Clarification / Erratum

Description of the issue

We have been made aware that a transition in the steps shown in Figure 3 is not entirely fail-
safe. In step four, the DRAM version of the abs_next pointer in abs_previous is changed
from abs_current_node to abs_new_node.

At this point, concurrent transactions might (1) read information that is not fully committed
and (2) perform further modifications of the data, which would not be fully persistent until
the original thread finishes step five.

Impact on the use in a database

This went unnoticed in our Hyrise-NV evaluation as the modifications to the hashmap were
embedded in database transactions. These transactions had their own commit mechanisms
(MVCC with a linearized global commit ID, see Hyrise-NV: Instant Recovery for In-Memory
Databases Using Non-Volatile Memory). As such, modifications by threads that were faster
than the original writer were placed on hold until the original database transaction was
finished.

However, this does not change the fact that the proposed hashmap does not fulfill all
consistency requirements.

Possible solutions

The easiest solution would be to have the reader flush the abs_next pointer before it is

used. As the pointer is only modified once, the required CLWB operation should come at

almost no cost if the flush has already been performed. Additional memory fences should
not be required. However, there might be additional synchronization costs.

A second solution would be to include a “write-pending” bit in the pointer. The writer would
first set and flush this bit together with the new address. In a second step, it would unset the
write-pending bit and perform a second flush. Readers could identify pending writes by
waiting for the bit to be unset.

Both solutions will have an impact on the hashmap’s performance. We decided against
repeating the evaluation for two reasons: First, the original evaluation was limited by NVM
being unavailable at the time and was solely based on an emulation method using the
outdated CLFLUSH method. With actual NVM available today, its results are of limited value.
Second, as programming libraries for NVM have been made public, there are better
hashmap implementations available that take the performance characteristics of NVM into
account and have been validated using tools that were not available at the time?.
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ABSTRACT

Non-volatile RAM (NVRAM) will fundamentally change in-
memory databases as data structures do not have to be ex-
plicitly backed up to hard drives or SSDs, but can be inher-
ently persistent in main memory. To guarantee consistency
even in the case of power failures, programmers need to en-
sure that data is flushed from volatile CPU caches where it
would be susceptible to power outages to NVRAM.

In this paper, we present the NVC-Hashmap, a lock-free
hashmap that is used for unordered dictionaries and delta
indices in in-memory databases. The NVC-Hashmap is then
evaluated in both stand-alone and integrated database bench-
marks and compared to a B+-Tree based persistent data
structure.

1. INTRODUCTION

Non-Volatile Main Memory (NVRAM) has lately received
a great deal of attention in the database community |1, [10,
12,16]. Because the periodic refreshes known from DRAM
are no longer required, NVRAM guarantees data persis-
tence even across power outages. Also, without periodic
refreshes, NVRAM will only consume power when being ac-
cessed. This in turn will reduce the power consumption of
data centers. Unfortunately, the advantages of NVRAM are
not for free. Early versions of NVRAM are predicted to
have higher access latencies, especially for writes [12]. Also,
to make use of its non-volatility, data structures have to be
adapted so that modifications reach the NVRAM and are
not held in volatile CPU caches.

In this paper, we show how programmers can adapt exist-
ing data structures to ensure their persistence on NVRAM.
We discuss how building on existing lock-free data struc-
tures can help in the process and what changes need to be
made. The paper is organized as follows: In Section [2] we
outline the different challenges programmers face when us-
ing NVRAM, such as dealing with volatile CPU caches and
reordering. Also, we compare these challenges with those
faced when developing lock-free data structures. After that,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

IMDM ’15, August 31 2015, Kohala Coast, HI, USA
© 2015 ACM. ISBN 978-1-4503-3713-7/15/08. .. $15.00
DOL: http://dx.doi.org/10.1145/2803140.2803144

Section [3| shows how we adapted an existing hashmap to
make use of NVRAM. The integration of the Hashmap into
our NVRAM research database HYRISE-NV is described in
Section @ We evaluate and compare the hashmap both in
stand-alone benchmarks (Section [5)) and in a database con-
text (Section @ We will show how the necessary adapta-
tions affect the performance of the data structures and how
the changed performance characteristics affect the choice of
data structures in a DBMS. Finally, we discuss related as
well as future work and give concluding remarks in Section|[g]

2. CHALLENGES FOR NON-VOLATILE
DATA STRUCTURES

NVRAM comes with new challenges as the consistency
and persistence of in-memory data structures has to be guar-
anteed even across system crashes. We will look at the com-
plications and show solutions to these.

