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ABSTRACT
Despite falling prices for main memory and increasing sizes,
main memory is still a scarce resource in database systems.
Optimizing main memory utilization is a major objective
for main memory databases as more free memory can be
used to improve performance or to store larger systems in
the database. Several publications proposed separating fre-
quently and less frequently accessed data (i.e., hot and cold
data), handling both with different priorities or evicting
cold data to secondary storage. However, most of these ap-
proaches are optimized for OLTP workloads. In contrast,
this PhD project researches how to improve DRAM utiliza-
tion for mixed workloads including both OLTP and OLAP
queries by evicting cold data. As a first step, real-world
database workloads are analyzed in order to determine char-
acteristics of hot and cold data as well as aging effects. Also
two possible approaches exploiting the results of the work-
load analyses are outlined.

1. INTRODUCTION
Main memory resilient databases have been in the focus

of database research in recent years [9, 12, 15]. Among
others, this is caused by falling prices of main memory and
increasing main memory sizes per server. Nonetheless, main
memory is still a scarce resource and expensive compared to
disk. Consequently, improving main memory utilization is a
major goal for any in-memory database as more free memory
can improve performance (e.g., storing intermediate results),
allow larger systems to be stored in the database, or simply
to improve cost efficiency by evicting unused data to less
expensive storage layers.

Looking at real database workloads shows, that accesses
are often highly skewed and frequently access a small frac-
tion of the data. This observation is in line with the working
set model that says that for each process there is a subset
of pages that are accessed distinctively more frequently [5].
Besides the working set model, another concept plays a sig-
nificant role for this PhD project: data aging. Data aging
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describes the issue that recent data is accessed more fre-
quently than older data. The older the data, the less rele-
vant it is for the database system.

Due to resource limitations in main memory databases, a
separation into frequently and less frequently used data has
become of increasing interest in recent years [4, 6, 11]. These
approaches try to prioritize frequently accessed data (i.e.,
the working set or ‘hot data’) in order to exploit different
data relevancies and thus improve main memory utilization
by compressing less relevant data or evicting it to secondary
storage.

The main objective of this project is to research data aging
ideas in the context of enterprise applications. In particular
we look at mixed enterprise workloads. Mixed workloads
(also called OLXP) consist of transactional as well as ana-
lytical queries thus combining OLTP and OLAP [10].

Most publications in the field of data separation based
on access frequencies track tuple accesses to prioritize fre-
quently accessed tuples. While tuple-based approaches work
well for most OLTP-workloads, it does not solve the problem
of relevance-based data separation for mixed workloads. In
contrast to those tuple-based approaches, we are focusing
our research on a separation that is aware of OLAP-style
queries as aggregations or complex joins.

Furthermore, we think it is important to determine real-
world requirements on database systems before talking about
possible concepts or solutions. Therefore, different database
systems have been traced and analyzed over the past months.
The findings of these analyses are presented in this paper
and we will explain how they influence certain concepts we
are looking at.

The objective is to make the following contributions through-
out the PhD project:

• A thorough analysis of real-world database workloads
captured from different fields of applications as dis-
cussed in Section 2.

• An evaluation of existing hot and cold data approaches
(see Section 4) using real-world database workloads.

• A simplified approach that enhances memory utiliza-
tion by exploiting workload characteristics and time
correlation of tuple accesses is discussed in Section 3.1.
‘Simplified’ because this approach does not depend on
additional statistics, data reordering, or indices.

• An approach based on horizontal partitioning that ex-
ploits skewness and time correlation of tuples accesses
is presented in Section 3.2.
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2. WORKLOAD ANALYSIS
While the concepts of working sets and data aging are

rather simple and well known, we think it is important to
actually quantify and thoroughly analyze both using real-
world workloads. This includes determining the working set
that is eventually processed as well as the time correlation of
it to quantify aging effects. To analyze both it is neither suf-
ficient to solely look at data nor it is sufficient to solely look
at the workload (i.e., the query log). To quantify how many
tuples are accessed, both have to be taken into account.

