
Aspects on Finding the Optimal Practical Programming Exercise for MOOCs

Ralf Teusner
Hasso Plattner Institute
University of Potsdam

Potsdam, Brandenburg, Germany
Email: ralf.teusner@hpi.de

Thomas Hille
Hasso Plattner Institute
University of Potsdam

Potsdam, Brandenburg, Germany
Email: thomas.hille@student.hpi.de

Christiane Hagedorn
Hasso Plattner Institute
University of Potsdam

Potsdam, Brandenburg, Germany
Email: christiane.hagedorn@hpi.de

Abstract—Massive Open Online Courses (MOOCs) focus on
manifold subjects, ranging from social sciences over languages
to technical skills, and use different means to train the re-
spective skills. MOOCs that are teaching programming skills
aim to incorporate practical exercises into the course corpus
to give students the hands-on experience necessary for under-
standing and mastering programming. These exercises, apart
from technical challenges, come with a series of questions to be
addressed, for example: which fraction of the participants’ time
should they take (compared to video lectures and other course
activities), which difficulty should be aimed for, how much
guidance should be offered and how much repetition should
be incorporated? The perceived difficulty of a task depends
on previous knowledge, supplied hints, the required time for
solving and the number of failed attempts the participant
made. Furthermore, the detail and accuracy of the problem
description, the restrictiveness of the applied test cases and
the preparation provided specifically for a given exercise also
influence the perceived difficulty of a task. In this paper,
we explore the data of three programming courses to find
criteria for optimal practical programming exercises. Based
on over 3 million executions and scoring runs of participants’
task submissions, we aim to deduct exercise difficulty, student
patterns in approaching the tasks and potential flaws in task
descriptions and preparatory videos. We compare our findings
to in class trainings and traditional, mostly video and quiz
based MOOCs. Finally, we propose approaches and methods
to improve programming courses for participants as well as
instructors.

Copyright c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in other works. DOI: 10.1109/FIE.2017.8190587

1. Introduction

Massive Open Online Courses are, as massive and open
implies, intended for broad audiences. An optimal practi-
cal programming exercise should appeal to all participants,
challenge them but also be solvable with reasonable effort
in a predefined timespan. The individual challenge thus
relies on prior knowledge, and the term massive in MOOCs
naturally implies that the participants taking a course bring
in a wide range of prior knowledge in many areas, be it
directly connected, adjacent or unrelated with the topics

covered in the course. While this spectrum of knowledge
is a profitable foundation for discussions in the forum, there
are also occasions where this range is hindering learning out-
comes. In wide audience settings, like forum discussions, a
considerably large group of participants is reading questions
written by a much smaller share of participants expressing
those questions. This automatically circumvents harmful
knowledge gaps, as those participants that fit for the actual
information needs will interact, while all others act as silent
bystanders and eventually also learn by passively reading.
Given more narrow settings, like discussions within small
groups or peer-assessments, the knowledge gap between the
participants will not regulate itself. Such a skill gap can
either be conducive, as an experienced user explains con-
cepts that have not been understood beforehand and is lead
to new thoughts by questions that have not come to mind
before, or be cumbersome, as the experienced user might
be bored by elementary questions. Also, two participants
being on elementary level, are most likely not best suited to
find the solution to their problem without further external
help. Knowledge differences can thus either be helpful or
hindering, depending on the actual setting. In order to
steer potential outcomes and gain benefits of the knowledge
differences, the prior knowledge of the participants has to
be assessed.

The assessment in this case is neither really formative,
meaning that it is not intended to build feedback upon
or serves as a starting point for an intervention, nor is it
summative, as it is not used for grading. In order to coin
our assessment, we would call it informative assessment,
as it is primarily used to improve potential actions in the
future. This is close to a formative assessment, however it
lacks the necessity of an intervention afterwards.