There are different solutions proposed for this problem
that would allow the hardware or a low-level software layer
handle all of these issues [15, [17]. None of these are yet
ready to be used. In the absence of such a holistic approach,
the task of guaranteeing correct cache flushes and execution
orders remains with the programmer.

Traditionally, the caches are designed to be transparent to
the programmer. With NVRAM, however, the programmer
has to be aware where the data is currently stored. This
crash has to be assumed to be a complete power loss in
which both SRAM and DRAM lose their contents. Data
stored in the volatile components will be lost. Thus, data
that has to be preserved must be moved into what is called
the persistence domain, i.e., one of the non-volatile stores.

To avoid such loss of data, the CPU has to be instructed
to flush the contents of its volatile components into the
persistence domain. One solution to this challenge is the
CLFLUSH instruction, writes a cache line’s contents to mem-
ory. A big disadvantage, however, is that it also invalidates
the cache line meaning that this cache line has to be re-
retrieved when accessed the next time, causing significant
performance costs. This will be alleviated with the arrival
of the CLWB instruction in future processors, which writes a
cache line to memory without invalidating it [11].

There is another aspect to this: While CLFLUSH (or CLWB)
guarantee that the data has been written to NVRAM, it
might have also previously been written as the result of
a cache eviction. Programmers have no control over this.
If the system crashes in the middle of an operation that
modified multiple addresses, some of these might have been
evicted to NVRAM (where they endure the crash) while
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Figure 1: Inserts into a vector can be inconsistent if
writes are reordered

other modifications get lost. This almost inevitably leads to
data corruption. Thus, the programmer must ensure that
premature evictions do not affect the consistency of the data.

Recent work [5| suggests that, in addition to the CPU
caches, additional memory buffers have to be taken into
account when flushing to the persistence domain. These
buffers, as well, are volatile and are said to require explicit
flushes. Intel introduced the PCOMMIT instruction for this.
As neither CLWB nor PCOMMIT are available in current CPUs,
we will use CLFLUSH in the following.

2.1 Reordering

As discussed above, the order in which data is written to
NVRAM can affect its consistency. But not only premature
cache evictions can affect the order in which modifications
reach the persistence domain. Both the compiler and the
CPU may also reorder operations in a way that puts the
consistency at risk. An example of this is shown in Fig-
ure For adding a value (here 4) to a vector, two steps
are necessary: The size of the vector has to be increased by
moving the end pointer (assuming sufficient capacity) and
the value has to be written. If the value is written first
(A—B—D), a crash in between would not compromise the
consistency of the vector. The new value is beyond the end
pointer and is thus ignored. If, however, the end pointer
is moved first (A—C—D), the vector contains an uninitial-
ized value in step C. If a crash were to occur, a wrong value
would be included in the vector.

To make sure that reordering does not change the write
order in a way that compromises the consistency, program-
mers have to use memory barriers (i.e., SFENCE/MFENCE) that
enforce ordering both with regards to compiler optimizations
and the CPU’s out-of-order execution.

2.2 Recoverability

The system can crash at every point during the program’s
execution. Recoverability has to be ensured by making sure
that state transitions do not leave the data structure in a
state in which its consistency is jeopardized. Ensuring this
can happen with single atomic writes (such as shown in Fig-
ure [1), logging, copy-on-write, or versioning [5} [19].

A common theme is to use transitions from a consistent
state via a recoverable state to another consistent state.
That recoverable state, while not consistent itself, can be
repaired after a crash so that the data structure returns to
its previous state. This is similar to undo logs in databases.
An example of this would be a (single-threaded) double-
linked list. Inserting a new element into the middle could
be implemented as (1) allocating and writing the element,
(2) updating the prev pointer of the following element, and
(3) updating the nezt pointer of the previous element. A
crash after the first step would not impact the consistency of
the data structure. However, the NVRAM allocator would
have to clean up the element to avoid memory leaks. The

transition described by the second step is one that moves
the data structure from a consistent state to a recoverable
state. If the system crashes after writing the prev pointer,
but before writing the next pointer, the list is corrupted. By
traversing the list during the recovery process, this state can
be identified and repaired by resetting the prev pointer and
undoing the partial insertion. If no crash occurs, the last
step - writing the next pointer - moves the data structure to
a consistent state.

