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Abstract.
Merchants on modern e-commerce platforms face a highly competitive environments. They compete against each other using

automated dynamic pricing and ordering strategies. Successfully managing both inventory levels as well as offer prices is a
challenging task as (i) demand is uncertain, (ii) competitors strategically interact, and (iii) optimized pricing and ordering decisions
are mutually dependent. We show how to derive optimized data-driven pricing and ordering strategies which are based on demand
learning techniques and efficient dynamic optimization models. We verify the superior performance of our self-adaptive strategies
by comparing them against different rule-based as well as data-driven strategies in duopoly and oligopoly settings. Further, to
study and to optimize joint dynamic ordering and pricing strategies on online marketplaces, we built an interactive simulation
platform. To be both flexible and scalable, the platform has a microservice-based architecture and allows handling dozens of
competing merchants and streams of consumers with configurable characteristics.

Keywords: dynamic pricing, inventory management, demand learning, oligopoly competition, e-commerce

1. Introduction

Online markets have become highly dynamic and
competitive. Merchants automatically adjust prices to
react to changing market situations, cf. [1]. Similarly,
they can flexibly reorder items taking into account (i)
estimated demand, (ii) delivery times, (iii) ordering
costs, and (iv) inventory holding costs.

Computing well-performing pricing and ordering
strategies is challenging as demand is uncertain and
markets are steadily changing (cf. [2], [3], [4]). What
is more, pricing and ordering strategies mutually affect
each other [5].

As testing is potentially hazardous when done in
production, simulating the performance of automated
ordering and pricing strategies is crucial. Nevertheless,
there is a distinct lack of simulation platforms which
allow evaluating data-driven strategies under various
competitive setups. Existing platforms, e.g., [6], [7],
are limited in their capabilities: Simulations run (i) on
a single machine, (ii) offer a limited set of consumer
behaviors, (iii) simulate solely short sales horizons, and
(iv) price updates or orders are restricted to predefined
discrete points in time.

*Corresponding author. E-mail: {first.last}@hpi.de.

Resembling production marketplaces such as Ama-
zon or eBay [8, 9], we built a continuous time frame-
work to simulate dynamic pricing and ordering under
competition. The setup allows for customers with het-
erogeneous buying behaviors. Further, the competitors’
offers include multiple dimensions such as price and
product quality.

Our platform supports large numbers of merchants
to compete simultaneously. Each merchant can run his
preferred ordering and repricing strategy to order prod-
ucts and adjust prices on the marketplace, respectively.
Market situations steadily change due to the strategic in-
teraction of competing merchants’ price reactions. Sim-
ulating random streams of interested customers allows
generating realized sales events and the firms’ sales rev-
enues. The firms’ inventory levels, their holding costs
as well as their ordering costs depend on their ordering
strategies and can be easily evaluated. By visualizing
price evolutions, inventory levels, and profits over time,
the user can easily study the complex interplay of or-
dering and repricing strategies and, most importantly,
compare short and long-term profits.

The platform logs each interaction such as orders,
price updates, stock-outs, new offers, sales, etc. This
historic data – which is defined as partially observable
as sales are typically private knowledge – is requested
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and numerically analyzed by data-driven merchants.
Our system supports self-adapting learning strategies.
Various state-of-the-art machine learning approaches
can be applied to quantify how demand (i.e., sales prob-
abilities) is affected by a merchant’s pricing decisions.

In addition, merchants are able to develop own op-
timization models [10–12] which are calibrated by es-
timated sales probabilities to compute optimized data-
driven pricing and ordering strategies. In this context, it
is even possible to learn competitors’ strategies in order
to take anticipated price reactions into account.

Our framework also allows controlling and measur-
ing the influence of (i) the customers’ buying behavior,
(ii) price adjustment frequencies, as well as (iii) the exit
or entry of competitors on a strategy’s performance. In
addition, different demand learning techniques and op-
timization approaches can be compared regarding their
accuracy and efficiency.

In this paper, we make the following contributions:

• We present a platform to simulate competing pric-
ing and ordering strategies.

• We show how to estimate demand from partially
observable market data.

• We derive effective data-driven dynamic pricing
and ordering strategies.

• We evaluate the complex interplay of various
strategies in duopoly and oligopoly scenarios.

• We verify that our data-driven strategy outper-
forms different rule-based strategies.

This paper is organized as follows. In Section 2, we
discuss related work. In Section 3, we describe the main
components of our platform. In Section 4, we introduce
our stochastic dynamic optimization model. We show
how to estimate demand from historical market data
and how to compute optimized pricing and ordering
decisions. In Section 5, we present performance evalua-
tions of our data-driven strategy derived. In Section 6,
we provide implementation details for our merchants.
Conclusions are summarized in the final Section 7.

2. Related Work

Inventory control problems and dynamic pricing
problems have been extensively studied for decades, cf.,
e.g., [13], [14] for pure ordering or [15], [16] for pure
pricing problems. Joint dynamic pricing and ordering
problems are reviewed in the survey by [17]. Solutions
are proposed for different problem scenarios, if demand
is known, cf. [10], [18], or [19].

Scenarios with uncertain demand are less well stud-
ied. Future demand must be estimated from market ob-
servations. Typical approaches are to investigate spe-
cific classes of parameterized demand distributions and
propose methods to find parameters, so that the demand
distribution fits the experienced sales best, cf. [20]. [21]
propose Bayesian based approaches for ordering and
pricing problems with uncertain demand. Adida, Per-
akis (2006) study this problem in a multi-product sce-
nario without backordering.