For the following approaches and descriptions, we want
to state that whenever we speak of an absolute skill ex-
pressed in numbers, we are aware that this numerical value
can not reflect the true knowledge, experience and mastery
of a topic. It is not intended to rank participants in kind of
a high score and to display these individual values. On the
opposite, the skill levels will be used internally to optimize
the learning outcomes of all participants. The determination
of suitable steps to improve course interactions itself is an
open question and will be further discussed in Section 5.

https://doi.org/10.1109/FIE.2017.8190587


Assessing knowledge and skills is difficult in general.
Companies spend huge amounts of money on elaborated
approaches like headhunters and assessment centers to find
right candidates for job offerings as wrong decisions come
at an even higher price. Commercial providers like AM-
CAT1 or others build their whole business model around
the assessment of skills in various areas. In contrast, the
assessment within MOOCs does not have to offer such fine
granularity and does not contain high financial risks if it is
inaccurate, which makes the problem easier. In our context,
we also focus on a rather technical area, which tends to have
a better graspability and expressiveness in numbers than for
example communication skills. However, the given MOOC
setting also adds other difficulties. Participants cannot be
bothered with long quizzes or too excessive or too delicate
questions. As they take part in courses mostly based on
intrinsic motivation and without direct career goals, posing
too cumbersome hurdles will only result in participants
skipping the questions or in worst case quitting the whole
course.

After gaining some insights on participants’ prior knowl-
edge, the actual programming exercises come into focus.
Programming exercises that were not chosen well for the
individual participant have several downsides that can result
in a variety of negative effects. Exercises being too easy
will not challenge participants enough. While easy success
might increase motivation over the first few exercises, it will
increase the risk of frustration when facing exercises with a
higher difficulty, as one got used to passing without effort.
Especially participants having a higher prior knowledge than
that being aimed for in the target audience will be bored by
exercises being too easy. While this might seem bearable
from the view of getting a heterogenous group of partici-
pants to optimize the course videos and additional course
material for, in the notion of classic distance learning, this
is a huge loss for MOOCs. Having advanced practitioners or
even experts of a programming language within the field of
participants potentially yields tremendous benefits. In past
courses we conducted, some motivated experts helped out
on various occasions, ranging from pinpointing ambiguities
in videos, wording and slides over answering upcoming
questions to supplying suited links or even creating ad-
ditional material. Last but not least, advanced and expert
users answered forum posts in quality, length and speed
simply impossible to the teaching team, as it was bound on
other tasks such as technical support and additional content
creation.

The remainder of this paper is structured as follows:
Section 2 shows on which data to distinguish suited from
unsuited exercises. Section 3 presents the measurements
we extracted from three programming courses and already
draws some results. Section 4 shares related work and relates
it to our approach. In the last sections, we conclude our
findings, and give an outlook on our upcoming plans.

1. https://www.myamcat.com/

2. Concept

In general, exercises being considered suitable for the
advancement of a participant should either teach a new
concept or deepen the understanding of a previously covered
one. As already shortly motivated, the suitability of an
exercise therefore depends on the specific (sub-)topics dealt
with and on the (perceived) difficulty, composed of:

• the difficulty of the actual steps to solve the exercise,
• the prior knowledge of the participant,
• the expressiveness of the exercise description,
• the offered templates and hints, and
• additional help.

The perceived difficulty is most tightly correlated with
the users knowledge. In order to propose suitable exercises,
it is therefore of vital interest to assess prior knowledge
of participants. This paper first presents three different ap-
proaches to assess the prior knowledge, with a focus on
knowledge in the field of programming and testing.

On the most abstract level, our concept builds on three
pillars to approximate the actual skill:

1) Ask the participants directly how they would clas-
sify their prior knowledge.

2) Ask (multiple choice) questions of differing diffi-
culty to determine their knowledge on an abstract
level.

3) Incorporate metrics of the ongoing course. As we
focus on programming exercises, we can analyze
events specific to programming, such as unit tests
solved or the number of errors produced.

Of course, these approaches should lead to similar re-
sults or even support each other. However, there are some
exceptions: participants most likely won’t voice (1) that the
content was too difficult - probably they will just leave the
course. The resulting dropouts or stopouts 2 will be reflected
in the metrics (3).

The first option, simply asking, is the most trivial and
might seem superficial at first. However, pedagogical and
psychological research has shown, that it is reliable at least
in in-class settings [3], [17].

The accuracy of the second option highly depends on
the questions asked. The result should allow to distin-
guish between candidates that have no knowledge and basic
knowledge as well as advanced or even expert knowledge.
Finding a minimal set of such questions is non-trivial itself,
as course instructors need to guess the actual difficulty of
their survey questions with regards to the expected audi-
ence. Albeit testing these questions within a dry-run with a
group of colleagues, friends and students in different stages,
anticipating the distribution of participants enrolling into a
course is hard.

