science Education

Author Keywords
MOOC; intervention; exercise; programming

INTRODUCTION
Major differences when comparing MOOCs with in-class
courses are the amount of students enrolled in MOOCs and the
absence of direct personal communication. Both differences
make it difficult for instructors to support struggling students.
Individual feedback requires far too much time, not available
to course conductors. A suitable alternative might be peer
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

L@S 2018, June 26–28, 2018, London, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-5886-6/18/06. . . $15.00

DOI: https://doi.org/10.1145/3231644.3231650

assessments, but they usually require considerable effort to
set up as well as a large amount of the students’ time and
can therefore only be applied once within a typical course
runtime [18].

Courses aiming to convey basic programming skills need a
highly structured course corpus with hierarchical dependen-
cies. This is usually given with a carefully designed flow of
units, starting at a very limited basis of given basics, such as
being able to enter code into an editor in a structured man-
ner, being encouraged to try things out and being capable of
re-setting the environment to start anew. From that on, all
concepts to be conveyed have to be taught step by step, at
best with constant exercises for application. If a problem or
misconception arises, appropriate feedback, if possible on in-
dividual basis, should be supplied to help students achieve
their goals.

In-class education allows teachers to glance over the shoulder
of their students to notice potential struggle, assess the current
situation and give direct feedback. Within online courses,
this glance over the shoulder is not possible on large scale,
therefore requiring an automated and scaling solution to detect
struggling students and supply them with helpful feedback and
additional training options. In this study, we are testing three
types of just-in-time interventions: (1) an encouragement to
request feedback, (2) an encouragement to take a study break,
and (3) the provision of bonus exercises. With our experiments,
we aim to answer the following research questions:

RQ1. Does encouragement to request feedback or take a study
break affect student behavior?

RQ2. Do any of our just-in-time interventions affect course
scores or dropout rates?

RQ3. Do students value tailored or untailored bonus exer-
cises?

RELATED WORK
This paper contributes to the research area of dropout preven-
tion and interventions in MOOCs. We further recommend
tailored exercises to students and are therefore researching in
the area of recommender systems, student knowledge model-
ing and computer adaptive testing in the context of e-learning
and MOOCs in specific.

https://doi.org/10.1145/3231644.3231650

Dropout Prediction
Dropouts are students who stop participating in the MOOC
they enrolled in. Usually researchers take the last event, such
as logging in, of a student as the date of a dropout [24, 30].
MOOCs in general show the same phenomenon: roughly be-
tween 70 and 90 percent of all enrolled students do not finish
the courses [21]. Students take courses because of different
reasons such as general interest, job relevance, the wish of
earning a certificate or others [15]. In general it is difficult
to find the exact reason why a student dropped out from a
course, e.g. time constraints or lost interest, since the response
rate of such surveys is generally low, between 12.5% [14] and
1% [28]. A general lack of time is the most common factor,
as Kizilcec and Halawa stated in [14], with a share of 84% of
participants mentioning that reason. Other reasons could be
that the students had problems in the practical exercises, or felt
bored [21]. In this paper we particularly aim at students who
are interested in finishing the course but felt overwhelmed with
the exercises. In order to detect dropouts, supervised learn-
ing techniques like support vector machines, hidden markov
models or logistic regressions have been used [8, 10, 17, 24].
The exact features used to classify dropouts vary between the
approaches but mostly consists of a mix of clickstream data,
grades, social network analysis [30] and biographical infor-
mation. While the classifiers are considerably accurate (85%
to 91% within the same course [28]) the cited work often lacks
suggestions on how to prevent students from dropping-out.

We want to address this issue by intervening on students who
struggle with our exercises. As suggested by Taylor et al. [24],
we focused on features which relate students to other students
as such features are more predictive than average grades or
login durations. In accordance with Jiang et al.[10], we aim to
improve social integration and interaction by intervening strug-
gling students with our so called social Request for Comments
(RFC) (see Section 3.1.2) feature.

Interventions
The work of Carini et al. [5] and Yang et al. [29] supports
the claim that course-related discussions of students can have
a positive influence on student learning results. As students
can not be approached individually and directly, Chaturvedi et
al. [7] and Chandrasekaran et al. [6] propose to use a machine
learning approach to detect threads in forums which need to
be addressed by the instructors. Agrawal et al. [1] also try to
reduce the work for instructors by identifying confusion in
forum threads and automatically suggesting a ranked list of
suggested one-minute-resolution videos. However, this type
of intervention also requires students to ask questions in the
forums. Since students do not always reach out for help, being
it because they do not realize that they need help [2] or because
they are too shy, instructors can not help them directly in most
cases. Especially weaker students hesitate to reach out for help
in forums according to Onah et al. [21], who also mention
that there is a lack of research on instructor-less, personal
interventions within MOOCs. Therefore, researcher try to
automatically detect students who are at risk of dropping out
and intervene on them in order to motivate them. Whitehill et
al. [28] used their dropout predictions to survey stopped out
students for feedback about why these students left the course.

They noticed that the surveys motivated students to come back
sooner than those students who received no survey. Mailing
specific subgroups of a course with targeted content may also
increase the effect of an intervention [26, 22, 16].

These works show that small interventions, like sending emails
to students, can have positive impact on student behavior. Of-
tentimes, the effect of interventions might however also be
non-existent, or at least not verifiable, as shown in a review by
Kizilcec and Brooks [11]. This is especially likely if the inter-
ventions are either not suitable or far too late to help students
who struggle with exercises and thus face demotivation. When
a rather generic intervention reaches the students days later,
which does not help them with the actual problem they were
facing, it is unlikely that they will come back. Pre-emptive
interventions, such as plan making interventions [31], affirma-
tion interventions [13] and self-regulation interventions [12]
are suited to prevent undesired behavior before negative con-
sequences come to effect. While these interventions are ad-
ministered at the start of a course, in this study we focus on
just-in-time interventions in the context of programming as-
signments. Specifically, students who are flagged as struggling
while working on a programming problem receive an encour-
agement to either submit a Request for Comments (RFC) or
take a study break.