Further, in recent literature there are approaches to
also incorporate competition. The surveys [4] and [22]
provide an overview about the dynamic pricing problem
under competition for single-product and multi-product
scenarios. Finite time horizon settings have been stud-
ied, e.g., by [23]. Data-driven repricing strategies for
infinite horizon oligopolies are derived in [12]. In [3],
the authors consider joint pricing and inventory control
in a duopoly.

The combined problem of joint ordering and pricing,
demand learning, and oligopoly competition is highly
challenging; usually heuristics have to be used. For an-
alyzing and evaluating the complex interplay of data-
driven and rule-based ordering and pricing strategies
under competition, simulation platforms, cf. [24], can
be used. For testing and evaluating merchant strategies,
we use the platform Price Wars (cf. Section 3), a frame-
work to simulate dynamic pricing competition on on-
line marketplaces. The platform has advantages over
other solutions (e.g., [25–27]) as (i) its continuous time
model makes the platform similar to real online mar-
ketplaces like Amazon and (ii) users are unrestricted in
their choice and implementation of merchant strategies.

3. Platform Description

The platform used for this project is called Price
Wars, an open source platform for dynamic pricing re-
search [9, 28]. The simulation platform is built with a
microservice-based architecture for scalability and flex-
ibility. Each service implements one business artifact,
whereby services can be scaled out for large simulations.
By having separated services, additional components
can be added during running simulations at any time.

Merchants update their products’ prices based on the
current market situation which they can request at any
time. Arbitrary strategies, e.g., rule-based or data-driven
strategies, can be applied. Data of observed market sit-
uations as well as a merchant’s sales data can be used
to estimate sales probabilities (for current market situa-
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Fig. 1. Depiction of the platform’s components and their interaction in a dynamic pricing scenario with inventory replenishment.

tions) using various machine learning techniques (e.g.,
logistic regression, boosted trees [29], reinforcement
learning [30], or neural networks). Merchants can be
easily added to the simulation or updated as long as they
confirm to the HTTP/REST interface of the platform
(cf. Section 6).

The centre of the simulation is the marketplace which
manages all product offers, cf. Figure 1. The market-
place is the access point for the consumer component
which creates a random stream of interested customers.
Any customer choice behavior can be defined. The deci-
sion whether a customer buys a product and which offer
is chosen, is probabilistically modelled and can depend
on all parameters of the current market situation.

The event store logs platform events (price adjust-
ments, sales, etc.) and provides CSV files for data-
driven merchants. The producer provides products or-
dered by the merchants.

The merchants regularly request current market sit-
uations and decide on price updates and orders. For
optimized well-matched pricing and ordering decisions,
they can apply demand learning to estimate sales prob-
abilities to be used in (dynamic) optimization models.
We applied efficient dynamic programming techniques,
which are described in the following sections.

The HTML-based front end, see Figure 9 in the Ap-
pendix, enables the user to configure (i) the customer be-
havior, (ii) the merchants’ strategy setup, as well as (iii)
all cost parameters (fixed/variable ordering costs, hold-
ing cost rates [31]). The front end also allows observing
prices (see Figure 2), inventories (see Figure 3), and
profits over time. The competing strategies’ short-term
and long-term performances are measured by different
KPIs, including realized profits, revenues, holding costs,
ordering costs, etc.
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Fig. 2. Example of three competitors’ prices over time.
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Fig. 3. Example of competitors’ inventory levels over time.

4. Computation of Pricing and Ordering
Strategies under Competition

In this section, we show how to derive optimized
data-driven strategies. In Section 4.1, we introduce our
stochastic dynamic pricing and ordering model. In Sec-
tion 4.2, we show how a firm’s observable historical
market data can be used to estimate sales probabilities
under competition. In Section 4.3, we propose an ef-
ficient mechanism to compute optimized joint pricing
and ordering decisions.
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4.1. Model Description

We consider the situation in which a firm seeks to
sell a durable good over time. The time horizon is not
restricted. We assume that (i) demand is uncertain and
has to be estimated from historical data, (ii) prices can
be adjusted over time, and (iii) items can be reproduced
or reordered. Further, we assume several competitors
for our products. In our model, we include substitu-
tion effects in demand as customers might compare
prices of competitors. The goal is to derive data-driven
pricing and ordering decisions to maximize expected
discounted long-term profits.

If a sale takes place shipping costs c have to be paid,
c > 0. Moreover, we consider inventory holding costs.
We assume that each unsold item leads to holding costs
of l per unit of time (e.g., one hour or one day), l > 0.
We also include discounting in the model. For one unit
of time, we use the discount factor δ, 0 < δ < 1. This
corresponds to a discount rate α, α > 0, given by α =
ln(δ−1). A list of variables and parameters is given in
the Appendix, cf. Table 6.

Due to customer choice, the demand for a firm’s
product particularly will depend on a firm’s offer price a
and the current competitors’ prices ~p = (p(1), ..., p(K)),
where K is the number of competitors at a certain point
in time. W.l.o.g, we assume time homogeneous demand.
To this end, the sales intensity of a firm (i.e., the average
demand within one unit of time in case of stable prices)
is denoted by λ, a > 0, p(k) > 0, k = 1, ...,K,

λ(a, ~p) (1)

Our firm’s random inventory level at time t is denoted
by Nt, t > 0. If all items are sold, we let λ(·, ·) = 0
(no back orders). If a firm does not offer items, we
let its offer price a := 0. Items can be ordered at any
time t, t > 0. The number of items ordered at time t
are denoted by bt. Ordered products are assumed to be
delivered, e.g., with a delay of one unit of time, i.e., in
time t + 1 the inventory level Nt+1 raises by bt. The set
of admissible order quantities is denoted by B. Ordering
costs C(b) are paid in advance and characterized by
fixed and variable cost parameters c f ix, cvar > 0, b ∈ B,
C(0) = 0,

C(b) := c f ix · 1{b>0} + cvar · b (2)

Prices can also be updated at continuous points in
time t, t > 0. The set of admissible prices is denoted by
A. However, prices cannot be adjusted infinitely often.