2.3 Similarities with Lock-free Programming

Lock-free data structures, as well, require atomic state
transitions from one consistent state to another. One way
to guarantee this is Linearizability |9]. It is used to show
that other threads that access the data structure in between
do not see a transient, inconsistent version of the data. Lin-
earizability is a good way to identify positions in the code
of a lock-free data structure at which flushes to NVRAM
have to be inserted. This is because every linearizable op-
eration has a Linearization Point [8, p. 55] at which “[f]or
implementations that do not use locking [...] the effects of
the method call become visible”. Before the Linearization
Point, the data structure appears to be unchanged to other
callers and after the Linearization Point, all changes are vis-
ible atomically. As such, adding NVRAM flushes to the
Linearization Point will add atomic state transitions even
across system crashes. We will show how a flush was added
to such a Linearization Point in the following section.

3. THE NVC-HASHMAP

In this section, we present the NVC—Hashma[E as an alter-
native data structure for the use in NV-persisted in-memory
databases. The implementation is based on Split-Ordered
Lists, an extensible, lock-free hash table [18]. We first dis-
cuss the layout of the hashmap and how its lock-free prop-
erties help in converting it into an NV-persisted data struc-
ture. After this, we describe the implementation changes in
depth.

3.1 Data Layout

Most hashmaps store their entries in a number of buck-
ets, each of which holds the entries that share the same
hashkey (or a part thereof). In Split-Ordered Lists, on the
other hand, all entries are part of a single, forward-linked
list. Instead of being a container for a number of entries,
buckets are pointers into this list, identifying parts of the
list as members of the bucket. “Metaphorically speaking,
[the] algorithm differs from prior known algorithms in that
extensibility is derived by ‘moving the buckets among the
items’ rather than ‘the items among the buckets’ ” [18]. In-
stead of inserting entries into a fixed-size bucket, entries are
inserted into the list at their appropriate position.

When buckets are pointers to specific entries in the linked
list, this becomes a problem when those entries are deleted.
To avoid referencing a deleted entry, dummy entries are in-
troduced. These are elements of the linked list that hold
a key that belongs into the same bucket as following en-
tries. Dummy entries, however, are not returned as part of
a search and are never deleted. As a result, they can be
safely referenced by the bucket list.

'Non-Volatile and Concurrent Hashmap
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Figure 2: Example of a Split-Ordered List, based
on (18|

Figure[2]gives a visualization of such a Split-Ordered List.
Dashed entries are dummy entries that are referenced by the
bucket list on the left.

3.2 Use of Split-Ordered Lists

The choice for Split-Ordered Lists was made because their
layout helps in adapting them for NVRAM. As discussed in
Section |1} one of the major challenges for non-volatile (NV)
data structures is to allow for atomic updates. While single
changes, such as updating a value in a vector, can be done
and flushed atomically, more complex changes require some
sort of atomicity control. When deciding what data layout
to use for the hashmap, this plays an important role.

Take linear hashing |13] as an example. If an insert results
in an overflow, a number of changes will be done to the
hashmap: A new primary page has to be created, entries
need to be moved, and meta data has to be updated. When
taking NV atomicity into account, this can only be achieved
using versioning or shadow copies.

Split-Ordered Lists, on the other side, are already de-
signed to use compare-and-swap operations to insert new
entries into the linked list. When an entry B is inserted be-
tween A and C, the previous entry A will either have the old
state (pointing to B), or it will have been atomically changed
to C. Inserts into the list can be performed without locks by
comparing and swapping (i.e., using the CAS operation) the
next pointer of the previous element. If a concurrent modifi-
cation is detected, the CAS would fail and would be retried.
The moment in which the compare-and-swap succeeds is the
Linearization Point of the insert operation.

Originally designed to allow for lock-free updates, this
property becomes an important advantage when storing the
hashmap on NVRAM. If every compare-and-swap insert into
the hashmap is followed by a flush of the cache line, it is
guaranteed that both the in-use version (which might be
partially in the CPU cache) and the on-NVRAM version
are consistent. We will show this in the next subsection.

3.3 Implementation

Our implementation is based on the open-source version of
Intel’s Threading Building Blocks library, more specifically
the tbb: :concurrent_unordered_map.