The third option comes with increased effort of data
acquisition and interpretation. Furthermore, the metrics need
to be based on a sufficient number of exercises solved before

2. temporary dropouts with participants coming back after some time



being treated as reliable, as outliers are especially probable
during first tries and would strongly distort conclusions due
to the sparse data foundation. This postpones the availability
of such evaluations on metric data to later course stages.

With regards to the reliability of the approaches, we
assume that approaches (1) and (2) will be rather similar
and have to be treated with caution. Not because they do not
work in general, but because the self-assessment might be
skewed much stronger than in a normal class setting due to
a lack of fellows to compare with, and because the questions
might have been too easy or too hard for our audience. As
approach (3) reflects part of the actual progress, it should
be regarded as most reliable and in doubt be trusted in favor
of the other approaches. Potential metrics to incorporate for
the domain of programming exercises are:

• the actual working times in practical programming
assignments (until high score was reached),

• reached scores,
• the number of runs per exercise,
• the number of errors per exercise,
• typing speeds, and
• copy & paste events.

In order to judge the suitability of exercises already
conducted in retrospective, we consider the following data
to be of most interest: First, the unique accesses of students
to an exercise will reflect whether a particular exercise being
much too difficult caused participants to leave the course.
Second, the reached scores will show whether an exercise
was too hard to be completed in general. Third, the required
timespan to solve the exercise will give further detail on the
difficulty of an exercise even if the majority of participants
successfully completed the exercise.

3. Analysis

We analyzed the data of three past programming courses:
an introductory course to Java in 2015 (java15), an intro-
ductory course to Python also from 2015 (python15) and an
advanced course on Java JUnit testing in 2016 (junit16).

As stated in Section 2, we start by checking the accesses
on the exercises. Since the advanced Java course only of-
fered three exercises, we omitted it in this consideration.
From Figure 1 can be seen, that participants steadily dropped
out during the whole course runtimes, with a slight satura-
tion nearing course ends. This behaviour is different from
the one we see in MOOCs that are mainly quiz based, in
which we encountered a dropout of about one third of the
users after the first week and having a steady user base
afterwards (see Figure 2).

In both programming courses, the total dropout rate is
about 70% of the initial participants having started at least
the first exercise. In the Python course, a notable number of
participants seemed to have noticed the underlying method-
ology of increasing difficulty per set of exercises for each
topic and began skipping the hardest ones after the middle of
the course (observable via the zigzag-pattern on the graph).

Figure 1. Number of participants per programming exercise

Figure 2. Number of participants per quiz in IMDM MOOCs

Given these numbers, we could not deduce further in-
sights towards the whole audience. We therefore evaluated
additional metrics that yield also helpful information for
individual users, like achieved scores, number of copy and
paste events and required times. Of particular interest is
the time students need to solve the assignments, which
we call working time. Most participants showed enough
diligence to solve mostly all exercises completely, resulting
in full scores. Therefore the required time substitutes the
score as a metric for skill to some extent. Additionally,
the required time is the base to normalize other metrics
upon, such as typed characters, occurred errors or number
of runs. For all three courses, the number of runs mirrored
the required time, leading us to disregard the number of
runs for further analysis. For errors, the correlation to the
working time also seems to hold, however we eventually still
want to analyze the errors further, as the specific types of
errors and the detection of bursts of errors is likely to yield
additional insights about the kind of problems participants
are struggling with. The analyzed working time includes the
time from opening an exercise until the student reached the
maximum possible score or his best score. Due to the nature
of MOOCs, where students solve their exercises at home,
or wherever and whenever they want, we only consider
consecutive working times with less than 10 minutes break
as working time. As we have the most data for the java15
course, the analysis of working time effects will be based on



this MOOC. Figure 3 shows the working times throughout
the course of a particular student (blue line) compared to the
75th percentile of all users (red line). The exercises on the x-
axis are ordered according to their occurrence in the course.
The 75th percentile on the working time (which by nature
also resembles the average working time over all students
with some delta) shows that most exercises were solved in
2 to 25 minutes by the majority of participants. The only
exception, a spike on the red line on the right side, happened
on an exercise on polymorphism (exercise 35). The much
longer working time can be explained by two reasons in this
case: the concept is probably the hardest one discussed in
the course, while the length and detail of the accompanying
video did not account for that accordingly, by treating this
more advanced topic like any other, easier, topic. When
checking the dropout numbers after this exercise, we did
not detect a noticeable increase after this exercise, which is
also backed by the absence of a noticeable drop in Figure 1.
The absence might possibly be explained by the fact that
the exercise was late in the course, therefore only facing
participants that already invested much into the course and
therefore endured the struggles. Our analysis of the working
times of several students showed that students who stopped
out3 often worked longer on their assignments compared to
their peers. This indicates that stopped out students often
encountered problems solving the assignments resulting in
longer working times. This led to frustration and ultimately
to quitting the course. Our hypothesis is thus that students
who are often slower than their peers are more prone to
stop out, indicating an overextension. Before the student
under analysis stopped out, he spent significantly more
time to solve the exercises compared to his peers. After
noticing several cases like this, we put focus on the last
three assignments of students before they stopped out. For
our analysis we classify a working time as slow if the
student worked longer than 75% of the other students in
the assignment.