As in real-life, we assume a certain limit for the number
of updates processed within a certain time frame.

We call strategies (at, bt) admissible if they belong to
the class of Markovian feedback policies, i.e., pricing
decisions at > 0 and ordering decisions bt > 0 may
depend the current inventory level Nt and the current
competitor prices ~pt.

To account for ordering costs, by Zt, we denote the
(random) number of positive orders (cf. 1{bs>0}) initi-
ated up to time t, t > s > 0, Z0 := 0. By Xt, we denote
the random number of sales up to time t, t > 0, X0 := 0.
A firm’s profits are characterized by its sales and orders
which are connected to the inventory process Nt and the
order process Zt. Given a pricing and ordering strategy
(at, bt), a firm’s random accumulated future profits (i.e.,
sales revenues minus holding costs minus order costs)
from time t on (discounted on time t) amount to, t > 0,

Gt :=

∞∫
t

e−α·(u−t) · (au− − c)dXu

−
∞∫
t

e−α·(u−t) · l · Nudu

−
∞∫
t

e−α·(u−t) ·C(bu−)dZu (3)

The objective is to determine a non-anticipating feed-
back pricing and ordering policy that maximizes the ex-
pected discounted total profit E (Gt |Nt, ~pt ), cf. (1)-(3),
conditioned on the current inventory level Nt and the
current market situation ~pt at time t.

4.2. Estimation of Sales Probabilities

The goal of this section is to estimate sales probabili-
ties from historical market data. As in real-life applica-
tions, in our framework, merchants cannot continuously
track markets over time. Typically, merchants have to
request the marketplace to observe the current market
situation. Then, based on the current market situation
a price adjustment is sent back according to a certain
repricing rule or strategy. Each merchant can also ob-
serve his/her realized sales as private knowledge.

Typically firms observe market situations shortly be-
fore they adjust their prices. Prices are kept constant
until the next price update, i.e., a market request, takes
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place. A firm seeks to quantify how the numbers of
observed sales within different time intervals are af-
fected by the relation of a firm’s offer price and the
competitors’ prices.

In the following, we assume that a firm has historical
data for J time intervals. Observable data includes offer
prices at( j) , competitor prices ~pt( j) at times t( j), and
realized sales yt( j) , i.e., the number of products sold
within the time intervals (t( j), t( j+1)), j = 0, ..., J − 1,
see Table 1.

j t( j) t( j+1) yt( j) at( j) p(1)
t( j) p(2)

t( j) ... p(K)

t( j)

0 0.0 1.4 4 15 11 13 ... /
1 1.4 2.5 12 10 11 13 ... 17
2 2.5 2.8 8 12 9 13 ... 16
3 2.8 4.0 5 15 9 11 ... /
... ... ... ... ... ... ... ... ...

J − 1 t(J−1) t(J) ... ... ... ... ... ...

Table 1
Illustration of observable and private data of a firm: Competitors’
offer prices ~p at discrete points in time t( j) and number of sales
between t( j) and t( j+1) at price at( j) , j = 0, 1, ..., J − 1.

A firm that plans to set a price at time t for the length
of, e.g., h units of time, seeks to estimate sales proba-
bilities for the time frame (t, t + h) given the current
market prices ~p observed at time t. The own offer price
a can be chosen from a set A of admissible prices. In
this context, a firm seeks to derive an estimation of the
(true) conditional sales probabilities, h > 0, i = 0, 1, ...,
t > 0, a, p(k) ∈ A, k = 1, ...,K,

Pt,t+h (i, a|~p) (4)

There are several approaches to estimate sales prob-
abilities, cf. (4), from data sets as described in Ta-
ble 1, see e.g., [12]. Common approaches are, e.g., least
squares, logistic regression, gradient boosted trees (e.g.,
XGBoost [29]), neural networks, etc.

In the following, we illustrate a simple way to esti-
mate demand. To explain the dependent variable yt( j) ,
j = 0, ..., J − 1, we can use, e.g., a robust least squares
regression model (LS model). Using the LS model, we
aim to specify average expected sales for a time span of
length h conditioned on initial (not necessarily stable)
market prices ~p, a, p(k) ∈ A, k = 1, ...,K, h > 0,

λ̃(h, a|~p; ~β) := ~x(h, a, ~p)′~β (5)

where ~β = (β1, ..., βM) is the unknown parameter vector
that is associated to the vector ~x = (x1, ..., xM) of M

explanatory variables. The regressors ~x(h, a, ~p) can be
a function of offer price a and market prices ~p. The
optimal coefficients ~β∗ = (β∗1, ..., β

∗
M) can be easily

obtained using standard methods.
The resulting intensities λ̃∗(h, a|~p) := λ̃(h, a|~p; ~β∗),

cf. (5), can be used to estimate P, cf. (4): For h
units of time, we let the estimated sales probabilities
P̃t,t+h(·, a|~p) be Poisson distributed with rate λ̃∗(h, a|~p),
a ∈ A, h > 0, t > 0, i = 0, 1, ..., i.e.,

P̃t,t+h(i, at|~pt) :=
λ̃∗(h, at|~pt)

i

i!
· e−λ̃

∗(h,at|~pt) (6)

To illustrate the approach, in the following definition,
we give simple examples of explanatory variables ~x.