Examining enterprise systems our hypothesis was that
real-world workloads are highly skewed – especially more
skewed than often expected – both horizontally as well as
vertically. Hence, only few attributes are used for query
evaluation and only very few tuples are accessed frequently.

Analyzed Workloads
We decided against analyzing benchmarks like TPC-C or
YCSB as to our best knowledge no benchmark incorporates
realistic age-based access patterns. Furthermore, Krueger
et al. have shown that even the enterprise-oriented TPC-
C benchmark vastly diverges from characteristics of a real
enterprise system [10].

To gain insights into realistic systems we are currently
analyzing two systems:

• openHPI [13]

– German MOOC (Massive Open Online Course)
platform

– web platform build using the Ruby on Rails-based
Canvas1 framework

– complete workload over eight weeks with ∼200M
queries including a database snapshot

• Productive Enterprise Resource Planning System

– traced financial and controlling module of a pro-
ductive SAP ERP system

– sampled workload over three days ∼50M queries)

2.1 Workload Analysis Procedure
The workload analysis is split into two separate tasks,

starting with a thorough analysis of the traced queries fol-
lowed by a query log replay to gain tuple access statistics.

2.1.1 Query Log Analysis
The first part is the query log analysis in which each query

is parsed to extract the following information (amongst oth-
ers):

• Query template: for each query, we create the corre-
sponding query template (similar to the form of pre-
pared statements) by removing the filter values for
each selection

• Logical information: for each query its characteristics
as “is the query a join, aggregation, or key-select?” et
cetera are stored

• Projections: for each query, the list of projected at-
tributes is stored which is of particular interest for
vertical partitioning and tuple reconstruction in col-
umn stores

1https://github.com/instructure/canvas-lms

Figure 1: Heat Map Visualizing Table Accesses for
Table ‘quiz submissions’.

• Selections: for each query all its selections are stored

By extracting and normalizing query characteristics and
storing them queryable in a database it is possible to ask
questions as: ‘How many queries join table X and Y with
range predicates on columns Y and Z?’

2.1.2 Access Analysis
The access analysis is executed on a snapshot of the database.

This analysis is basically a query log replay in which each
query is modified in order to return the tuple positions in-
stead of the actual tuples. This way we can quantify which
tuples are required to answer a query. Obviously this is a
kind of black box analysis that does not answer questions
concerning the query execution (e.g., which tuples have been
accessed to be filtered before returning the result set) but
rather an analysis of what is of interest for the requesting
application.

Aggregating queries are modified in a way that all tuples
that are part of the aggregation are considered as accessed
(e.g., by removing the SUM operator from SELECT SUM(*)

FROM A WHERE customerId=42).

2.2 Preliminary Results
As of now, we have analyzed the openHPI system and

a snapshot of the productive SAP ERP system from May
2014. The findings of our analyses are so far:

SELECT * Projections
Most queries use SELECT * projections or project the major-
ity of attributes (in fact, as openHPI is build using Ruby on
Rails’ active records all queries are SELECT * projections).
In the current version of the ERP system (which is running
on a columnar database) 20% of all queries still use SELECT

* projections.
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Access Skewness
That access to data is often skewed is well known. For ex-
ample, the YCSB benchmark includes a skewness property
to skew tuple accesses. We calculated the Zipfian distribu-
tions for tables that account for over 80% of the openHPI
database size. The average scale factor for those tables was
above 3.9. This is particularly interesting as several publica-
tions expect significantly lower skewness. E.g., DeBrabant
et al. evaluated Zipfian scale factors between 0.5 and 1.5 [4].

Selection Columns
ERP systems often consist of very wide tables (e.g., the main
table to store accounting document segments has over 300
attributes). But query evaluation is mostly done on very
few attributes.

Number of Accessed Tuples
The number of distinct tuples that were returned in the
workload is very low for most transactional tables. We took
the three largest openHPI tables that have been accessed
and that account for over 90% of the data volume (in fact,
the single largest table – a pure logging table – has not been
queried once over the eight weeks). On average, less than
3% of the tuples in these tables have been accessed.