In Figure 4 we counted the stopped out students in the
java15 course and calculated in how many of the last three
assignments they performed slower than 75% of all students.
The chart groups all stopped out students by the count they
were slower than the top 75% working times of all students
within the last three assignments they worked on before
they stopped out. For reference, we printed the expected
amount of stop outs caused by struggles. The expected
amount is built on the likelihood of a participant being in
that group (for the case 0, this means he was never in the
share of slowest participants, resulting in a percentage of
0.75 · 0.75 · 0.75 ≈ 0.42). The uniform distribution assumes
that the working times for the assignments are independent
from each other. From the actual measurements, we see that
students stopped out without being stuck a little more often

3. The term stopped out in MOOCs refers to participants that show an
extended absence and, therefore, potentially dropped out. As it is uncertain
whether they will come back to finish the course while the course is still
running, every participant that (temporarily) quits the course is considered
a stopout. In case they do not return, they are additionally considered a
dropout after course runtime.

Figure 3. Working times of 75th percentile of students. Times above red
line are considered to be slow.

Figure 4. Percentage of stopped out students that performed slower than
75% of average in the last 3 assignments before they stopped out

than expected (0 assignments in which they were slower).
These cases are probably caused by students having no time
anymore or lost interest for some other reason. However,
it can also be seen that stopped out students who needed
longer for at least one assignment tend to need more time
for other assignments, too, and are therefore more likely
to appear in the slower groups than to be expected by the
uniform distributions. Since they stopped out afterwards,
we can assume their long working times resulted from
problems with the assignments, rather than working longer
for learning more or being distracted. As a reaction to these
findings, we want to help students who are struggling before
they decide to quit the course.

In the advanced Java course (junit16), we asked the
participants to self-assess their skill level at the beginning
of the course and also asked them several multiple choice
questions with regard to programming concepts as described
in Section 2. The overall distribution of the students having
completed the survey (N = 1280) was as follows: no
prior knowledge(0): 2%, basic knowledge(1): 29%, good
knowledge(2): 42%, very good knowledge(3): 22% and ex-
cellent knowledge(4): 4%. We first checked the correlations
between the scores of the multiple choice questions with



the self-stated skill levels. The average score of the levels
were (from skill level 0 to 4): 2.63, 3.13, 3.54, 3.7 and 3.7
out of a maximum of 4. We see a constant rise of scores
with rising skill levels. In order to justify this impression,
we applied several statistical tests. As a correlation test, we
picked Kendall’s tau over Spearman’s rho or the Pearson
correlation, as it is less prone to outliers and we are mostly
interested in the ranks. Kendall’s tau-correlation between the
skill level and the score is between 0.21 and 0.35, meaning
only low to moderate correlation.

When omitting all participants that did not achieve any
points and thus did not take part in the course afterwards, the
correlation even shrinks to 0.14 at worst. Perhaps more of
psychological interest is the fact, that although we asked par-
ticipants to only submit their first solution, many participants
re-submitted the quiz with increased scores, albeit there are
no assignment points granted for this quiz. When comparing
just the first answers of every user, the correlation shows a
value of 0.35, when considering only the last (mostly higher)
scores, the correlation dropped to 0.21. In the following,
we only include students who achieved at least one graded
point and are thus considered to haven taken part in the
course, as our collected data is richer for them. As the
correlation only accounts for monotonic relations, we further
considered applying Student’s t-test for the group of lower
skilled participants (0, 1) against the higher skilled ones (3,
4). However, as the variances differ too much as shown by
an F-test, we decided to go for Jonckheere’s trend test [6].
The trend test rejected the 0-hypothesis with the alternative
hypothesis that the values are increasing (with p = 0.0001),
stating that there is a statistically significant trend from
rising skill to rising scores.