Definition 4.1. We define the following regressors
xm, m = 1, ..., 7, for given data at( j) , p(k)

t( j) ∈ A, k =

1, ...,Kt( j) , h( j) := t( j+1)−t( j), t( j) > 0, j = 0, ..., J−1:

(i) constant / intercept

x1(h( j), at( j) , ~pt( j)) = 1

(ii) own price at time t( j)

x2(h( j), at( j) , ~pt( j)) := at( j)

(iii) rank of own price a within prices ~p at time t( j)

x3(h( j), at( j) , ~pt( j)) := rank(at( j) , ~pt( j))

(iv) price gap between a( j)
t and best competitor

x4(h( j), at( j) , ~pt( j)) := at( j) − min
k=1,...,K

t( j)

{p(k)
t( j)}

(v) number of competitors at time t( j)

x5(h( j), at( j) , ~pt( j)) := Kt( j)

(vi) availability of our product at time t( j)

x6(h( j), at( j) , ~pt( j)) := 1{N
t( j)>0} = 1{a

t( j)=0}

(vii) interval length h( j)

x7(h( j), at( j) , ~pt( j)) := h( j)
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Our framework allows to measure the impact of a
firm’s offer price in the presence of competitors’ market
prices. Note, also non-linear versions of explanatory
variables can be used. In this general framework, further
explanatory variables can be easily defined to capture
the impact of additional effects, such as time, product
quality, etc.

Note, the quality of estimations of sales probabilities
(for the entire range of prices or for prices that often
occur during the competition) can be analyzed and com-
pared for different demand learning techniques. As the
true sales probabilities are characterized by the defined
customer behavior and the competing merchant’s strate-
gies they can be determined using, e.g., Monte Carlo
simulations, cf. [12].

In general, regression results are better if prices are
more randomized, cf. [32]. In this context, our platform
can also be used to study the impact of a selection bias
caused by a firm’s strategy as well as the competitors’
strategies. Moreover, the impact of various effects of the
model can be studied, such as distribution and length
of reaction times, customer arrival intensity, customers’
buying behavior, or number of competitors, etc.

Finally, the (estimated) conditional probabilities (4)
and (6) are affected by both, the customer behavior as
well as the strategic interplay of competitors’ price ad-
justments. Recall, a firm’s demand learning does nei-
ther anticipate competitors’ strategies nor their reaction
times. The estimated probabilities (6), however, allow
to indirectly measure the average impact of competi-
tors’ price adjustments and, thus, account for the fact
that market situations may change between two price
adjustments of a firm.

Our platform allows to test and to validate different
demand learning approaches in different competitive
markets. In addition, components of the demand esti-
mation can be further improved (exploration phases,
sampling, feature selection, etc.). While not focus of
this paper, further issues, such as missing variables, IIA
assumption, unobservable demand shocks, etc., can be
addressed, cf. to recent literature, e.g., [33] or [34]. To
this end, our model can be used to study to which extent
such effects influence the quality of different demand
learning approaches.

The goal of the next section is to derive effective or-
dering and pricing decisions that are based on estimated
conditional probabilities for current market situations,
cf. (6). Further, we seek to account for holding costs,
ordering costs, and discounting.

4.3. Dynamic Model and Solution Approach

There are two major problems to derive applicable
pricing strategies in competitive markets: (i) as demand
is affected by many parameters (e.g., dozens of com-
petitors’ prices) a model’s state space explodes and
the problem becomes intractable, and (ii) in general,
as competitors’ strategies are not known, their price
adjustments cannot be effectively anticipated.

Our approach deals with both problems. Most impor-
tantly, instead of computing complete feedback strate-
gies, we compute prices for one period only based on
the current market situation that occurs during a sales
process. To compute controls for single time periods,
in general, the current state as well as potential future
states have to be taken into account. As price reactions
of competitors occur with a certain delay the short-term
evolution of the market can be well approximated by
the current market situation. The long-term evolution
of the market, however, can hardly be predicted. Our
approach is motivated by the fact that the optimal price
for one period mostly depends on the current state and
is much less affected by specific potential states in the
future, see [35] for finite horizon pure pricing problems.

For a current state, we manage problem (i) as follows:
We roughly approximate future market situations by
using sticky prices. While the degree of inaccuracy is
acceptable, we gain a structure that makes it possible
to circumvent the curse of dimensionality, cf. problem
(i), as the states of our dynamic system (i.e., the mar-
ket situation) are not coupled and can be decomposed.
Thus, for single states decisions can be computed inde-
pendently, which makes it possible to consider current
market situations only.

The second key idea is to compensate the model’s
inaccuracy as well as the lack of price anticipations, cf.
problem (i), by frequent price adjustments, which in
turn are possible as the model’s simplicity allows for
fast re-computations.

Due to price adjustments, exits, or entries of firms, in
general, market situations are not stable. In our model,
we consider (estimated) conditional sales probabilities,
cf. (6), a > 0, h > 0, t > 0, i = 0, 1, ...,

P̃(h)(i, a|~p) := P̃t,t+h (i, a|~p) (7)

for selling i items within the time span (t, t + h) at
price a under the condition that at time t the market
situation is ~p (and may change within the period due
to competitors’ price reactions). Note, following our
assumptions, in (7) demand is time homogeneous, i.e.,
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considering the interval (t, t + h) only the period length
h matters. However, time-dependent sales probabilities
are also possible (e.g., seasonal and cyclic effects).