Recommender Systems
Recommender systems are often used to improve the learning
experience of students in MOOCs. Bauman et al. [4] identified
knowledge gaps in student knowledge and proposed an algo-
rithm to recommend remedial learning material they crawled
from the Internet. To predict the topics for which students
have knowledge gaps they use the number of points a student
received on a quiz and derive a score for each topic associated
with the quiz.

Our approach shares many concepts with the aforementioned.
In order to determine deficits in content understanding, we also
rely on annotation of learning material and quizzes (in our case,
programming exercises). In contrast to quizzes, programming
exercises in introductory MOOCs are often pursued until a full
score is achieved as they can be reattempted as many times
as students wish. Therefore we added the metric how long
students needed to complete the exercise compared to other
students.

Recommender systems have also been used to recommend
learning items such as websites, articles, books or exercises
in [20, 23]. Particular interesting for our work is the research
from Michlík et al. [20], as they dealt with recommending
exercises to students in an e-learning context. They annotated
the learning objects with concepts and created a vector-space
model to map the knowledge of the students. After a student
solved an exercise, she was asked to provide feedback which
is then used to calculate the knowledge model using computer
adaptive testing (CAT). From their work we adapted the idea of
concept tagging and creating a vector-space knowledge model.
Since their feedback system relied on user feedback and not
automated tests, we developed a new knowledge model suited
for our specific use case and the increased user base within a
MOOC.

0

100

200

300

0 10 20 30

Working Time [min]

S
tu

de
nt

s

Figure 1. Working time distributions of an exercise.

EduRank developed by Segal et al. [23] used collaborative
filtering in order to create a personalized difficulty ranking
for exercises. However, their algorithm works best if students
have only partial overlap of accessed exercises. This is not
given in MOOCs because all students follow the same order
of exercises, making it difficult to use in this domain.

STUDY DESIGN
This paper presents two types of interventions that aim to
improve learning success, improve satisfaction and lower over-
strain induced dropout of students of online programming
courses. The first type of interventions, just-in-time interven-
tions in problem solving, motivates students to ask for help
and feedback when they face an extended struggling period
with an exercise. The second type of interventions, bonus ex-
ercises, offers each student additional training exercises which
are suited to tackle the individual weaknesses of the student.

Just-In-Time Interventions
To prevent dropouts and increase student satisfaction, we want
to help struggling students while they are working on their
exercises. As shown in [25], students often struggled before
they dropped out. From forum comments and other feedback
we know that spending too much time is a cause of student
dissatisfaction with a course. Therefore, helping students in
the moment when they are stuck is beneficial, allowing to
solve their problems before they lose interest and drop out.

We issue just-in-time interventions to students when we think
that they are struggling with an exercise. The purpose of these
interventions is to interrupt the student and motivate them to
rethink their approach, review video lectures, ask for help or
do other exercises first.

Identifying Struggling Students
To help struggling students we first need a method for iden-
tifying them. The most obvious metrics for that are number
of program executions and working times. As the working
times correlate strongly (Pearson coefficient of 0.9) with the
amount of code executions and probably better reflect frustra-
tion levels, we decided on using working times. We defined
the 75th percentile of students to be regarded as considerable
slower than their peers, therefore being potentially struggling
or stuck and issued interventions on them. This decision was
backed by an analysis of the working times of already existing
exercises from a prior course.

In Figure 1 we see students’ working times on a rather com-
plicated exercise from the latest Java course with outliers
removed. The distribution is skewed to the left, meaning that
most students finish the exercises quicker than the average
duration (dotted vertical line), most likely without encounter-
ing any problems. The 75th percentile (solid vertical line) of
working time was chosen as a cutoff to keep a relatively large
treatment group in order to gather data, with the accepted risk
of an increased ratio of false positives, interrupting students
who are not yet struggling. Other potential cutoff metrics
which we considered but discarded were fixed times, averages,
and lower percentiles (like the median). Fixed times do not
qualify as a suited cutoff metric, as the exercises are of differ-
ent difficulty and complexity, thus the time needed to solve
them varies and can hardly be predicted beforehand. Taking
the average as a metric would classify too many students as
struggling students and further has the problem that outliers
have too significant impact and need to be removed. The
median (50th percentile) is not suited because we only want
to indicate students who are significantly slower in solving
the exercises. Other metrics, such as taking a closer look on
the code structure or detecting patterns on submissions, for
example bursts on trying to run erroneous code as an indicator
for frustration propose worthwhile future work. This approach
is thus not perfect, but allowed us to address the following
problems:

1. If exercises are short, we might bother students even though
they are not struggling (false positives).

2. If only few students have worked on the exercise, data is
still unreliable (cold start problem).

3. If students review lecture videos while they work on an
exercise, they should not receive interventions.

4. If a student closes the exercise and comes back at a later
point in time, when do we issue the intervention?

5. How to keep annoyance of interventions low and still cause
an effect and gather data?

To solve problems 1 and 2, we set a minimum time limit of
10 minutes. If the 75th percentile lies below 10 minutes, we
trigger the intervention at the 10 minute mark to let them solve
their problems on their own first.

With regards to problem 3, we just count working time while
students are actively working on the exercise to prevent un-
necessary or away from keyboard interventions. We stop the
timer if the exercise view lost focus and continue if the student
comes back to the exercise.

When students close the exercise and come back later, they
need some time to understand the task and their previous code
again. For returning students, we therefore set the intervention
interval to be the maximum of the remaining timespan to the
75th percentile and 10 minutes.

As we are aware that the interventions can annoy students,
especially if they are not stuck or just like to fiddle with their
code (5), we set a daily limit of interventions to three inter-
ventions per day and student and an additional limit of two
interventions per student and exercise. This ensures that we
intervene often enough to gather data and do not annoy the

students too much. Whether or not a student is actually strug-
gling can not be detected automatically and will be covered
by a survey. The results shown in Section 5 suggest that this
rather simplistic approach appears to have been reasonably
effective for our experiments.