For the ERP system, the five largest (by size in main mem-
ory) traced tables have an all together over one billion rows.
Of these less than 13 million have been accessed during our
trace. In contrast, for the two main financial tables BSEG
and BKPF the share of accessed tuples is 16% resp. 37%.

Age-Access Relation
Analyzing the relation between tuple accesses and their age
shows that there is a distinctive correlation between both
for large transactional tables. For the two largest tables in
the openHPI system, a horizontal cut of the most recent
20% is still sufficient to answer 85% of all queries on both
tables. This effect is shown in Figure 1. In this heat map,
accesses to the ‘quiz submissions’ table are shown (the oldest
tuple on the bottom, newest on top, divided into time slots
of ∼80h). Accessed data regions are drawn in red, regions
have not been accessed are drawn in blue.

For smaller tables, e.g., master data as the user table, this
correlation is obviously different.

3. ENVISIONED APPROACHES
Starting from the preliminary results, we want to inves-

tigate two approaches to exploit aging effects in order to
optimize main memory utilization.

3.1 Simplified Data Aging
The simplified approach tries to exploit the access skew-

ness and the low number of columns required to evaluate
queries.

We call this approach simplified as it does not require any
tuple movements, tuples access statistics, or additional in-
dices. The basic idea is an improved version of a vertical
partitioning, which is the most obvious approach to evict
cold data in a columnar database. Hereby, columns are con-
sidered cold when they are not used in the query execution
and are thus evicted to secondary storage. The problem with
a pure vertical approach is tuple reconstruction. As seen in
our analyses applications often used SELECT * projections.

Even though queries can be evaluated on the hot columns,
the database still has to access cold columns for material-
ization.

Similar to the vertical approach the simplified approach
stores all columns that are required for query evaluation in
main memory. This includes all columns that are part of ag-
gregations, selections, group by statements, order by state-
ments et cetera. All other columns that are not required for
query evaluation are considered cold. An exemplary visual-
ization of a table using the simplified approach is depicted in
Figure 2. But instead of simply moving them to secondary
storage two approaches are possible:

Page Buffering Here mmap is used to memory-map cold
columns and a page buffer to pin the most recent pages
of each column in main memory. As already explained,
tuples accesses on large tables have shown to correlate
with age. Hence, keeping the most recent 20% of each
column in memory would enable the majority of tu-
ple reconstructions to be executed without accessing
secondary storage.

Tuple Cache As the number of distinct tuples accessed has
shown to be very small, a tuple cache can be even more
efficient in reducing the memory footprint. Such a
tuple cache – e.g. using LRU cache to persist the latest
materialized tuples – has the additional advantage that
it would also cover frequently accessed tuples that are
not part of the most recent pages.

The simplified approach has several advantages. One is
that only little modification is required for column stores.
Besides, query performance for the majority of queries is
only slightly impacted. The query can be evaluated com-
pletely in memory until the point of tuple reconstruction for
returning the result set. For the tuple reconstruction, the
majority of queries can still be answered from main memory
with little penalty caused by the buffer management. In our
opinion, the very small penalties on query performance is
one the major advantages of the simplified approach. Using
a tuple cache, the simplified approach might even outper-
form current column store implementations in which tuple
reconstructions are still a bottleneck.

Preliminary results for the two largest tables in the openHPI
system are shown in Table 3.1. The tables have been stored
in a dictionary-encoded and bit-compressed column store.
The reason that the simplified approach can potentially re-
duce the memory footprint by factors of up to 700 is that
the two largest tables in the openHPI system are both log-
ging tables that store the history of texts. These versioning
tables are always accessed via key attributes (integer val-
ues). Furthermore, all queries in our workload accessed the
most recent version. Please note that the presented sizes
do not include the space required to allow fast tuple recon-
struction. But since the number of distinct tuples accessed
is that low, a tuple cache should not increase the required
space significantly.

Obviously such factors are not always possible. Depend-
ing on the data that a table stores and the access patterns
(e.g., key-selects vs. aggregation queries), the theoretical
results of simplified approach differ vastly.

Storing Cold Columns
Another interesting question is how to store cold columns
on secondary storage. Because cold columns should only be
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Figure 2: Simplified Data Aging: Exemplary Visualization of a Table Partitioned in Hot and Cold Columns
Using Page Buffering.