W.l.o.g., in the following, we consider a firm with an
average price adjustment delay of h = 1. As described
in the beginning of this section, we use a simplified dy-
namic programming approach based on a discrete time
model. In this context, a firm’s random accumulated
future profits Gt, cf. (3), from time t on (discounted on
time t) amount to, t = 0, 1, 2, ...,

Gt :=

∞∑
s=t

δs−t ·
(
(as(Ns, ~ps)− c) · (Xs+1 − Xs)
−l · Ns −C (bs(Ns, ~ps))

)
(8)

In a given state (n, ~p) at time t, the best expected dis-
counted future profits E(Gt|Nt = n, ~pt = ~p), cf. (8), are
independent of time and described by the value function
V∗(n, ~p), n = 0, 1, ...,N, p(k) > 0, k = 1, ...,K.

If a period’s (random) demand is i items and b items
are ordered (with delivery delay), the transition of the
current inventory level n to the next period’s level is
given by n→ max(n−i, 0)+b. To avoid an unbounded
state space, we use the upper limit Nmax, which – if
chosen sufficiently large – does not affect the optimal
solution (a∗(n, ~p), b∗(n, ~p)), which is characterized by
the associated Hamilton-Jacobi-Bellman equation, n =
0, ...,Nmax, p(k) > 0, k = 1, ...,K,

V∗(n, ~p) = max
a∈A,b∈B

{ ∑
i=0,...,Nmax

P̃(1)(i, a|~p)

·
(
(a− c) ·min(i, n)− l · n−C(b)
+z · δ · V∗ (min ((n− i)+ + b,Nmax) , ~p)

)}
(9)

where z, z > 0, is an additional penalty/discount param-
eter which allows (i) to control the speed of sales of the
feedback policy, and (ii) to account for expected gen-
eral long-term market trends (decay of average prices,
product attractiveness, etc.). For the time being, we
let z := 1. The set of admissible prices A and order
quantities B can be chosen arbitrarily.

The optimal joint pricing a∗(n, ~p) and ordering strat-
egy b∗(n, ~p), n = 0, ...,Nmax, p(k) > 0, k = 1, ...,K, is
given by the arg max of (9). If optimal prices or order-
ing quantities are not uniquely determined, we choose
the largest numbers.

The solution of the system of equations (9) can be
derived using standard methods like value iteration or
policy iteration. Alternatively, the system can also be
solved using a (nonlinear) solver. Note, the number of
variables and constraints is Nmax + 1.

Value iteration does not need a solver to approximate
the value function. For a given “large” number T , we
use the terminal condition

VT (n, ~p) := 0 (10)

for all numbers n and market situations ~p. Using the
recursion, t = 0, 1, ...,T − 1, n = 0, ...,Nmax, p(k) > 0,
k = 1, ...,K,

Vt(n, ~p) = max
a∈A,b∈B

{ ∑
i=0,...,Nmax

P̃(1)(i, a|~p)

·
(
(a− c) ·min(i, n)− l · n−C(b)
+z · δ · Vt+1 (min ((n− i)+ + b,Nmax) , ~p)

)}
(11)

we can compute the values Vt(n, ~p), t = 0, 1, ...,T − 1.
The number of iteration steps T can be chosen such
that the approximation error between V and V∗ is suffi-
ciently small. The approximation error can be estimated
via the discount factor δ.

Finally, the associated (optimal) strategies a0(n, ~p)
and b0(n, ~p), n = 0, ...,N, are given by the arg max of
(11) at the last recursion step, cf. t = 0.

Note, due to the size of the state space it is not pos-
sible to compute prices at(n, ~p) for all states ~p in ad-
vance. The following algorithm, however, circumvents
the curse of dimensionality and allows to derive viable
heuristic joint pricing and ordering strategies in com-
petitive markets with a large number of competitors.

Algorithm 4.1. We define the following pricing and
ordering heuristic:

Step 1: For every period t observe the new state, i.e.,
the current inventory level Nt and the current market
situation ~pt. Compute the probabilities P̃(1)(i, a|~pt) for
all i = 0, 1, ...,Nt, a ∈ A.

Step 2: Solve either (9) for V∗(Nt, ~pt) and a∗(Nt, ~pt),
b∗(Nt, ~pt), or use T recursion steps to compute the spe-
cific value V0(Nt, ~pt), cf. (10) - (11), and obtain the as-
sociated offer price a0(Nt, ~pt) and the ordering decision
b0(Nt, ~pt).
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The key idea is to just compute decisions for sin-
gle market situations and to regularly refresh them in
response to changing market situations. Due to the
small dimensionality of the state space, a single re-
computation is very fast. Further, our solution is scal-
able as the algorithm’s complexity does neither increase
with the number of competitors, the number of offer
dimensions, nor the number of explanatory variables.

Remark 4.1. The recomputations of Algorithm 4.1
can be speed up as follows:

(i) Typically it is sufficient to consider a small sub-
set of admissible prices A and order quantities B. Suit-
able subsets can be derived from previous computations
for a∗(n, ~p) and b∗(n, ~p).

(ii) The computation of decisions via (11) can
be dramatically accelerated by using suitable starting
values v(n), n = 0, 1, ...,Nmax, for the terminal condi-
tion VT (n, ~p) := v(n), cf. (10). Suitable starting val-
ues can be derived from previous computations, i.e.,
v(n) := V0(n, ~p′) for market situations ~p′ similar to ~p.