RFC Interventions
Requests for Comments (RFCs) are a useful feature for stu-
dents to get help from other students who already solved the ex-
ercises. A copy of the current status of an exercise is published
internally, that enables other students to comment directly on
specific lines of the code. It allows struggling students to reach
out to their peers directly, which is more convenient than copy-
ing the code to the discussion forum. Unfortunately we have
seen little use of this feature in previous courses. Although
the feature was deemed helpful by the students using it, they
seemed to need a little push to actually reach out for help, rein-
forcing the findings of Aleven and Koedinger [2]. We do this
by directly showing them the Request for Comments dialog.
While encouraged by us, writing an RFC stays optional: the
dialog is closable and might be reopened later, allowing the
student to complete the present thought first.

Break Interventions
Break interventions encourage students to take a break and
come back to the exercise with new ideas. The break inter-
ventions are also issued when we assume that the student is
struggling with the exercise. Similarly, we show them a clos-
able dialog, but here only presenting a text to remind them to
do a break. Doing a break and giving the brain some rest can
be beneficial to overcome side effects of concentrated working:
fatigue and distraction, which results in errors and eventual
frustration. Neuroscience researcher recommend taking a
short break after periods of concentrated work [3]. Besides
taking a break, we assume that struggling students also regard
the break intervention as a motivation to review the course
material.

Bonus Exercises
From previous courses we learned that many students want
additional exercises for practicing. As some of our students
told us that they had to leave the course because of time con-
straints, we cannot simply increase the amount of exercises for
all students. Therefore we decided to add optional exercises
to the course. Since we know how well a student performs
in the course, we are able to recommend bonus exercises tai-
lored to the strengths and weaknesses of the individual student
accessing them.

Adding bonus exercises as optional material has the benefit
that students who want more exercises get more training and
those who already spend enough time with the course are not
penalized in terms of grading.

Learning material and exercises in MOOCs are often incre-
mentally designed, which means that materials of ongoing
weeks assume that students understood everything from the
previous weeks. The problem might be that the student did
not understand the exercise description. Thus, a differently
designed exercise or repetition of the content might help them
to understand the concept better.

We posed a set of requirements for these exercises, of which
the most important are: the bonus exercises should be op-
tional, meaning that students are not obligated to solve them
and do not miss any graded points if they skip them. They
should be solvable for the student, meaning they should only
cover topics already encountered. They should be tailored,
meaning they should deal with the concept the student had the
greatest problem with. They should be focused on the current
course progress, so each course week will get its own pool
of bonus exercises. They should be non-repetetive, meaning
that contrary to Michlík et al. [20], we do not want to present
an exercise to a student he already encountered another time,
as we believe that the learning effect is low because students
would either skip the exercise or copy the solution from the
previous attempt. And lastly, they should be uncapped, mean-
ing that a student can request as many exercises as wanted.

Typically recommender systems present a list of most relevant
items, i.e. exercises in our case. We provide bonus exercises
on a weekly basis. This means that each week has its own pool
of potential bonus exercises in order to not confuse students
with older material of previous weeks and to target specific
deficits of the current week. To find the most relevant bonus
exercise, a content-based recommender system is used in favor
of a collaboration based approach (see Section 2).

As a prerequisite, we need to identify how well a student
understood a topic. For this we manually annotated all exer-
cises with the topics they cover and a difficulty level. Having
information about the student and his exercise submissions,
we can create a vector-based profile, which is the basis of
content-based filtering.

Domain Model
As a first step for our content-based approach, a domain model
has to be defined. It is important to note, that domain-models
have to be created for each course independently. For example
Java’s class hierarchy is different from the one used in Python.
To create the domain model, course instructors have to provide
the topics students will learn in the course and annotate them to
the exercises with which these topics are practiced. In Figure 2
we see that each exercise has one or more topics associated.
We recommend not to use too many topics, i.e. less than
three, and focus on the most important topics. Weights are
used to describe the importance of the topic in the exercise.
Exercises are also annotated with their difficulty level. Also
we suggest to keep the topics as broad as possible and on the
same abstraction level. In order to better represent exercises
have a main topic but also cover other topics, associations
(tags) may be weighted. Michlík et al. [20] recommend to
connect topics among themselves with directed relationships.
To keep the additional effort for the teaching team small and
not to integrate too many variables into our first experiment,
we purposely chose to leave this task for future research.

Knowledge Model
As a basis for recommendations, we create a profile in the
form of a vector-space model for each student that reflects
how well a student understood the topics taught in the course
with a value between 0 (not understood) to 1 (fully understood).

Exercise

ExerciseExercise
Bonus

Exercise

Bonus
Exercise Bonus

Exercise

T1T3

T2

T4

0.8
0.2

1

0.4

0.7

0.3

0.3

0.3

1

1

C
ou

rs
e

M
at

er
ia

l

B
onus M

aterial

Difficulty: 3

Difficulty: 5 Difficulty: 4Difficulty: 2

Difficulty: 5

Difficulty: 3

0.5
weighted association
describes the ratio
an exercises deals

with that topic

Exercise

Difficulty: 5

Exercises with
teacher annotated

difficulty
T Topics taught in

the course

...

T4...

Figure 2. An example of our domain model.

Similar to the model used in ALEF (Adaptive LEarning Frame-
work) [27, 20], we are dealing with programming exercises.
However, we do not rely on self evaluation, but leverage our
data on automated grading and testing. We assume that under-
standing of a concept and being able to apply it in exercises are
correlated, therefore the understanding is directly correlated
to the exercise performance.

Our knowledge model should reflect the following criteria:

1. Students, who needed longer with exercises than their peers,
understood the concepts behind the exercise not as well as
their peers.

2. Not reaching full points means that a student had problems
with the exercise. However, students, who got full points
but needed very long to solve the exercise were able to show
their ability to use the concept in the end. Therefore, the
knowledge level of topics solved 100% correctly should
always be higher compared to fast but incompletely solved
topics.

3. Difficult exercises need deeper understanding of the top-
ics. Consequently, difficult exercises have a higher poten-
tial learning effect and should be weighted stronger in the
model.

