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ABSTRACT
Lightweight data compression algorithms are often used to decrease
memory consumption of in-memory databases. In recent years, var-
ious integer compression techniques have been proposed that focus
on sequential encoding and decoding and exploit modern CPUs’
vectorization capabilities. Interestingly, another dominant access
pattern in databases systems has seen little attention: random access
decoding. In this paper, we compare end-to-end database perfor-
mance for various integer compression codecs on three recent CPU
architectures. Our evaluation suggests that random access perfor-
mance is often more relevant than vectorization capabilities for
sequential accesses. Before integrating selected encodings in the
database core, we benchmarked seven libraries in an exhaustive
standalone comparison. We integrated the most promising tech-
niques into the relational in-memory database system Hyrise and
evaluated their performance for TPC-H, TPC-DS, and the Join Or-
der Benchmark on three different CPU architectures. Our results
emphasize the importance of random access decoding. Compared
to state-of-the-art dictionary encoding in TPC-H, alternatives allow
reducing memory consumption of integer columns by up to 53 %
while improving runtime performance by 5 % on an Intel CPU and
over 16 % on an Apple M1.

1 COMPRESSION IN IN-MEMORY DATABASE
SYSTEMS

With increasing volumes of data being collected, the need for fast
and efficient processing of workloads increases continuously. When
customers’ workloads have substantial performance requirements
that the Database Management System (DBMS) needs to serve,
storing data on disk is often too slow.

Technological advances in the main memory industry have made
large main memory capacities affordable, enabling the adoption
of in-memory databases [17]. For these DBMS, disk access is no
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longer the bottleneck. Instead, main memory access and process-
ing efficiency are the new optimization goals [29]. Therefore, cus-
tomers often choose to use in-memory databases to serve their
performance-critical workloads.

However, for in-memory databases, a compact representation
of data is even more crucial. In a recent survey by the market
researcher IDG [19], 80 % of the participating organizations stated
that they have at least one part of their infrastructure running in
the cloud and spend around one-third of their IT budget on cloud
computing. Here, the bill depends on the used resources, which is
often measured in RAM size1. To adapt in-memory databases to
run efficiently on cloud infrastructures, therefore, means that they
should use as few main memory as possible. Data compression can
help to achieve this.

However, several practical considerations limit the usage of com-
pression. In addition to the strong performance requirements, Ser-
vice Level Agreements (SLAs) in enterprise contexts often bound the
maximum allowed query response time [30], which makes the us-
age of heavyweight compression schemes (e.g., LZ4 [9], LZ77 [38])
difficult. As an alternative, lightweight encoding schemes can still
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Figure 1: TPC-H runtimes and sizes for various integer en-
coding schemes in Hyrise (single-threaded, SF 10, sum of
mean query runtimes). On all three evaluated platforms, bit-
packing efficiently balances runtimeperformance andmem-
ory consumption while std::vector is the fastest alterna-
tive in the single-threaded setting.

1For AWS EC2 instances, costs correlate to DRAM sizes: https://aws.amazon.com/de/
ec2/pricing/on-demand/
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provide reasonable compression rates while offering fast decoding
speeds [10, 25, 32]. Figure 1 shows the single-threaded runtime per-
formance and cumulative size of all integer columns when being
encoded with different integer encoding schemes in Hyrise (TPC-H
scale factor 10; runtime is the sum of the mean runtimes of all
22 queries). The widely used state of the art Dictionary Encoding
performs significantly worse than alternatives such as bitpacking
or not encoding data at all, while also consuming more memory.
While the Apple M1 is the fastest CPU in this setting (cf. Section 4.2
for remarks on comparability), the relative performance differences
are stable on all three platforms. In the later evaluation, we will
analyze if these results hold for multi-threaded executions.

We focus on evaluating lightweight, lossless, integer compres-
sion schemes. These schemes have made notable advances in recent
years through the use of vectorization [10, 26, 27, 36]. Additionally,
as we explain in Section 2, integer compression significantly re-
duces memory consumption for various workloads. While integer
compression schemes have shown to be performant in standalone
benchmarks, their effect on end-to-end DBMS performance is more
nuanced. With this paper, we are going to make the following
contributions:

• An analysis of data types and access frequencies in bench-
marks as well as in the real world in Section 2, which leads
to our focus on integer compression.

• We examine frequent access patterns of an in-memoryDBMS.
Furthermore, we analyze the difficulty of leveraging recent
compression vectorization trends to DBMS applications that
require efficient random accesses in Section 3.

• A standalone comparison of seven open-source integer com-
pression libraries where we compare memory consumption
and performance for different codecs, access patterns, and
data distributions in Section 4.