(iii) Further, if the computation time shall be be-
low a certain time limit (e.g., 0.1 seconds) the number
of recursion steps, cf. (11), can either be chosen suffi-
ciently small or the recursive approximation is stopped
accordingly.

(iv) Reaction times are an competitive advantage.
However, the number of market requests is often lim-
ited. Our framework allows to balance the accuracy
of solutions and the required computation time. The
number of price updates processed can be effectively
controlled.

5. Numerical Examples and Evaluation

The platform allows simulating strategic interaction
of rule-based and data-driven strategies in different mar-
ket scenarios characterized by product portfolios, cus-
tomer behaviors, oligopoly settings, and cost definitions.
In Section 5.1, we describe our setup and give examples
of rule-based merchants. In Section 5.2, we study how
our data-driven strategy performs in duopoly setups. In
Section 5.3, we evaluate an oligopoly scenario.

5.1. Merchant Description and Simulation Setup

Our merchant implementation with the proposed op-
timization model is called data-driven merchant. A
new training on all training data is processed every
minute. The period length is four seconds. Further,

we let Nmax = 40, T = 40, A := {0.1, 0.2, ..., 100},
B := {0, 1, 2, ...,Nmax}, and δ = 0.9999.

Besides our data-driven merchant, we consider the
following two rule-based merchants. The cheapest mer-
chant always undercuts the cheapest competitor by con-
figurable amount (here, 0.30). Only if the cheapest com-
petitor price is higher than the upper price bound of
30, the cheapest merchant sets a price of 30 instead. If
no competitor offer is available, the cheapest merchant
sets the price to the upper price bound. The merchant
makes a new order when the inventory level falls below
six items. In that case, the merchant orders as many
items as needed to refill the inventory to 20 items. Price
updates are made every four seconds.

The second rule-based merchant, called two bound
merchant, undercuts the competitor with the lowest
price by 0.30, similar to the cheapest merchant. How-
ever, the merchant has a upper and lower price bound.
If the cheapest competitor’s offer price is below the
lower price bound of 17, the two bound merchant sets
the price to the upper price bound, 30. Moreover, if no
competitor offers are available or all competitor prices
are above the upper price bound, the price is also set
to the upper price bound. This merchant makes a new
order if the inventory level falls below four items. In
that case, the merchant orders as many items as needed
to refill the inventory to 15 items. Price updates are also
made every four seconds.

Consumers are configured to visit the marketplace
at an average rate of 100 consumers per minute. The
time between arriving consumers is exponentially dis-
tributed with a mean of 0.6 seconds. They dismiss of-
fers costing 80 or more. Assume the remaining J offers
~o = (o1, o2, . . . , oJ) have prices ~p = (p1, p2, . . . , pJ).
The maximal price in ~p is denoted by pmax, the sum of
these prices is denoted by psum. An arriving consumer
buys one item from the remaining offers j at random
with the probability distribution, j = 1, . . . , J,

P(Buy from o j) =
pmax + 1− p j

J · (pmax + 1)− psum
(12)

If there are no offers with prices below 80 (willing-
ness to pay), the consumer leaves the marketplace with-
out buying anything.

Simulations have a duration of 15 minutes. Ordering
costs are defined by c f ix = 10 and cvar = 15. Holding
costs are three per minute per item for all merchants.
That corresponds to l = 3/(60s/4s) = 0.2 for the
data-driven merchant. If not mentioned otherwise, the
following simulations are run with the configuration
listed here.
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Fig. 4. Screenshot of the Price Wars simulation: Price trajectories in a
duopoly of our data-driven merchant and the cheapest merchant. Dots
in the chart are price updates and bars are sales events. Configurations
are listed in Section 5.1 and Section 5.2.1.

5.2. Duopoly Simulation

In this section, we investigate the profitability of the
proposed merchant in different duopoly scenarios. Our
data-driven merchant competes with each of the two
rule-based merchants. In the last duopoly scenario, two
data-driven merchants with the same strategy compete
with each other. In the simulations, the competitors’
strategies are mutually not observable.

5.2.1. Data-Driven Merchant vs. Cheapest Merchant
We simulated a duopoly between the data-driven and

cheapest merchant for 15 minutes. Figure 4 shows how
both merchants’ prices undercut each other. The data-
driven merchant does not reduce the price below 20; the
price is raised to 25-30. The increased price has lower
sales probabilities but a higher profit margin. Surpris-
ingly, we observe that the cheapest merchant increases
the price sometimes. When the data-driven merchant is
out of stock, there is no competitor offer for the cheap-
est merchant to undercut. When this is the case, the
cheapest merchant uses a default price. The final perfor-
mance results of this simulation are shown in Table 2.
The data-driven merchant has overall more ordering
and holding costs. However, profits are higher as costs
are overcompensated by higher revenues compared to
the cheapest merchant.

Merchant Profit Revenue Holding Ordering

Data-Driven 7 285.78 20 599.00 588.22 12 725.00
Cheapest 5 796.11 17 165.10 418.99 10 950.00

Table 2
Performance results of a duopoly with our data-driven merchant and
the cheapest merchant. Configuration as described in Section 5.1 and
Section 5.2.1.
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Fig. 5. Screenshot of the Price Wars simulation: Price trajectories in
a duopoly of our data-driven merchant and the two bound merchant.
The two bound merchant restocks the inventory to 25 and reorders if
the inventory falls below 7 instead of four items to reduce the number
of stock-outs. All other parameters are as defined in Section 5.1 and
Section 5.2.2.