4. The results, in this case the exercise proposals, should be
comprehensible.

We developed a knowledge score function (see Equation 1 and
Table 1). We calculate the knowledge score Θ(s, t) for each
student s and each topic t of the course.

Θ(s, t) =
∑e∈Es σ(s,e) ·δ (e) ·ρ(t,e) ·ϕ(e,Es)

∑e∈Es δ (e) ·ρ(t,e) ·ϕ(e,Es)
(1)

s ∈S Student s in S = {1, . . . ,S} ρ(t,e) Ratio of topic t in exercise e
t ∈T Topic t in T = {1, . . . ,T} σ(s,e) Scoring of e for student s
e ∈ E Exercise e in E = {1, . . . ,E} δ (e) Difficulty level of exercise e
Es ⊆ E User accessed exercise e ∈ Es ϕ(e,Es) Diminishing function
ι(e,Es) Returns position of e in Es Θ(s, t) Knowledge score function

Table 1. Overview of Variables in Knowledge Model

The formula consists of the following parts:

Working Time Percentile
< 40% < 60% < 80% ≥ 80%

Sc
or

e

< 40% 0 0 0 0
≥ 40% 0.2 0.2 0.2 0.1
≥ 60% 0.5 0.4 0.4 0.3
≥ 80% 0.6 0.5 0.5 0.4
100% 1 0.9 0.8 0.7
Table 2. Values of the scoring function σ(s,e).

Scoring Function The scoring function σ(s,e) (see Table 2)
calculates how well we think the student s solved the ex-
ercise e ∈ Es, based on the score and the working time of
the student. We take the test score the student reached in
the exercise (row) and compare the student’s working time
to the working time of his peers (column). The achieved
test scores and working times are rounded down to the next
lower (if possible) block, e.g. if a student reaches 95% of
the possible points, we round down to 80%. If a student
reaches full test score (100% of points), he will never get
a score below 0.7 regardless of his working time. We give
a lower score (0.6 or less) if a student did not finish the
exercise for 100% to strongly separate the scores of solved
exercises from unfinished ones.

Weighting We rank the scores σ(s,e) based on the share of
the topic t on the exercise e with ρ(t,e) and on the difficulty
of the exercise with δ (e).

Diminishing Recent exercises better reflect the actual knowl-
edge status of a student. Initial misunderstandings might
have been clarified in the progress of the course exercises.
In order to accommodate for this, we add the diminishing
function (2):

ϕ(e,Es) =
1

1+e
−3

0.5·|Es| ·(i−0.5·|Es)|)
(2)

ϕ(e,Es) is an adapted sigmoid function that ranks exercises
based on the order ι(e,Es) in which they have been solved.
Since we have different amounts of exercises for different
topics, we adapt to the amount of exercises |Es|.

Averaging and Normalizing To compute the final score, we
calculate the average of all factors and normalize it between
0 and 1.

Recommendation Algorithm
Our recommendation algorithm first ensures that students are
capable of solving the presented bonus exercise so they will
not be overburdened right away. From the pool of potential
bonus exercises, we remove all exercises that are either too
difficult for the student (difficulty appropriateness) or contain
topics the student has not used yet (concept appropriateness).
The potential benefit for each bonus exercise is assessed by
re-calculating all affected topic scores under the assumption,
that the student fully solves the bonus exercise in optimal
time. The sum of the resulting deltas of the topic scores is the
potential benefit which we use to rank the bonus exercises and
recommend them to the students.

For recommendation we serve only the highest ranked exercise
to the students instead of providing them the ranked list. Many
students want to solve all offered exercises with 100% score,

providing them with a list of exercises thus may have negative
effects. Also since we want to support students with exercises
dealing with their biggest weakness, giving them a list of
exercises may not fulfill this requirement as they may chose the
exercises they found the easiest. If the list of ranked exercises
remains empty, which happens if the student did not attempt
any exercise yet or all potential exercises are too difficult for
him at this point, we return the easiest exercise of the pool.
Since the knowledge model is updated for each exercise the
students attempt, the system can be asked to recommend more
exercises if required.

METHOD
We conducted A/B tests for the just-in-time interventions and
the bonus exercise intervention in a live programming MOOC
with randomly assigned students. For our experiment, we
developed 15 distinct bonus exercises and additional 4 dummy
exercises. Each of the four course weeks had a pool of 4 to
5 bonus exercises of average difficulty and one, much eas-
ier, dummy exercise assigned. Additionally, we conducted
two surveys, one at course start to assess a self-stated skill
level together with some theoretical questions about OOP, and
one at course end to learn about the perceived effects of our
interventions.

The course-end survey contained questions on students’ fo-
cus (I ... solely concentrated on exercises / did something in
parallel (emails, chats) / sometimes concentrated, sometimes
not), on students’ impressions on intervention timing (The
interventions appeared... much too early / when I was stuck
/ after I solved the exercise / never), intervention helpfulness
(The interventions... helped me / bugged me / did not bother
me / never appeared) and satisfaction with the bonus exercises
(The practical bonus exercises were... helpful and fitted my
weaknesses / were good but not helpful / were too difficult /
superfluous and I did not solve them).

Participants
5,839 students accessed at least one practical exercise, 1,663
(28.5%) of them finished the course. The course-start survey
was answered by 6,486 students, the course-end survey was
completed by 1,257 students. 20.2% of the students stated
in the course-start survey that they never programmed before
taking our course, 32% stated to have already rather good
knowledge in programming, the remaining 47.8% students had
some general knowledge. However, in the ungraded multiple
choice test, 50% to 80% of the given answers were wrong.