While we thus already gathered some indication for a
(positive) correlation between stated skill and knowledge,
we further looked into the course scores, consisting of
graded multiple choice tests, programming assignments and
a peer assessment yielding bonus points. Calculating the
average scores for the respective skill groups indicates a
different distinction for these values: 11.4, 21.1, 30.4, 34.5,
and 46.33 out of a maximum of 80 points. The Kendall-
correlation between the skill levels and the course scores
turned out to be even lower (0.18) than that between the skill
levels and the multiple-choice questions. While we expected
to gain a higher correlation for the more extensive course
scores, it is likely that many participants compensated lesser
prior knowledge with diligence and thus reached higher
scores than to be “expected” from the self-stated skill level,
leading to a lower correlation in our test. As a last step, we
calculated and plotted the completion ratio of the respective
skill groups (see Figure 5). A participant is considered to
have completed the course when at least 50% of the points
were reached, resulting in a minimum of 30 points for that
course (60 points through exercises in total, up to 20 points
bonus through the peer-assessment).

Written qualitative feedback in the forums concerning
the exercises in general was positive, regardless of the diffi-
culty of the exercises or the specific course. This reassures
us that the offering of practical exercises is valued, even if

0	

0,1	

0,25	
0,29	

0,42	

0	

0,1	

0,2	

0,3	

0,4	

0,5	

0	 1	 2	 3	 4	

Co
m
pl
e'

on
	R
at
e	

Skill	Level	

Figure 5. Likeliness of reaching the certificate based on the self-assessed
prior knowledge

course instructors do not succeed in finding optimal suited
exercises.

The individual feedback also uncovered potential pitfalls
that are likely to distort the gathered metrics, albeit the
actual problem lies not in the exercise: several beginners had
problems finding the correct curly brackets used within the
Java syntax on the keyboard. This was not prevented by the
first playground exercise. Although the playground exercise
was intentionally ignored with concern to the metrics and
gave the participants the possibility to accustom themselves
with the development environment, its template already
contained all uncommon characters, leading them to face
this problem only later.

4. Related Work

This paper contributes to the research areas Knowledge
Assessment and Learning Analytics in MOOCs. Research
in this field seeks to understand the effects of teaching
and learning, especially within online learning environ-
ments. While the effectiveness of learning is measured via
many different models (such as Kirkpatrick’s 4 levels of
evaluation [8], the ROI methodology by Kirkpatrick and
Philipps [15], the Six Sigma approach [5], [19] and others),
these models do not identify practical means to conduct or
improve the actual learning. Albeit they come with a detailed
level of descriptions (reaction of participants to trainings,
changes in job workflows, and in the end the return on
investment as pure monetary value in the ROI methodology)
or calculations of improvements for production processes
(Six Sigma), they also have no measures for the initial
knowledge. Additionally, these models were designed for
business situations, meaning staff trainings, conducted most
often in class room settings or even smaller scales. For these
reasons, suited approaches to determine a knowledge status
quo have to be designed another way.



4.1. Self Assessment

As any metric extracted from a questionnaire, the reli-
ability of self-assessment depends on neutral wording and
the offered choices, including the number of options to pick
from [2], [7]. Furthermore it should be taken into account,
that people tend to avoid the border options and might show
overconfidence [9].

Models such as proposed by Raphael Poss [16] are likely
to be well suited for hiring situations. The developed matrix
distinguishes several important skill areas and reflects the
well established CEFR4 levels. The supplied questionaire
of 104 questions to infer the most likely level is not suited
for a MOOC context, as we argue that even just reading
the different level descriptions in the matrix is too time
consuming in our context. In order to get reliable data, the
idea of simply forcing participants to answer more extensive
questionaries in order to advance in the course is not only
against our goals and intents, but given current average
completion rates over all analyzed MOOCs of around 15%5,
the risk of loosing participants is too high. Courses requiring
higher involvement by offering a mixture of automated and
peer grading show a lower completion rate of about 10%.
For courses relying only on peer-assessment, the completion
rate is even lower, at 5% on average.

When designing a course, the intended audience plays
a major role with regard to students’ expectations, tenacity
and prior knowledge. However, even when aiming just for
beginners, chances are that many advanced participants will
join the course, as they are interested in the topic discussed.
This raises the danger that the beginners feel intimidated or
overburdened and are thus hindered in leveraging the full
potential of the course. This effect was also noticed in other
courses on other platforms [11].