5.2.2. Data-Driven Merchant vs. Two Bound Merchant
In a second setup, we study the competition between

the data-driven merchant and the two bound merchant.
Compared to the cheapest merchant, we used a different
ordering policy. The two bound merchant restocks to 25
items (instead of 15) and makes a new order whenever
the inventory level falls below 7 items (instead of 4).
This reduces the risk of having stock-outs.

The data-driven merchant expects the most profit
from undercutting the competitor. This results in both
merchants undercutting each other as shown in Fig-
ure 5. The two bound merchant is programmed to raise
the price if it falls below a certain threshold (price 17).
However, the data-driven merchant was the first to in-
crease the price in this simulation (if prices are below
20). The performance results are shown in Table 3. Both
merchants made less profit compared to the previous
setting, see Section 5.2.1.
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Merchant Profit Revenue Holding Ordering

Data-Driven 5 858.79 18 984.00 595.20 12 530.0
Two Bound 5 230.10 16 952.70 527.60 11 195.0

Table 3
Simulation results of a duopoly with our data-driven merchant and
the two bound merchant. The two bound merchant holds more items
in the inventory to reduce the number of stock-outs. The two bound
merchant restocks the inventory to 25 instead of 15 items and reorders
if the inventory falls below 7 instead of 4 items to reduce the num-
ber of stock-outs. Other parameters as described in Section 5.1 and
Section 5.2.2.
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Fig. 6. Screenshot of the Price Wars simulation: Price trajectories
in a duopoly of two identically configured data-driven merchants.
Parameters as described in Section 5.1 and Section 5.2.3.

5.2.3. Data-Driven Merchant Against Itself
The third setup analyzes the competition between

two identical instances of our data-driven merchant.
The price chart in Figure 6 shows again the typical
zig-zag pattern of two merchants undercutting each
other and periodically pushing the price up to restore
the price level and, in turn, to increase profit margins.
The competition between two data-driven merchants
happens at a higher price level (around 32-51) compared
to the previous simulation (around 20-26). This results
in an overall higher profit for both competing merchants.
The automated data-driven strategies suggest to order
new items whenever the inventory level falls below six
items and restock the inventory to around 28 items.

Results of this simulation are shown in Table 4. We
observe that performance results are overall similar but
not entirely symmetric. Merchants do not gather the

Merchant Profit Revenue Holding Ordering

Data-Driven 17 361.30 30 936.0 804.69 12 770.0
Data-Driven 2 15 650.58 27 282.0 721.41 10 910.0

Table 4
Simulation results of a duopoly with two (symmetric) data-driven mer-
chants. Configurations as described in Section 5.1 and Section 5.2.3;
simulation duration of 30 minutes.
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Fig. 7. Screenshot of the Price Wars simulation: Price trajectories
in an oligopoly scenario on the platform. Our data-driven merchant
competes with two rule-based merchants. Configurations as described
in Section 5.1 and Section 5.3; simulation duration of 30 minutes.

same sales events which may result in different pric-
ing and ordering policies. Further, as price reactions of
both merchants have the same frequency and occur al-
most equidistantly, the mutual price reaction times can
be uneven. Hence, the percentage of time a merchant
has the most recent price update can be skewed, which
leads to different results. To circumvent this issue, re-
action times can randomized, cf. [36]. This makes it
also harder to anticipate price reaction times in order to
choose the timing of price updates strategically.

5.3. Oligopoly Simulation

This section illustrates how our data-driven merchant
performs in an oligopoly. We simulated the competition
between the data-driven merchant, the cheapest mer-
chant, and the two bound merchant. The evolution of
pricing and ordering decisions during the simulation
are depicted in Figures 7 and 8. Again, the data-driven
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Fig. 8. Screenshot of the Price Wars simulation: Inventory levels
over time in an oligopoly scenario on the platform. Our data-driven
merchant competes with two rule-based merchants. Configurations
as described in Section 5.1 and Section 5.3; simulation duration of
30 minutes. Note, while the simulation of sales is in continuous time,
the plot grid is discrete.

merchant learns the advantage of undercutting competi-
tors’ offers. However, this creates a high price competi-
tion and average price levels decrease. With shrinking
profit margins, it becomes unprofitable to set the price
below competitors’ prices. The data-driven merchant
pushes the price up in such a situation. This motivates
the competitors to also increase their offer prices.

Table 5 shows the results of a 30 minutes competition
between the three merchants. The data-driven merchant
outperformed all competitors. Our data-driven merchant
made around 10% more profit than the cheapest mer-
chant and 18% more than the two bound merchant. In-
terestingly, our merchant did not make the most revenue
(the cheapest merchant did). The cheapest merchant
sold the most items but with low profit per item. Our
merchant made the most profit by saving a lot of or-
der cost compared the to cheapest merchant. The data-
driven merchant orders on average more items than the
competitors. This results in higher holding costs but
saves on fixed order cost.

We find that fully automated data-driven strategies
– combined with efficient dynamic programming opti-
mization techniques – clearly outperform rule-based
strategies after a sufficiently large data set has been
gathered for demand learning. It can also be studied
to which extent jointly optimized pricing and ordering

Merchant Profit Revenue Holding Ordering

Data-Driven 5 944.13 21 938.00 943.87 15 050.00
Cheapest 5 386.90 23 770.80 903.89 17 480.00
Two Bound 5 038.63 20 148.30 644.67 14 465.00

Table 5
Simulation results of an oligopoly scenario with the data-driven,
the cheapest, and a two bound merchant. The data-driven merchant
made the most profit. The cheapest merchant made the most revenue.
Configurations as described in Section 5.1 and Section 5.3; simulation
duration of 30 minutes.

strategies outperform different combinations of single
ordering and pricing benchmark strategies.