When adapting an existing data structure for use with
NVRAM, four design decisions have to be made:

1. How is non-volatile memory managed? List nodes have
to be dynamically allocated and freed. At the same time,
memory leaks from incomplete object creations have to
be identified and fixed.

2. How are object references kept valid if the address layout
changes? All known methods to access NVRAM from
the user-space are based on file systems from which files
are mmapped into the address space of the process. After
a crash, the layout of this user address space may have
changed; for example because of Address Space Layout

Randomization (ASLR).

3. How to find an entry point after recovery? When the file
has been mapped into the address space, it only contains
a number of objects that are referencing each other, but
no pointer into the file exists.

4. How to deal with incomplete updates? As both the com-
piler and the CPU’s cache eviction policies might cause
updates to be executed out-of-order, the programmer has
to use fences and cache-line flushes in order to avoid er-
roneous states from which recovery might be impossible.
For the NVC-Hashmap, we made the following decisions:

With regards to (1), the Persistent Memory File System
(PMFS) [5| and an NVRAM allocator, pmemallod” were
used. For dealing with pointers to objects (2), the hashmap
stores pointers (e.g., to the following list node) relative to
the start position of the memory-mapped file. Before be-
ing followed as part of operations on the data structures,
these relative pointers are converted into absolute addresses
(abs_x) by adding the base address of the mmaped file. Corre-
spondingly, absolute pointers are converted to relative point-
ers (rel_x) by subtracting the base address before storing
them on NVRAM. pmemalloc also allows to recover the en-
try point of the data structure (in our case, a pointer to
the bucket list) by storing it in a static area at the begin-
ning of the PMFS file. Additionally, information such as the
maximum bucket size are stored in that area as well.

When dealing with incomplete updates (4), we analyzed
the Linearization Points of the operations to find correct po-
sitions to flush changes to NVRAM. We demonstrate this by
going through the insertion of a new entry into the hashmap
as shown in Figure[3] After creating the node to be inserted,
called new_node (1), its relative pointer rel_next is set to
the following element (current_node). By assigning a value
to rel_next (2), that value is stored in the CPU cache, but
not necessarily on NVRAM. This is denoted by the dashed
and solid lines. Next, the rel_next pointer is persisted
by using a method of the pmem library that performs the
CLFLUSH and adds a memory fence (3). Up to now, the list
(and on a higher level, the hashmap) has not been modified.
This happens in step 4, when the rel_next pointer of the
previous element is changed to point to the new element us-
ing compare-and-swap. This atomically inserts the element
into the list and into the hashmap. The current version of
the hashmap now includes the new element. However, if the
system were to crash here, the updated pointer might not
have been written to the persistence domain. This happens
in the final step (5) where a second call to pmem_persist
flushes the updated pointer to NVRAM.

Similar adaptations have been made to other modifying
steps, such as updating the bucket list. These, as well, follow
the principle of first persisting newly created objects and
then finalizing the modification on NVRAM right after the
Linearization Point.

4. NVRAM IN IN-MEMORY DATABASES

We will now show how the NVC-Hashmap can be in-
tegrated into a DBMS. Hashmaps are used in databases
both for index structures and as dictionaries for dictionary-
compressed columns. To benchmark our NVC-Hashmap,
we added it into HYRISE-NV, a modified version of the

Zhttps:/ /github.com/pmem/linux-examples
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Figure 3: Five steps are needed to guarantee persis-
tent inserts into an NVC-Hashmap

open-source research database HYRISEE. This way, we can
compare it to the other persistent data structure used, the
NVB+-Tree which we will describe later in this section.

4.1 HYRISE-NV

HYRISE is an in-memory database that supports hybrid
row and column layouts . With fine-grained control over
which columns are stored together, it balances OLTP and
OLAP needs. Data is compressed using dictionary compres-
sion which replaces values by value ids stored in a dictionary.
This reduces the memory footprint and improves the per-
formance as most operators can operate on small integer
value ids instead of more expensive data types. Value ids
are stored in a contiguous in-memory attribute vector. Ad-
ditional performance improvements are achieved by keeping
the dictionaries sorted so that an order on the value ids re-
flects an order on their associated values. Because adding a
value into the middle of these dictionaries would require a
rewrite of the table, values are separated into a main parti-
tion with sorted dictionaries and a delta partition with un-

3https://github.com /hyrise/hyrise

sorted dictionaries. These are periodically merged. For stor-
ing these dictionaries, both trees and hashmaps can be used.
We will show the performance implications in Section [6]
Both the main and the delta partition can be indexed. While
the main partition uses an optimized vector-based index @,
the delta index uses either a tree or a hashmap. Again,
these will be evaluated later on. In addition to the attribute
vectors, dictionaries, and indices, tables also store visibility
information for each row. Employing Multi-Version Con-
currency Control (MVCC), Hyrise uses this information to
isolate transactions and to detect transaction conflicts.