4.2. Assessment Based on Course Progress and
Quizzes

Google uses Skill Maps in their Course Builder Plat-
form [18]. They define a skill as a unit of knowledge
taught in a course, which might be composed of videos,
text or other activities. Between these skills there may exist
relations, such as ”depends-on, ”follow-on or others. This
in turn allows participants to navigate through a course in
the context of the skill-graph, instead of having to follow
the mostly linear course preset. While such a skill map
is suitable to reflect the skills acquired within a course,
the authors do not state on how to assess prior knowledge
with it. In our view, after an introductory self-assessment, it
might be feasible to give students who stated they already
possess knowledge about the covered topics more advanced
exercises and relate their success to the depending basic
concepts afterwards with such a skill map.

4. Common European Framework of Reference for Languages
5. Data retrieved from http://www.katyjordan.com/MOOCproject.html

on 11th October 2016

4.3. Assessment Based on Assignment Evaluation

As the topics of our courses were Java Programming,
Python Programming and unit testing within Java, we could
yield additional information that is only available when
solving practical development tasks. Of particular interest
might be required time, error rates and issued program runs
within such a context.

Previous work has either analyzed this in classroom
settings or rather small MOOCs [20]. The data was used to
form student models and reflect their knowledge acquisition.
The authors extracted concepts from the code and used the
data as an example on how to automatically derive learning
paths. Their focus thus was not the actual prediction of
students’ performance in MOOCs.

The findings of Liyanagunawardena et al. [11] in a
repeated game programming MOOC reflect those that we
also encountered: skill gaps can affect a course positively
(sharing of knowledge) as well as negatively (”... course
was hijacked by experienced programmers...). The authors
mostly rely on a user survey and do not further state whether
they analyzed any programming specific metrics.

The research of Olsen et al. [14] is not about program-
ming specifically, but in an adjacent field. They created
several models for predicting the success of pupils solving
math problems collaboratively. They specifically evaluated
the effects of collaborative work. While especially the aspect
of collaboration is of interest also for programming in the
long run, specifics on the exact metrics used to create
their models can not directly be related to our field of
programming, as the authors mainly used binary information
whether a calculation step was performed correctly and
derived learning rates from that. Apart from that, the number
of participants (N = 84) is not comparable to a MOOC
setting.

4.4. Complex or Specific Models for Knowledge
Assessment

Nižnan et al. use complex models to predict the potential
score outcomes [13]. Starting from the Elo rating system,
extensions like bayesian modeling are used to improve the
accuracy. Also hierarchical models are employed to distin-
guish more fine grained concepts instead of just representing
a general skill level. While the extensions increased accuracy
sometimes, the authors state the improvements were only
small. This encourages us not to start with too complex
approaches. Furthermore, the authors state that there are do-
mains which require a deeper understanding of the supplied
material than just learning the mere facts. For those domains,
it may be more worthwhile to add extensions that cover the
specific relations within the concepts to be learned.

A comprehensive overview of existing models can be
found in Desmarais’ and Baker’s work [4]. If the specific
moment or timespan when a participant gained a particular
skill is relevant, Baker proposes a machine-learned model to
assess the probability that the skill was learned at a certain
learning item [1].



Apart from the mentioned approaches, it is also possible
to incorporate other information for our assessment process,
such as demographics like age, the highest degree, or results
from previous courses, be them related or unrelated with the
current question. According to Morrison and Murphy-Hill,
the age and skill of a programmer (proxied by stack overflow
reputation in their study) show a positive correlation [12].
However, as we currently do not have thorough data on these
demographics across all participants and we did not want
to ask our participants for such relatively private data just
for the sake of assessment, we omitted these considerations
from our study.

Combining the many different areas of general program-
ming such as debugging, profiling, or structuring code to just
a single number that will represent the skill in our case, is
also potential pitfall. Albeit there is likely more potential to
assess and represent these knowledge areas within a complex
model, boiling down the complexity to a single number
enables us to take action based on the data much easier
and to test our assumptions relatively early.

More advanced topics such as execution parallelization
or hardware optimizations are not taken into account, as they
are not likely to be discussed in beginner courses and will
most likely be thought in a dedicated course on their own.
The whole field of domain knowledge can also excluded in
our case, since we assume that MOOCs on learning how to
program try to stay as abstract and general concerning their
domain in order to ensure accessibility.