Moreover, the platform can be used to study short-
term as well as long-term performance of self-adapting
strategies that iteratively improve over time.

6. Merchant Implementation Details

Merchants on the platform can be written in any lan-
guage as long as they comply with the platform’s REST
APIs. We decided to implement our merchant in the
Python programming language [37] for the following
reasons. Python has great library support for numeri-
cal computing. These libraries allow a concise and ef-
ficient implementation without reinventing the wheel.
Our platform offers a Python implementation of the
RESTful API for the merchant to communicate with
the platform’s services. Lastly, it is possible to quickly
create prototypes in Python.

Our merchant consists of four components. The main
loop is the central component. It regularly checks the
marketplace for open offers, updates prices, and orders
items from the producer. After enough time has passed,
the merchant requests new market and sales data from
the event log and provides it to the demand learning
component to analyze demand.

The merchant makes ordering and pricing decisions
based on policies that are computed by the policy com-
ponent. The policy component contains the dynamic
programming approach. The merchant provides all ar-
guments that are necessary for the policy creation and
sales probabilities are requested from the demand learn-
ing component. The dynamic programming function is
the computational most expensive part of the merchant.
An efficient implementation reduces the time needed for
a pricing and ordering decision. We create a vector that
has the dimensions inventory levels, ordering decisions,
pricing decisions, and demand. The expected profit is
calculated for each possible situation and decision that



26 R. Schlosser et al. / Repricing and Ordering under Competition

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

occur in this vector. The expected profits are used to
find the most profitable decisions and to create the or-
dering and pricing policy. We use fast and vectorized
array operations from the Numpy library [38] to com-
pute the policies. Python is a high-level programming
language and has a lot of computational overhead [39].
Numpy provides data structures and functions imple-
mented in the C programming language to overcome
Python’s overhead for numeric computations.

The merchant’s demand learning component is re-
sponsible for estimating sales probabilities and for
bringing market and sales data into a form that can
be used for training. The module uses linear regres-
sion to learn and predict the demand. We use the scikit-
learn library [40] for a reliable and fast linear regres-
sion implementation. As an additional benefit, it is
easy to change between regression algorithms using
scikit-learn. The demand learning is implemented in
a way that make it easy to add new or change exist-
ing explanatory variables. Only single function (named
extract_features) must be changed to add new
explanatory variables.

The merchant server receives sales events from the
marketplace and triggers the appropriate action. In our
case, the merchants prints a message to notify the user
whenever an item was sold. Moreover, the server re-
ceives configuration updates from the platform frontend
and applies them.

7. Conclusion and Future Work

In this work, we presented a distributed and scalable
platform resembling real-world e-commerce applica-
tions. Both practitioners and researchers can investigate
the strategic interaction of various adaptive data-driven
pricing and ordering strategies and develop, test, and
evaluate their own approaches.

Further, we have proposed a data-driven approach to
derive effective pricing and ordering strategies. We com-
bine private sales data with partially observable data of
the competitors’ offers to efficiently predict sales prob-
abilities in competitive markets. Using estimated sales
probabilities, we have set up a dynamic model includ-
ing discounting, ordering costs, and holding costs. Our
strategies are even applicable if the number of competi-
tors’ products is large. Our solution approach is char-
acterized by a simplified frequently updated dynamic
programming model, in which only current market situ-
ations have to be considered.

Our framework can be easily extended in several
ways: (i) further offer dimensions (quality, ratings, ship-
ping time, etc.), (ii) the consideration of perishable
products, and (iii) substitution effects between differ-
ent products. While the simulation platform allows to
take these extensions into account, the presented opti-
mization model has to be adapted. To address markets
with multiple offer dimensions (cf. [41]) the demand
learning component needs to be extended. In our setting,
additional characteristic explanatory variables can be
easily defined. The consideration of perishable prod-
ucts requires finite horizon models. Such models can
be solved using recursive dynamic programming tech-
niques. In multi-product models, the state space as well
as the action space can be enormous. To manage this
complexity, relaxation approaches and decomposition
techniques can be used. The demand learning compo-
nent has to be extended such that substitution effects
are taken into account, e.g., [42].
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Appendix A. Notation Table and Additional
Figures
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Symbol Description Symbol Description

a Offer price A Set of admissible prices
~p Competitors’ prices K Number of competitors
δ Discount factor for future profits l Holding costs per item and period
t Time b Number of items ordered
B Set of admissible order quantities c f ix Fixed order costs
cvar Variable order costs C(b) Total order costs for ordering b items
λ(a, ~p) Mean sales for one period with stable prices Pt,t+h(i, a|~p) Probability to sell i items within (t, t + h)

Nt Random inventory level at the time t Xt Random number of sold items until time t

Zt Number of orders made until time t Gt Random accumulated disc. profit from time t on
y Dependent variable (number of sales) ~x(h, a, ~p) Explanatory variables
M Number of explanatory variables h Price reaction time
~β Weights vector for linear regression ~β∗ Optimal weights for specific training data
λ̃(h, a|~p) Estimated mean sales for a time span h P̃(h)(i, a|~p) Estimated probabilities for a time span h

n Inventory level Nmax Maximum inventory capacity
V∗(n, ~p) Value function Vt(n, ~p) Approximated value function
T Number of periods/recursion steps v(n) Starting value for value function VT

a∗(n, ~p) Optimal pricing decision b∗(n, ~p) Optimal ordering decision

Table 6
List of variables and parameters.

Fig. 9. Dashboard of the HTML-based frontend.
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