Table versions quiz submissions

Tuple count 1,423,502 815,518
Distinct tuples accessed 20,034 37,344
Column count 6 23
Hot columns 3 4
Size of table 7.7 GB 4.6 GB
Size of hot columns 11 MB 12 MB

Table 1: Statistics for the two Largest Tables in
openHPI System.

accessed for tuple reconstruction, storing them dictionary-
encoded (what is the default compression for columns in
our scenario) is expected to yield poor performance, as the
materialization of n attributes requires at least 2∗n accesses
to secondary storage. One possible solution is to store the
columns uncompressed.

In case of dynamically changing workloads it cannot be
avoided that scans on cold columns incur. In this case, nei-
ther the uncompressed nor the dictionary-encoded storage
format is perfect. But as disk storage is comparably in-
expensive today, we want to evaluate storing cold columns
mirrored in a row- as well as column-oriented manner.

Besides the storage format, the storage layer on which
the cold columns are stored is part of our planned research.
PCIe-connected solid state disks are a middle layer between
disk and main memory. Columns that are not used for query
evaluation but for the majority of tuple reconstructions can
be stored on that middle layer, while columns almost never
used for tuple reconstruction can remain on disk.

3.2 Partitioning-Based Data Aging
We expect several cases where the simplified approach will

not evict a substantial part of the table. Examples are ta-
bles in which columns that are required for query evaluation
account for the majority of the table size.

Therefore, we want to investigate in another approach we
call partitioning-based data aging. The idea of this approach
is to partition tables horizontally into one master partition
and n read-only partitions.

The master partition stores the latest fraction of a table,
e.g., the most recently added tuples required to answer 90%
of all single tuple selects (i.e., key-selects). Our analyses
showed that this is already the case for transactional ta-
bles when storing the most recent 25% of the table. The n
read-only partitions are distributed to o server nodes with

o � n. Hereby, partitions are created depending on the
given workload. We envision a dynamic partitioning system
comparable to Curino et al.’s work [3]. The main contrast
here is that the focus does not lie on distributing the work-
load amongst partitions as far as possible. Instead we are
trying to skew the distribution as much as possible towards
the active partition(s). Apart from keeping workload statis-
tics, no additional overhead as tuple access counting or tuple
reordering is being done.

The goal is to answer the vast majority of OLTP-queries
solely from the master partition, e.g., using a tuple cache
for key-selects to tuples that are not part of the most recent
tuples stored. Threfore, it is important to avoid accesses
to read-only partitions as far as possible for transactional
workloads whenever possible. For OLAP queries, we think
it is eventually impossible to avoid partition-spanning joins.
But dynamic partitioning based on the workload and stored
partition profiles on the master node can minimize partition-
spanning operations. Such partition profiles are stored in
memory on the master partition for each read-only partition
and include data statistics for the columns that are most
often queried. How these partition profiles look is part of
our research we plan to investigate in the future.

Data stored in read-only partitions is supposed to be more
cost efficient than being stored in main memory, e.g., by
persisting the data on disk and only keeping indices, mate-
rialized aggregates, and statistics in memory. Similar to the
simplified approach we want to evaluate different mirroring
approaches to store data in different formats on disk.

Transaction Handling
As already said, we try to avoid any OLTP-workloads on the
read-only partitions. Consequently, the read-only partitions
do not incur any changes to their data. If a tuple of a read-
only partition is about to be modified the row is marked as
invalid and a new version is stored on the master partition
(similar to insert-only approaches). For such scenarios and
transactions that span multiple partitions, we want to test
transaction abortion and restarting comparable to the idea
proposed by DeBrabant [4]. Here, whenever a transaction
requires a modifying access to tuples on read-only parti-
tions, the transaction is aborted. Then, the required tuples
are moved to the master partition and the transaction is
restarted afterwards.

With partition profiles and transaction handling that is
optimized towards our partitioning scheme we hope to work
towards a systems that is capable of mixed workloads in a
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multi-node setup. Such a system could provide stable OLTP
performance and sufficient OLAP performance in scale out
scenarios.