Previous work either analysed (self-) assessment in
classroom settings or hiring situations. While there is plenty
of literature explaining potential factors of success or failure
of courses and reached scores, approaches for a-priori anal-
yses of knowledge in MOOC settings currently lack deeper
insights. This work presented concepts, first steps and claims
within this area in order to start filling the current gap.

5. Future Work

The basis of a successful programming course will al-
ways be a corpus of good introductory material (mostly
videos) and carefully crafted exercises that have a direct
relation to the taught concepts.

With regards to the exercises, we will have a closer
look at the influence of description texts towards the metrics
(mainly score and working times). If the cause for struggles
is an exercise itself, as could be seen on the exercise on
polymorphism, the exercise should be fixed or simplified as
soon as possible to solve this problem. We suggest triggers
within the platform to automatically alert instructors if an
exercise shows a deviation of average working times greater
than for example 50% of the average of all course exercises.
Since the expected difficulty of an exercise mostly relies
on evaluated guesses of course instructors, we integrated a
feedback mechanism into the platform that asks a share of
the participants for their perceived difficulty level in order
to constantly approximate the actual difficulty of an exercise
for the audience. If the cause for struggle is individual to a
participant, we want to cover this with interventions, either

to take a break, to search for additional information or to ask
their fellow participants for comments on their code. First,
promising experiments have shown that user acceptance on
the commenting approach is given, with a positive side effect
that especially expert users are motivated to help out, as this
poses them new challenges and yields encouraging feedback
in terms of individual valuation and general reputation. The
evaluation of the effect of these interventions on scores and
course results will be covered in a subsequent paper.

As users expressed having difficulties with different
concepts, we will also try to detect their concept specific
weaknesses by tagging the exercises with the applied con-
cepts and thus will be able to relate their working times and
scores with the respective concepts. This will then allow us
to propose bonus exercises suited for their needs, in order
not to overwhelm them with unnecessary tasks but to supply
additional helpful exercises. As intriguing as the idea of
a course consisting of completely individualized exercises
with regards to the amount and the task difficulties may
seem, we do currently not see this feasible with regards
to the workload that would be imposed on the instructors.
Because this would also rise questions concerning fairness
in grading, we therefore will treat individualized exercises as
a field for experimentation on ungraded and bonus exercises
solely.

In order to improve the assessment of prior knowledge,
the work of Leinonen et al. [10] hints that specific patterns
such as curly brackets or particular common expressions like
“i++” and their typing speeds allow to deduce users’ skill
levels to a certain degree.

6. Conclusion

Programming exercises are a vital part of computer
science MOOCs. Exercises with increasing difficulty and
complexity seem to be accepted by wide audiences, as long
as the average working times stay in a reasonable timeframe
of 5 to 25 minutes each. Optimal exercises should challenge
participants, but always be backed by suitable explanatory
material. Even if a particular exercise is too demanding,
participants forgive such a mismatch as they valuate the of-
fered possibility for hands on practice over minor didactical
shortcomings. Estimating the actual difficulty of assessment
questions and programming tasks beforehand is hard for
the course instructors, as the intended and actual audience
might differ greatly. Furthermore, the effects of participants’
different skill levels onto the required time and the problems
to tackle are hard to pre-estimate. When participants are
regularly exposed to exercises perceived as too difficult, they
react by omitting them if a pattern is recognizable. In order
to personalize learning experiences through bonus exercises
that are suited towards individual weaknesses, deviations
of individual working times and scores compared to the
course averages can be used to determine the best exercise.
With regard to exercise specific metrics such as the average
score, the number of runs and required working times, it
became apparent that these metrics do correlate with each
other. Total reached scores did not turn out to be a practical



measure to estimate prior knowledge if participants are
allowed unlimited attempts, as determined users compensate
missing knowledge with diligence. For an ad-hoc assessment
of prior skills, self-classification of participants backed by a
small number of multiple-choice questions yielded promis-
ing results towards estimating users’ course success. A
detailed analysis of working times and error messages shows
greater potential for the assessment of prior knowledge
during course runtime. In order to decouple the suitability
of exercises from the knowledge of participants to some
extent, we propose assistive tools for helping participants
out through collaboration in the moment they are facing
problems. Leveraging the very potential within MOOCs,
their massive user base, looks promising for levelling out
knowledge gaps and offering additional challenges for par-
ticipants on expert level. Given a basis of exercises generally
suited for most users, collaboration tools thus not only fill
individual shortcomings, but also increase involvement and
communication. Individual problems with exercises thus can
serve as starting point for meaningful discussions. There-
fore, a last provocative claim arises: the optimal practical
programming exercise, at least for MOOCs, might therefore
be a flawed one.