Measures
We measure the dropout rates, average scores and average
working times of the students within the experiment and con-
trol groups. For our concept of interventions we need to
measure how long students need to solve an exercise. Our
coding platform saves events when students run their code
(run), run the unit tests (assess), or submit their achieved score
to the MOOC platform (submit). From these timespans, we
can calculate the working time by summing up the timespans
in between. Students however might also need several at-
tempts in different sessions, or take breaks during their work.
Since additional auto-saves are done automatically after code

changes, we can further cleanse the working time calculation
by removing longer periods without changes, which we clas-
sify to be breaks. Timespans longer than five minutes are
discarded for the calculation, we expect the student having
logged off in between, left the computer, browsing the web
or other long term activities. We argue that a focus loss of
less than five minutes is still within the working time of the
exercise, because a student may think about a problem with-
out changing code. Another important factor to exclude is
that some students continue working on finished exercises to
improve the style or try out different implementations.

Summarized, for the calculation of the working time we aggre-
gate all time gaps of events which are less than five minutes
and, if applicable, until the student first reached max score.

Procedures
To assess prior knowledge, we collected self-stated skill levels
and conducted a short, ungraded multiple choice test about
OOP and programming concepts.

To test the just-in-time interventions, we split the students into
three disjunct groups: The control group (no interventions,
20%), and two experimental groups (break, 20% and RFC
interventions, 60%). We have chosen to make the RFC group
larger to generate more user data and more RFCs. When mea-
suring the effects of just-in-time interventions, we assume that
RFCs sent within less than 10 minutes after the intervention
was issued were affected by it.

To test the bonus exercise intervention, we split the same stu-
dents into three additional groups: The control group (dummy
exercises, 20%) who received a bonus exercise which was
mainly a copy of the first exercise of each week. This was
necessary in order to prevent confusion in the forums why
some students received bonus exercises and some did not. The
first experimental group (random exercises, 20%) received ran-
dom bonus exercises from our pool of bonus exercises. This
gives a baseline on how well our recommendation algorithm
works. The second experimental group (tailored exercises,
60%) received tailored bonus exercises from our pool of bonus
exercises. In contrast to the random group, they are based
on the knowledge model of the student. The tailored bonus
exercise group is again larger in order to generate more data.

We further surveyed the students at the end of the course on
their perception of helpfulness and timing of the interventions
as well as their focus on the exercises.

Implementation of Interventions
As described before, we issue interventions after a calculated
amount of time at which we assume that students struggle.
In order to keep the user interface as responsive as possi-
ble, we retrieve the needed information, the 75th percentile
and working time of the student on the requested exercises,
asynchronically in the frontend using Javascript. Once the nec-
essary data is collected by the frontend, a timer is started. If
the timer reaches zero, an intervention is shown. As we do not
want interventions to show up when the student is not really
working on the exercise. Therefore, the timer is automatically
stopped if the browser focus of our coding platform is lost, e.g.

0

5

10

15

20

25

30

35

25
2

25
3

25
4

28
1

25
5

35
9

25
6

25
8

25
7

25
9

26
2

26
3

26
0

26
1

26
4

26
5

26
6

26
8

26
9

27
1

27
0

Exercises

W
or

ki
ng

 T
im

e
[m

in
]

Figure 3. Working times of students (2nd week). Circles mark averages,
black bars mark medians.

Table 3. Course Key Metrics. Percentages are averages.
Group #started #finished Dropout rate Score all students (σ) Score finisher (σ)
No interventions 1166 343 70,6% 46% (±35%) 94% (±10%)
Break interventions 1155 331 71,3% 44% (±34%) 93% (±12%)
RFC interventions 3518 989 71,9% 45% (±34%) 93% (±14%)

if the student is distracted to check emails or to perform other
actions. No interventions are shown after the student solved
the exercise completely.

RESULTS

Descriptive Statistics
The average scores of the 65 course exercises range between
95% and 99%. This reflects the high diligence of the students
to finish the exercises with full score. As shown in Figure 3,
most of the students (75%, indicated by the upper end of the
boxes) had no problems solving the exercises (exemplary taken
from week 2) in less than 15 minutes. The slower working
time distributions are skewed to the right (long whiskers on
top), which we want to reduce with the help of just-in-time
interventions.

Just-in-Time Interventions
During the experiment we sent 8,205 break interventions and
25,426 RFC interventions to the students. 79% of all answered
RFCs helped students to achieve full score, on the other 21%
the student either did not come back to the exercise or solved
the problem before an answer was posted. Table 3 shows
course dropout rates and scores in each experimental con-
dition. As the first of four key findings on the just-in-time
interventions, it is apparent that they had no significant effects
on dropout rates or scores in the course (all p > 0.69).

Metrics for the just-in-time interventions are shown in Table 4.
In the control condition, 24% (172/720) RFCs were sent in the
time frame where an intervention would have appeared. The
break intervention had no effect on RFC timings, with 24%
(229/944) RFCs sent shortly after a break message. However,
in the RFC encouragement condition, 31% (1065/3448) RFCs
were sent following the intervention. Thus, as a second finding,
the RFC intervention significantly increased the rate of RFCs
by 7 percentage points relative to the control condition (Chi-
squared test χ2 = 25.32, p < 0.001).
Taking into account students’ self-reported skill levels, we
further find that the effects of just-in-time interventions vary

Table 4. RFCs and Break metrics after interventions. Percentages are
averages.

Group RFCs/student RFCs after intervention Time to RFC Break duration
No interventions (baseline) 0.6 24% 32.1 [min] 14.46 [min]
Break interventions 0.8 (+33%) 24% 28.8 (-10%) 18.07 (+25%)
RFC interventions 1.0 (+66%) 31% 30.4 (-5%) 17.50 (+21%)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

beginner basic good very good expert

Skill Level

R
F

C
s

pe
r

S
tu

de
nt

no intervention break rfc

Figure 4. RFCs per Student and Skill Level

significantly across different skill groups, as can be seen in Fig-
ure 4. The RFC and break interventions raised RFCs among
less skilled students (’beginner’ to ’good’), while the effects
were mixed among highly skilled students.

The required working time to solve the exercise after a student
received feedback is visualized in Figure 5. Half the students
finished their exercise within 5.2 minutes additional working
time after they got a reply to their RFC. The data is further
highly skewed to the left, which means that most students
finish rather quickly, 25% of the students could even resolve
their problem in less than 2 minutes.