To ensure persistence on NVRAM, a number of data struc-
tures have to be kept on NVRAM. First of all, the attribute
vectors and the associated dictionaries are needed to restore
the information in the table. Furthermore, the MVCC infor-
mation is preserved so that deletes and incomplete inserts
can be identified after recovery from NVRAM. Additionally,
the state of the Transaction Manager is partially preserved.
Finally, to improve recovery speed, indices are persisted as
well to avoid expensive rebuilds after the system restarts.

We identified two places in HYRISE-NV which can profit
from the presented NVC-Hashmap: the uncompressed dic-
tionaries and the delta indices. Both of these currently use
a different, B4+-Tree based data structure, the NVB+-Tree.

4.2 NVB+-Tree

HYRISE-NV currently uses the “NVB+-Tree”, an inter-
nal data structure based on the STX B—i——Tredz which was
adapted to be persisted on NVRAM. This was done by intro-
ducing versioning similar to Venkataraman’s CDDS Tree [|Z9]
As in MVCC, begin and end versions of tree nodes are stored
and a global “current version” determines which nodes are
visible. Modifications of the tree have to be flushed to the
persistence domain starting with the updated leaf node and
up to the highest changed node. After this, the global “cur-
rent version” information can be updated and flushed. While
this guarantees atomic updates even if the system crashes,
it requires a high number of NVRAM flushes, especially in
the case of node splits. Here, both the left and the right
node, as well as the parent node and the “current version”
information have to be flushed. If inserting the split node
into its parent node causes that node to overflow, even more
flushes are required.

S. STAND-ALONE EVALUATION

We evaluated the NVC-Hashmap in stand-alone bench-
marks and when used as a persistent data structure within
Hyrise-NV. The purpose of these evaluations is to measure
the overhead introduced by persisting the data in the hashmap
to NVRAM and to compare it to that of an alternative data
structure, the NVB+-Tree.

All benchmarks were executed on a platform with two
blades, each having four Intel E7-8870 processors clocked
at 2.40 GHz with power management disabled. We used a
single NUMA node to remove NUMA effects from the mea-
surements. The system has 1.5 TB of DRAM, running at
1067 MHz. As actual NVRAM hardware was not available,
this memory was used for the NVRAM mount as well. While
this leaves out the latency effects of NVRAM, it gives ac-
curate results when looking at the system overhead caused
by the necessary flushes. Once this latency comes into play,

“https://github.com/bingmann /stx-btree
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it will amplify the difference between the shown data struc-
tures. This is because the NVB+-Tree requires significantly
more flushes than the NVC-Hashmap. The cost of these
flushes increases with increased NVRAM latencies.

In order to simulate the requirements of an in-memory
database, two different configurations of the maps were used,
both of which support multiple entries for the same key. The
first is a map from ints to size_t, which would be used for
example in single-column indices. Second is a map from
std::array<char, 40> to size_t as an example for the use
in a multi-column index.

5.1 Inserts

In the insert benchmark, a varying number of uniformly
distributed pairs were inserted into the different maps by a
single thread (multithreaded benchmarks will be discussed
soon). The distinctivity of was chosen as 10% after prelimi-
nary experiments showed that its influence was only minor.
The results of the insert benchmark are shown in Figure

Two graphs are shown, both with four lines. The upper
graph shows the results for a map that uses an integer as its
key, while the lower graph uses the aforementioned array of
40 characters to simulate a multi-column index.

Within each graph, one line shows the performance of
the NVB+-Tree and another that of the NVC-Hashmap. In
addition, two other lines show the performance of those data
structures with CLFLUSHes and memory fences disabled.

Looking at the int variant, inserts into the NVC-Hashmap
are faster than into the NVB+-Tree by a factor of 2x to
2.5x. As expected for hashmaps, the insert performance re-
mains constant while it is increasing for the NVB+-Tree.
When comparing the variants without flushes, the NVB+-
Tree performs faster inserts than the NVC-Hashmap but
still has increasing costs towards the end.