References

[1] Ryan S. J. D. Baker, Adam B. Goldstein, and Neil T. Heffernan.
Detecting Learning Moment-by-moment. Int. J. Artif. Intell. Ed.,
21(1-2):5–25, January 2011.

[2] Orlando Behling and Kenneth S. Law. Translating Questionnaires
and Other Research Instruments: Problems and Solutions. SAGE,
May 2000.

[3] David Boud. Enhancing Learning Through Self-assessment. Rout-
ledge, October 2013. Google-Books-ID: fWOAQAAQBAJ.

[4] Michel C. Desmarais and Ryan S. J. D. Baker. A Review of Recent
Advances in Learner and Skill Modeling in Intelligent Learning
Environments. User Modeling and User-Adapted Interaction, 22(1-
2):9–38, April 2012.

[5] Michael L. George, John Maxey, David Rowlands, and Mark Price.
The Lean Six Sigma Pocket Toolbook: A Quick Reference Guide to
100 Tools for Improving Quality and Speed. McGraw-Hill Education,
New York, 1st edition, August 2004.

[6] A. R. Jonckheere. A distribution-free k-sample test against ordered
alternatives. Biometrika, 41(1-2):133, 1954.

[7] W. Paul Jones and Scott A. Loe. Optimal Number of Questionnaire
Response Categories. SAGE Open, 3(2):2158244013489691, April
2013.

[8] Donald L. Kirkpatrick. Evaluating Training Programs: The Four
Levels. Berrett-Koehler, San Francisco: Emeryville, CA, November
1994.

[9] Justin Kruger and David Dunning. Unskilled and unaware of it: How
difficulties in recognizing one’s own incompetence lead to inflated
self-assessments. Journal of Personality and Social Psychology,
77(6):1121–1134, 1999.

[10] Juho Leinonen, Petri Ihantola, and Arto Hellas. Preventing Keystroke
Based Identification in Open Data Sets. In Proceedings of the Fourth
(2017) ACM Conference on Learning @ Scale, L@S ’17, pages 101–
109, New York, NY, USA, 2017. ACM.

[11] Tharindu Rekha Liyanagunawardena, Karsten ster Lundqvist, and
Shirley Ann Williams. Who are with us: Mooc learners on a future-
learn course. British Journal of Educational Technology, 46(3):557–
569, 2015.

[12] Patrick Morrison and Emerson Murphy-Hill. Is programming knowl-
edge related to age? an exploration of stack overflow. In Proceedings
of the 10th Working Conference on Mining Software Repositories,
MSR ’13, pages 69–72, Piscataway, NJ, USA, 2013. IEEE Press.

[13] Juraj Nižnan, Radek Pelánek, and Jirı́ Rihák. Student Models for
Prior Knowledge Estimation. International Educational Data Mining
Society, 2015.

[14] Jennifer K. Olsen, Vincent Aleven, and Nikol Rummel. Predicting
Student Performance In a Collaborative Learning Environment. June
2015.

[15] Jack J. Phillips and Patricia Pulliam Phillips. The Value of Learning:
How Organizations Capture Value and ROI and Translate It into
Support, Improvement, and Funds. John Wiley & Sons, August 2007.

[16] Raphael Poss. How good are you at programming?

[17] John A. Ross. The reliability, validity, and utility of self-assessment.
2006.

[18] Boris Roussev, Pavel Simakov, John Orr, Amit Deutsch, John Cox,
Michael Lenaghan, and Mike Gainer. Course Builder Skill Maps. In
Proceedings of the Third (2016) ACM Conference on Learning @
Scale, L@S ’16, pages 89–92, New York, NY, USA, 2016. ACM.

[19] Bill Smith. Six-sigma design (quality control). IEEE Spectrum,
30(9):43–47, September 1993.

[20] Michael Yudelson, Roya Hosseini, Arto Vihavainen, and Peter
Brusilovsky. Investigating Automated Student Modeling in a Java
MOOC. In Educational Data Mining 2014, pages 261–264, London,
UK, July 2014. University of Pittsburgh.