25
%

25
%

25
%

25
%

0

1

2

3

4

5

6

7

8

9

0.
0

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

25
.0

27
.5

30
.0

Working Time Until Max Score [min]

D
en

si
ty

 [%
]

Figure 5. Density Plot: working time students need to reach full score
after receiving an RFC reply. Each section represents 25% of students.

According to the course-end survey most interventions were
not perceived as very helpful to the students, as a large share
(47%) answered they simply ignored them or felt bugged by
them (30%). Considering the timing, 19% answered that the
timing was on spot, 53% perceived interventions as too early,
7% as too late or after solving the exercise, and stated to have
never seen a just-in-time intervention. With regards to focus,
most students stated that they worked concentrated on the
exercises (70%), 23% were sometimes distracted, only 7%
were often distracted.

Bonus Exercises
Results show five key findings with regards to bonus exercises.
First, students interacted with the optional bonus exercises at
a similar rate as with the standard exercises with regard to
the starting rate (Welch Two Sample t-test t = 1.8, p = 0.13),
completion rate (t =−0.06, p = 0.96) and working time (t =
0.98, p = 0.33). Second, when analyzing the differences in
weaknesses specific to skill groups, certain topics seem to be
harder than others for students stating low skill levels. With
increasing skill levels, the distribution of weaknesses becomes
more balanced (Figure 6 shows that exemplary for course
week 1). Third, when comparing the working times of the
untailored random group and the tailored group on longer
bonus exercises, the tailored group needed 10.6 minutes on
average, while the untailored group needed 11.7 minutes (10%
increase, we conducted a Wilcoxon signed-rank test, p = 0.39,
no statistical significance). Fourth, student perceptions did
not vary significantly based on whether the bonus exercises
were tailored or untailored (χ2 = 0.74, p = 0.86), however
numbers differed for the control group with dummy exercises
(all χ2 > 22, all p < 0.001). Fifth, going into detail, the
bonus exercises were mostly received as helpful and fitting the
specific weaknesses (59%, result for control (dummy group):
39%). About 31% (control 51%) perceived the bonus exercises
as good but not specifically helpful, 4% (control 3%) as too
difficult, and 5% (control 7%) as superfluous in general. The
number of bonus exercises, one per week, was regarded as
just right by the majority of students, about 21% wanted more,
less than 8% fewer exercises.

0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

beginner	 basic	 good	 very	good	 expert	

St
ud

en
ts
	[%

]	

Skill	Level	

Calculation	 Classes	and	Objects	 Variables	 Methods	

Figure 6. Students Weakest Topic of Week 1 by Skill Level.

DISCUSSION
To evaluate our two concepts to support students in MOOCs,
just-in-time interventions and recommended bonus exercises,
we conducted A/B tests on a live course with 5,839 active
students. In this study, we found that just-in-time interventions
have an effect on student behaviour (RQ1); the interventions
had no measurable effect on course scores or dropout rates
(RQ2); and students valuate bonus exercises (RQ3).

Just-in-Time Interventions
Despite students stating in the survey on the helpfulness of
RFCs and suggestions of their peers, there is no significant
effect to scores or dropout rates (see Table 3). A possible expla-
nation could be that the proportion of students, who struggled
and profited from the interventions, is too low within the group
to significantly change the overall number. Additionally, with
the average reached scores of the exercises ranging between

95% and 99%, we likely encounter a ceiling effect, limiting
the effective room for improvement. It might be worthwhile to
repeat the experiment with a smaller share of students exposed
to the interventions, for example only approaching the slowest
10%, to reduce false positives and probably streamline our
actually affected user group.

For all results from our survey, we need to consider that the
survey was conducted at course end, therefore mainly target-
ing students who had fewer problems with the exercises and
therefore did not benefit as much as weaker students from
the interventions. The relatively high share of answers that
students felt bugged (30%) might be caused by the fact that
we had no limitation on interventions per day in the first half
of the course. With regard to the timing, we hit our goal of
issuing too many interventions if in doubt. A relatively large
share (19%) answered that the timing was on spot, albeit an
even larger share answered that it was too early (53%). These
results also hint to increase the percentile after which to issue
interventions and thus to affect fewer students.

The duration of breaks increases and students take action ear-
lier, regardless of the type of the just-in-time intervention. This
seems reasonable as both just-in-time interventions disrupt the
student in the current task and might trigger a step back in
mind. Additionally, writing an RFC takes some time and thus
prolongs the duration until next runs are issued.

We further see that, despite the fact that most students reported
that they were unaffected by the just-in-time interventions, the
experimental groups show an increased use of RFCs of up to
66% in the RFC group (see Table 4, RFC per student). Interest-
ing to note is, that students who received a break notification
showed a 33% increase in their relative RFC amount as well.
A likely explanation is that students used the reminder to take
a break as a hint to reach out for help in a form of RFCs.

In general, students send fewer RFCs with increasing prior
knowledge (see Figure 4). Students that already possess very
good or expert knowledge did not further benefit from the
just-in-time interventions. The biggest effect was noticed on
the beginner group, which hit our intentions and expectations.

Bonus Exercises
Only 10% of our students deemed the bonus exercises unnec-
essary, regardless of the experiment group they were part of.
Bonus exercises, even if repetitive, are therefore valued. We do
not see a difference in valuation between randomly assigned
and tailored bonus exercises. Even the dummy exercises were
regarded as helpful, although to a smaller fraction than the
purposeful exercises (39% vs. 59%). A possible explanation
for this is that every exercise is considered helpful in a begin-
ners course as it allows to train basic syntax. A rather high
share of 31% answers stating that the exercises were “good but
not specifically helpful” might be caused by the fact that the
responders of the survey succeeded the course and therefore
had or acquired some skill.

When comparing the working times of students of the random
group and students of the tailored group on the same bonus
exercise, we expected the tailored students to be slower, since
they have to work on their weaknesses. The opposite turned

out to be true. Probably, the cause of marking the topic as
their weakness, a longer struggle and more tinkering, resulted
in a better and deeper understanding for them. However, since
we could not conclude statistical significance we propose to
further investigate on that finding.