Comparing the map implementations with their no-flush
variants, the NVC-Hashmap has an almost constant over-
head of 1.4x to 1.8x, while the overhead of the NVB+-Tree
decreases from 10x to 4x. This is because the cost of navi-
gating the tree (which does not require flushes) gets higher
with increasing tree height while the number of modified
tree nodes per operation (which require flushes) stays mostly

Key = int
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Figure 5: Cost of searching in a map with size=n
preloaded entries

constant.

When the maps are used to store larger keys, as shown
in the second graph, these tendencies remain the same. For
the NVB+-Tree, the increased size of the key leads to more
expensive inserts both with and without flushes, while the
impact on the NVC-Hashmap’s performance is significantly
less. The reason for this is that the NVB-+-Tree needs
to write the inserted values on multiple levels while the
hashmap only writes them once. This could be alleviated
by using compression for inner nodes or by using a trie.

5.2 Reads

In a database context, not only the insert costs, but also
read costs are of importance. If a database index is used, this
usually means that more reads than inserts are performed.
Thus, the read performance of the two implementations is
evaluated as well. As the structures are not modified in a
read-only benchmark, there are no flushes occurring. Ac-
cordingly, the flush and no-flush variants perform equally
and only the variant with flushes is plotted. In the bench-
mark, the tree was first filled with a varying number of en-
tries as described for the insert. Then, one million searches
(i.e., equal_range (key) calls) were performed.

The results of this benchmark are shown in Figure[5] Sur-
prisingly, the hashmap is not searched in (close to) linear
time but in what appears to be logarithmic time. An expla-
nation for this lies in an increasing number of cache misses.
All entries of a bucket have to be traversed for a search.
As the buckets in a Split-Ordered List are implemented
as a forward-list, these entries may be stored all over the
NVRAM file, causing one cache miss each. The B+-tree,
on the other side, has lower costs because entries with the
same key are stored in a lower number of leaf nodes. This
means that more entries are stored on a cache line and that
fewer cache misses are caused, especially because the inner
nodes are likely to be kept in the caches. This effect does
not apply to the insert benchmark because inserts into a
Split-Ordered List do not traverse the bucket but insert the
new list element in the front of the bucket.

Again, the array variant is more expensive than the int
variant because key comparisons become more expensive.
Especially the tree suffers from this. For the future, we are
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looking into measuring tree structures optimized for longer
keys, such as tries.

5.3 Multi-Threaded Benchmark

An important difference between the two map implemen-
tations is that while the NVB+-Tree supports a single writer
(protected by a mutex) and multiple readers, the hashmap
is lock-free and can be written to by multiple threads. To
show the influence of this, the performance with 20 threads
performing reads and writes on a map with one million pre-
inserted values is shown in Figure @

Both implementations experience significant slow-downs
as the write ratio is increased. The sharp decrease in the
performance of the NVB+-Tree, even with only few writers,
is explained by the overhead of and the contention on the
mutex preventing multiple writes. Not only does the flush
increase the latency of a single operation. With multiple
threads, it now also increases the time the mutex is held
and that other threads have to wait.

In the graph, the line of the two hashmap variants, with
and without flushes, overlap. This might be surprising as at
least some overhead from the flushes was expected, similar
to what was experienced in the insert experiment. It can,
however, be explained when looking at Figure [7] a graph
plotting the scalability of the data structures.

When single-threaded, the NVB+-Tree (with flushes) per-
forms better than the hashmap. Otherwise, the advantage
is on the side of the hashmap which can utilize its lock-
free characteristics. Looking at 100% writes, we find that
the NVB+-Tree shows performance characteristics similar to
those measured with 30% writes. For the hashmap, the re-
sults for the single-threaded execution with 100% writes are
in line with those in Figure @ As soon as multiple threads
are used, the overhead vanishes. This is an interesting re-
sult as it shows that the flush overhead can be hidden in a
multithreaded environment.

At some point the flushing variant even gets faster than
the non-flushing variant. At first this is surprising because
the flush is an additional overhead and should decrease the
overall performance. This behavior is not unheard of for
lock-free data structures [2|. Looking at the implementa-
tion of the hashmap, it can be explained by the contention
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around the compare-and-swap operation (CAS). If a CAS
fails, the work done so far has to be voided. Furthermore,
failed swaps also influence other threads. We measured the
number of failed CAS operations when updating a nodeadAZs
next pointer (see Figure |3) and found that the non-flushing
variant has 3-4x more failed swaps.