4. RELATED WORK
The research field of data aging has been studied in many

publications over the past decades. Garcia-Molina et al.
already discussed the workload-based distinction of hot and
cold data in the context of in-memory databases in 1992 [7].

More recently, Funke et al. presented a compaction-based
approach to handle hot and cold data [6]. Using capabil-
ities of modern server systems to track data accesses, the
database compacts partitions based on their access frequen-
cies. While the data is still kept in memory, cold and frozen
data is compressed to better utilize main memory. Partic-
ularly interesting for us is the idea of using the MMU to
track page-table accesses as this concept works for row- or
column-oriented storage formats.

Levandoski et al. discussed the separation into hot and
cold data based on asynchronous sampled query log analy-
ses [11]. This work is of particular interest for us since our
work focuses on a thorough analysis of database query logs
as well. The project is called Siberia, an extension to the
Hekathon OTLP-optimized main memory engine to man-
age hot and cold data. Another very interesting work – also
part of Siberia – are “Adaptive Range Filters” by Alexiou
et al. [2]. With the help of such filters accesses to cold data
can be pruned for range queries. We want to evaluate such
filters on their own using realistic workloads and combine
them with partition profiles of read-only partitions to bet-
ter prune analytical queries of mixed workloads.

In many ways similar to Siberia, DeBrabant et al. imple-
mented hot and cold separation in the row-based in-memory
database H-Store [4, 9]. The authors call this approach Anti-
Caching to underline that hot data is no longer cached in
main-memory but cold data is evicted to secondary storage.
To trace accesses to tuples, tuples are stored in an LRU
chain per table.

Besides research on data aging and its variants, there has
been plenty of work about storage formats for disk-resident
data. As mentioned in Section 3, we would like to investigate
redundant storage of data on disk as disk is comparably
cheap and solely row- or column-oriented storage formats
incur many shortcomings depending on the access patterns.

Ailamaki et al. use a columnar-like format that groups at-
tributes per page, called PAX (Partition Attributes Across) [1].
PAX still allows fast tuples reconstructions while improving
cache utilization.

Ramamurthy et al. went one step further and redundantly
stored data (i.e., mirroring) in both horizontally and verti-
cally partitioned storage formats and adapted the query exe-
cution engine to automatically chose the appropriate storage
format [14].

5. RESEARCH AGENDA
In the course of this PhD project we’d like to focus on

both of the discussed directions in the upcoming year.

Workload Analysis
As of now, the workload analysis has already provided valu-
able insights into aspects of data aging and workloads in
general.

We think it will be very interesting to evaluate published
data aging approaches (see Section 4) using real-world work-
loads. We expect to see that most approaches work very well
for OLTP workloads in which data is mostly queried using
key-selects. But as we are focusing on mixed workloads with
transactional as well as analytical queries, we expect tuple-
based approaches to perform insufficiently for queries that
require scans, aggregations, et cetera. To evaluate possibly
upcoming mixed workload system we are currently looking
into analytical systems. By combining transactional work-
loads extracted from actual enterprise systems with analyt-
ical workloads extracted from analytical systems a realistic
mixed workload can be estimated.

We plan to publish the workload analysis tool set on a
demo track of an international database conference. Fur-
thermore, we are eager to get access to additional systems
on which we can run the query log analysis as well as the
access analysis.

Envisioned Data Aging Approaches
In respect to the presented data aging approaches, we’d
like to further investigate both approaches and implement
first prototypes. Therefore, we plan to use the in-memory
database HYRISE [8].

To analyze different storage layers and their performance
metrics (e.g., non-volatile memory prototypes or PCI-express
connected solid state disks) we are in contact with various
hardware vendors.

6. CONCLUSION
As outlined in this paper, the objective of the PhD project

is to contribute to the field of main memory utilization for
columnar in-memory databases. We consider this as an im-
portant contribution since main memory is a scarce resource
and current approaches do not cover the requirements of
modern enterprise systems combining transactional and an-
alytical workloads. Furthermore, we think that a thorough
workload analysis of real-world systems can be a significant
contribution to the general field of database research.
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