The analysis of weaknesses per skill level reassures us that
the algorithm in general is working as intended. Exemplary,
within the first week, the biggest issue seems to have been
Classes and Objects, further hinting that either the exercises
on that topic were too difficult or the explanations could be
improved. This finding is also backed by exercise metrics,
having the lowest average score of that week and the highest
number of RFCs. The insights gained from the analysis thus
can further be used to detect points for improvement and
shortcomings in the learning material.

LIMITATIONS AND FUTURE WORK
The results of our experiments have to be validated and are
inherently limited by our experiment setup. In order to im-
prove general conclusions, we have to identify and mitigate
the influence of the instructor set variables, such as the cho-
sen percentile to intervene on, topic weightings and difficulty
ratings. For the just-in-time interventions, especially the se-
lection of the intervention group, which relies on detecting
struggling students, is likely to contain further potential. Our
current approach depending on percentiles can not separate
actually struggling students from ones just taking it slow.

In order to improve that and further individualize the feedback,
we could analyze common programming errors and create
interventions or hints specifically to these errors. If students
often run into the same error, we could try to help them with
interventions tailored to the type of error they get, for example
by pointing to a specific video. There is lots of research in the
field of code analysis which would help us to identify strug-
gling students and provide them with meaningful feedback [9].
Students who show many typing errors (typos) might need to
recap syntax and we could automatically display cheat sheets
to them. One could also detect if students often run the same
code with little to no change (bursts) and intervene them in
order to prevent them from building up frustration.

Many students replied that interventions appeared too early,
therefore we plan to make interventions smarter by recogniz-
ing progress. We will further try to predict when students
usually do RFCs based on metrics such as errors or size of
code changes to improve intervention timing.

The impact of the bonus exercises depends on the matching
of suitable exercises to the students. Most students found the
exercises to match their weaknesses, independent of whether
they received random or a tailored bonus exercises, probably
caused by too few exercises available. To validate the efficacy
of our algorithm, we will increase the pool of bonus exercises
which currently limits expressiveness of our findings.

High performing students were asking for more challenging
bonus exercises. We plan to extend our recommendation al-
gorithm to detect high performing students and provide them
with more challenging bonus exercises than struggling ones.
As discussed in [25], student performance classification is a

tough research topic itself because there are very many vari-
ables to consider and assessments before the course starts are
impractical. We argue that we can use our knowledge model
as a first step towards this topic. We consider to incorporate
typing patterns and writing speed of students into our knowl-
edge model to determine their skill as discussed by Leinonen
et al. [19]. To further improve recommendation accuracy of
exercises we will gather user feedback and working times to
calibrate the item difficulty while the course is running.

CONCLUSION
We developed two concepts to support students in MOOCs
and to improve their learning success: an automatic interven-
tion system and a recommendation system for tailored bonus
exercises. For evaluation we conducted A/B tests on a live
course with 5,839 active students. We intervened students who
were working on an exercise longer than 75% of their peers.

While we were not able to reduce the dropout rates of students,
we were able to show that interventions increased the amount
of Requests For Comments (RFCs) by up to 66% per student.
Students who received break interventions also showed an
increased usage of RFCs even though we did not explicitly
recommend it to them. We could also show that students
in the experimental groups reached out for help earlier than
students in the control group. Together with the surveys, which
reassured us the helpfulness of RFCs for the students, we
conclude that RFCs provide a benefit for students. With RFCs
most students were able to resolve their individual problems
in less than five minutes. Therefore, by increasing the amount
of RFCs with interventions, we likely improved their learning
experience. We could show that interventions further caused
students to do 25% longer breaks on average which are likely
to be beneficial for their learning process. We further plan
to improve intervention design and timings, as some students
experienced the interventions as too disruptive or ignored them.
In addition to the intervention system, we also presented a
content-based recommendation system which recommends
bonus exercises to students at any given time.

In contradiction to our initial assumption, we were able to
show a tendency that students perform better in their recom-
mended exercises than those who got the same exercises by
chance. Perhaps students that spent more time with certain
topics, even if they struggled, actually learned more than those
who quickly went through without any problems. With in-
terventions and tailored bonus exercises we created two ap-
proaches to improve MOOCs by leveraging individualized
learning. This work thus offers another step towards person-
alized MOOCs by helping students to overcome individual
content related problems.

REFERENCES
1. Akshay Agrawal, Jagadish Venkatraman, Shane Leonard,

and Andreas Paepcke. YouEDU: Addressing confusion in
MOOC discussion forums by recommending
instructional video clips. In Proc. EDM ’15. Stanford
InfoLab, 297–304.

2. Vincent Aleven and Kenneth R. Koedinger. 2000.
Limitations of Student Control: Do Students Know when

They Need Help?. In Intelligent Tutoring Systems.
Springer, Berlin, Heidelberg, 292–303.

3. Atsunori Ariga and Alejandro Lleras. 2011. Brief and
rare mental “breaks” keep you focused: Deactivation and
reactivation of task goals preempt vigilance decrements.
Cognition 118, 3 (March 2011), 439–443.

4. Konstantin Bauman and Alexander Tuzhilin. 2014.
Recommending learning materials to students by
identifying their knowledge gaps. CEUR Workshop 1247
(2014).

5. Robert M. Carini, George D. Kuh, and Stephen P. Klein.
2006. Student Engagement and Student Learning: Testing
the Linkages. Research in Higher Ed. 47, 1 (2 2006).

6. Muthu Kumar Chandrasekaran, Min-Yen Kan, Bernard
C. Y. Tan, and Kiruthika Ragupathi. 2015. Learning
Instructor Intervention from MOOC Forums: Early
Results and Issues. Proc. LAK ’17 (4 2015), 512–513.

7. Snigdha Chaturvedi, Hal Daum, and Dan Goldwasser.
2014. Predicting Instructor’s Intervention in MOOC
forums. Proceedings of the 52nd Association for
Computational Linguistics (2014), 1501–1511.