5.4 Interpretation

We interpret the benchmarks shown above as follows:
1. In any case, writes are faster with our NVC-Hashmap
than with the NVB+-Tree.
2. The NVB+-Tree has a better read performance.
3. For single-threaded use, the NVB+-Tree shows a better
performance in the case of mixed workloads.
4. The overhead of flushing is bigger for the NVB+-Tree
than for the hashmap.
5. Flushing drastically decreases the speed of the operations.
6. This effect increases when other threads have to wait for
the flush to finish.
. With multiple threads, the hashmap is performing better.
8. The influence of flushes can be hidden in multi-threaded,
lock-free data structures. This is interesting for the de-
velopment of future NV-aware data structures.

N

6. DBMS EVALUATION

After showing the stand-alone performance of the data
structures, this section focuses on their use in an In-Memory
Database, HYRISE-NV. We executed the TPC-C bench-
mark using py-tpccE. To focus on the flush overhead, only
write-heavy NewOrder transactions were used. Both un-
sorted (delta) dictionaries and delta indices used the NVC-
Hashmap (or the NVB+-Tree respectively).

Figure [§| shows a number of differences between the two
map implementations. “None” is a build without any per-
sistence, “NVRAM?” a build with our proposed changes for
Non-Volatile RAM. First looking at the unpersisted NVB+-
Tree, we notice that during the 30 seconds of execution,
the overall throughput increases from 11500 to 13000 trans-
actions per second. This is because in the beginning, the

®https://github.com/apavlo/py-tpcc
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Figure 8: NewOrder transaction throughput with
different map implementations

delta dictionaries are empty and need to be filled, causing
a higher number of writes than are done towards the end.
As seen in Figure [} inserting into trees is expensive. This
explains why the throughput gets higher when most values
are already in the dictionary. For NVRAM, the throughput
also increases from 6000 to 9000 transactions/s. The over-
head of the NVRAM gets smaller over time (from 5500 Tx/s
down to 4000). This again is explained by a lower number
of dictionary inserts and a resulting lower number of flushes.

For the hashmap, three differences are observed. First, the
overall performance of the hashmap is significantly higher
(12% for the None build and 44% for the NVRAM build).
This is in line with our expectations and our previous exper-
iments. Secondly, the performance decreases over time. The
reason for this can be found in our concurrency model: The
more updates have been committed, the more invalidated
rows are in the table. As these rows cannot be deleted from
the index (running transactions may still work on an earlier
snapshot), more and more rows have to be validated over
time. This also happens for the NVB+-Tree. There, the
effect is de-emphasized by the decreasing dictionary costs as
explained before, explaining why it cannot be seen in the
graph. Thirdly, the performance of the NVRAM build is
now much closer to that of the unpersisted build. This is
because hashmaps need fewer flushes and should therefore
have a lower NV overhead. This is the case, as the expe-
rienced average overhead of 14% is lower than that of the
NVB+-Tree (33%).

As seen in the stand-alone benchmarks (Section , the
size of the keys and the workload both impact which map im-
plementation performs better. Consequently, we will show
measurements where only selected parts of the system were
switched from the NVB+-Tree to the NVC-Hashmap. We
measured the performance changes when replacing small dic-
tionaries (with a key type of integers or floats), large (string)
dictionaries, or indices. This is shown in Figure[0] The per-
centages given next to the bars are first the relative overhead
of using NVRAM and second how that overhead compares to
the variant using only NVB+-Trees (in percentage points).

When replacing the smaller dictionaries with hashmaps,
the performance slightly decreases. This is in line with previ-
ous experiments showing that for small keys that are mostly
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Figure 9: Performance implications of replacing
NVB+-Trees with NVC-Hashmaps for small integer
dictionaries, large string dictionaries, and indices

read, the tree is a more suitable data structure. Even though
the performance overhead of NVRAM decreases by 2 per-
centage points when using the NVC-Hashmap, the hashmap
is still slower in absolute numbers.

This is different for the large dictionaries (here, string
dictionaries). As explained in the stand-alone benchmarks,
hashmaps are the map structure of choice here. Not only
does the introduction of hashmaps increase the performance
of both the None and the NVRAM build, it also decreases
the overhead of NVRAM by 9 percentage points.