8. Jiazhen He, James Bailey, Benjamin Rubinstein, and Rui
Zhang. 2015. Identifying At-Risk Students in Massive
Open Online Courses. Conference on AI ’15 (2015).

9. Matthew C Jadud. 2006. Methods and tools for exploring
novice compilation behaviour. Proc. Workshop on
Computing Education Research (2006), 73–84.

10. Suhang Jiang, Adrienne E Williams, Katerina Schenke,
Mark Warschauer, and Diane O Dowd. 2014. Predicting
MOOC Performance with Week 1 Behavior. Proc. EDM

’14 (2014), 273–275.

11. René F. Kizilcec and Christopher Brooks. 2017. Diverse
Big Data and Randomized Field Experiments in Massive
Open Online Courses. In The Handbook of Learning
Analytics (1 ed.). Society for Learning Analytics
Research (SoLAR), Alberta, Canada, 211–222.

12. René F. Kizilcec and Geoffrey L. Cohen. 2017.
Eight-minute self-regulation intervention raises
educational attainment at scale in individualist but not
collectivist cultures. Proc. NAS (2017).

13. René F. Kizilcec, Glenn M. Davis, and Geoffrey L.
Cohen. 2017. Towards Equal Opportunities in MOOCs:
Affirmation Reduces Gender & Social-Class
Achievement Gaps in China. In Proc. L@S ’17 (L@S
’17). ACM, New York, NY, USA, 121–130.

14. René F. Kizilcec and Sherif Halawa. 2015. Attrition and
Achievement Gaps in Online Learning. In Proc. L@S ’15.
ACM, New York, NY, USA, 57–66.

15. René F. Kizilcec and Emily Schneider. 2015. Motivation
As a Lens to Understand Online Learners: Toward
Data-Driven Design with the OLEI Scale. ACM Trans.
Comput.-Hum. Interact. 22, 2 (3 2015), 1–24.

16. René F. Kizilcec, Emily Schneider, Geoffrey L. Cohen,
and Daniel A. McFarland. 2014. Encouraging forum
participation in online courses with collectivist,

individualist and neutral motivational framings. Proc.
EMOOCS ’14 (2014), 80–87.

17. Marius Kloft, Felix Stiehler, Zhilin Zheng, and Niels
Pinkwart. 2014. Predicting MOOC Dropout over Weeks
Using Machine Learning Methods. Proc. EMNLP ’14
(2014), 60–65.

18. Chinmay E. Kulkarni, Michael S. Bernstein, and Scott R.
Klemmer. 2015. PeerStudio: Rapid Peer Feedback
Emphasizes Revision and Improves Performance. In Proc
L@S’15. ACM, New York, NY, USA, 75–84.

19. Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017.
Preventing Keystroke Based Identification in Open Data
Sets. In Proc. L@S ’17. ACM, 101–109.

20. Pavel Michlik and Maria Bielikova. 2010. Exercises
Recommending for Limited Time Learning. Procedia
Computer Science 1, 2 (2010), 2821–2828.

21. D.F.O Onah, J Sinclair, and R. Boyatt. 2014. Dropout
Rates Of Massive Open Online Courses: Behavioural
Patterns. Proc. EDULEARN14 (2014), 1–10.

22. Jan Renz, Daniel Hoffmann, Thomas Staubitz, and
Christoph Meinel. 2016. Using A/B Testing in MOOC
Environments. In Proc. LAK ’16. ACM, 304–313.

23. Avi Segal, Ziv Katzir, Kobi Gal, Guy Shani, and Bracha
Shapira. 2014. EduRank: A Collaborative Filtering
Approach to Personalization in E-learning. Proc. EDM
’14 (2014), 68–75.

24. Colin Taylor, Kalyan Veeramachaneni, and Una-May
O’Reilly. 2014. Likely to stop? Predicting Stopout in
Massive Open Online Courses. CoRR (8 2014), 25.

25. Ralf Teusner, Thomas Hille, and Christiane Hagedorn.
2017a. Aspects on Finding the Optimal Practical
Programming Exercise for MOOCs. In Proc. FIE ’17.

26. Ralf Teusner, Kai-Adrian Rollmann, and Jan Renz.
2017b. Taking Informed Action on Student Activity in
MOOCs. In Proc. L@S ’17 (L@S ’17). ACM, 149–152.

27. Marián Šimko, Michal Barla, and Mária Bieliková. 2010.
ALEF: A Framework for Adaptive Web-Based Learning
2.0. In Key Competencies in the Knowledge Society.
Springer, Berlin, Heidelberg, 367–378.

28. Jacob Whitehill, Joseph Williams, Glenn Lopez, Cody
Coleman, and Justin Reich. 2015. Beyond Prediction:
First Steps Toward Automatic Intervention in MOOC
Student Stopout. Proc. EDM ’15 (2015), 171–178.

29. Diyi Yang, David Adamson, and Carolyn Penstein Rosé.
2014. Question Recommendation with Constraints for
Massive Open Online Courses. Proc. RecSys ’14 (2014).

30. Diyi Yang, Tanmay Sinha, and David Adamson. 2013.
“Turn on, Tune in, Drop out”: Anticipating student
dropouts in Massive Open Online Courses. Proc. NIPS
Workshop on Data Driven Education (2013), 1–8.

31. Michael Yeomans and Justin Reich. 2017. Planning
Prompts Increase and Forecast Course Completion in
Massive Open Online Courses. In Proc. LAK ’17. ACM,
New York, NY, USA, 464–473.

	Introduction
	Related work
	Dropout Prediction
	Interventions
	Recommender Systems

	Study Design
	Just-In-Time Interventions
	Identifying Struggling Students
	RFC Interventions
	Break Interventions

	Bonus Exercises
	Domain Model
	Knowledge Model
	Recommendation Algorithm

	Method
	Participants
	Measures
	Procedures
	Implementation of Interventions

	Results
	Descriptive Statistics
	Just-in-Time Interventions
	Bonus Exercises

	Discussion
	Just-in-Time Interventions
	Bonus Exercises

	Limitations and Future Work
	Conclusion
	References