Replacing the trees in the indices with hashmaps gives
an interesting result. For the non-NVRAM build, it de-
creases the performance by 5%, but for the NVRAM build
it increases it by 4%, reducing the NVRAM overhead by 6
percentage points. This is interesting as it shows how mov-
ing to NVRAM affects the choice of data structures. While
previously, trees were the structure of choice, their increased
NVRAM overhead when compared to hashmaps shifts the
advantage to the hashmap when using NVRAM.

6.1 Interpretation

From the benchmarks on the database, we draw the fol-
lowing conclusions:

1. As experienced in the stand-alone benchmarks, flushing
the cache lines has a significant cost.

2. For the TPC-C benchmark as executed, the overhead of
persisting on NVRAM is 33% with the NVB+-Tree and
14% with the NVC-Hashmap.

3. Different data structures within the database get varying
performance gains when switched to NVC-Hashmaps. A
careful choice of data structures is important.

4. A performance advantage of one data structure over an-
other in a no-persistence database does not necessarily
translate to the same advantage when NVRAM is used.
In fact, data structures that were slower before may pre-
vail once the flushes contribute to the costs.

7. RELATED WORK
In addition to the CDDS-Tree [19] on which the NVB+-
Tree in HYRISE-NV is based, other researches have pro-
posed approaches to persist trees on NVRAM. To our knowl-
edge, this is the first work looking at hashmaps on NVRAM.
Chi et al. [4] propose different modifications to the classic



B+-Tree that reduce the number of writes, and thus, the
resulting wear on Phase-Change Memory (PCM). This is
done by leaving nodes unsorted, using temporary overflow
nodes instead of splitting nodes whenever necessary, and
delaying the merge of underful nodes. The evaluation shows
that, in most cases, the proposed changes result in fewer
writes but a higher execution time. For the purpose of the
work, this is acceptable as it is a trade-off for reducing the
wear of the PCM. We believe that there is more in it which
might turn the overhead into an advantage: The evaluation
shown in the paper does not take into account the costs
of flushing the modified nodes. By reducing the number of
writes, one would also reduce the number of required flushes,
which we have shown to be of a significant cost for B+-Trees.
We are currently discussing to also remove the ordering of
the nodes solely to decrease the number of flushes.

Moraru et al. |14] discuss a consistent and durable B+-
Tree as an example of how their allocator, nvmalloc can be
used. It requires a new type of hardware support from the
CPU, called cache line counters. The programmer would
mark a range of writes as one “logical update group” using
a special sgroup instruction.

Chen et al. [3] propose the wB+-Tree, which allows for
write atomic tree modifications, either by atomically up-
dating the nodes or by employing redo-only logging. They
compare their approach to other B4-Tree implementations
and report a significant performance improvement over other
persistence implementations.

8. FUTURE WORK AND SUMMARY

The experiments have shown the importance of avoid-
ing flushes to NVRAM at (almost) any cost. Further work
towards NVRAM-supporting databases will have to revisit
previously made design decisions to see if the chosen data
structures are still the data structures of choice for NVRAM.
In this project, future work will benchmark the predictable
performance gains that will come with the CLWB instruction.

A question undiscussed in this work is that of designing
a good allocator suitable for NVRAM. The used pmemalloc
library is a research example and allows for future improve-
ments. For example, it is currently not multithreaded and
hands out memory in a first-fit fashion. Future work could
look at how existing allocator concepts can be brought to
work consistently with NVRAM.

We presented the NVC-Hashmap, a concurrent, NVRAM-
aware hashmap that can be used to persist unsorted dictio-
naries and delta indices in databases. Common challenges
faced when programming for NVRAM were outlined and
their solution for the NVC-Hashmap were shown. We dis-
cussed how programmers can profit from existing lock-free
data structures by analyzing the Linearization Points and
using these for NVRAM flushes. The hashmap was eval-
uated in both stand-alone benchmarks and in the context
of HYRISE-NV, a columnar in-memory database, where
it was compared against the current solution, the NVB+-
Tree. Benchmarks showed a significantly better performance
when compared to the tree solution, especially in write-
heavy workloads. Finally, we report that the costs of RAM
flushes becomes important when choosing data structures
for databases and that the cost of these flushes may give
previously slower data structures advantages over the cur-
rently chosen solution.
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