• We compare state-of-the-art encoding schemes in an end-
to-end fashion in the columnar in-memory research DBMS
Hyrise. We show that several lightweight integer encoding
schemes offer performance improvements while at the same
time providing compression benefits over currently used
schemes such as Dictionary Encoding.

We use the term encoding to describe encoding a column segment
of nullable table data, while compression describes second-order
compression of an auxiliary integer vector. In addition, codec and
scheme describe the implementation of a compression algorithm.

2 SYNTHETIC AND REAL-WORLD DATA
CHARACTERISTICS

We analyzed data and workloads of TPC-H, TPC-DS, and Join Order
Benchmark (JOB) to highlight the importance of integer columns
in analytical workloads.

Their role may not be obvious at first sight. As Figure 2 shows,
the prevalence of data types varies visibly between the benchmarks,
with integer columns not being dominant in either one2,3. However,
their importance becomes much clearer when we consider the
runtime of the benchmarks. We see that the analytical workloads

2Hyrise stores decimals as floats and datetimes as strings.
3In cases where, e.g., an aggregate groups by a single column and calculates an aggre-
gate on another column, we split the runtime equally between both columns.

Figure 2: Overview of data type sizes and runtimes for TPC-
H (SF 10), DS (SF 5), and Join Order Benchmark (JOB).

spend between 25 % and 50 % of the time on joins, which operate
exclusively on (integer) key columns. The analytical workloads
spend more time on integer columns in each benchmark than on
all other combined columns.

For an in-memory database such as Hyrise [15], we can leverage
this insight to optimize performance and memory usage. The idea
here is to store seldom accessed columns on slower storage tiers
such as Non-volatile Memory (NVM), SSD, or disk [34]. We then
find ourselves with a large part of the in-memory storage consisting
of the frequently accessed integer columns, allowing significant
improvements through compression.

2.1 Real-World ERP Data Analysis
We wanted to determine whether the integer-heavy patterns found
in the benchmarks also exist in real-world data or if string-heavy
patterns, similar to the ones that Vogelsgesang et al. [35] found,
prevail. Therefore, we investigated the workload and data of an
S4/HANA ERP production system of a Fortune 500 company.

Figure 3a shows the number of columns in the analyzed system
per data type. We found that over 83 % of all columns are string
columns. This value is even higher than the reported values of the
analyzed Tableau workbooks by Vogelsgesang et al.

de
cim

al
do

ub
le

int
eg

er
nv

ar
ch

ar
sm

all
int

va
rb

ina
ry

Data Type

0

500

1000

1500

2000

N
um

be
r o

f c
ol

um
ns

(a) Number of columns by
data type.

de
cim

al

nv
ar

ch
ar

sm
all

int

va
rb

ina
ry

Data Type

50

100

150

200

A
cc

es
s 

co
un

t (
m

ill
io

n) Aggregation
Filter
Grouping
Join
Project
Sorting

(b) Number of column accesses per
data type.

Figure 3: System analysis of a large SAP S4/HANA customer.

To analyze how often which columns are accessed, we analyzed
the query plan cache of the system. Figure 3b shows the cumulative



results. Again, string columns account for the largest share. The
high number of projections is caused by regular exports to the
internal data warehouse system. These exports extract new tuples
– which often have hundreds of attributes (cf. [3, 5]) – in their full
width. But even when projections are ignored, the vast majority of
accesses is on string columns. Of the ten most frequently accessed
columns, all ten are string columns.

One of the main reasons for the dominance of string columns in
this S4/HANA system is ensuring compatibility with third-party
software and legacy systems. By using strings, old systems that
did not enforce numeric columns can be upgraded without rewrit-
ing data. Moreover, the use of strings for numeric columns in-
creases flexibility for customers. Of the tenmost frequently accessed
columns, six columns contain only numeric data. Even though this
customer uses numeric values (and in fact, the column names even
denote that this string column is actually a numeric one), the ERP
system’s default is to store these columns as string columns. As
a consequence, we consider integer column optimizations to be
also of value for enterprise systems, given this high percentage of
frequently accessed actually being integer columns.

Moreover, as we discuss in Section 5, systems such as Hyrise or
SAPHANA also use integer vectors for several internal applications,
such as Dictionary Encoding, which is another reason we decided
to focus on integer compression.

3 INTEGER COMPRESSION ALGORITHMS
AND IMPLEMENTATIONS

The main goal of this paper is to evaluate integer compression
schemes that both improve performance and compression rates in
DBMS. Before we discuss algorithms and implementations for this,
we discuss and investigate access patterns that they must support:
sequential and random access decoding.

3.1 Access Patterns for Compressed Data
This section explains why we require sequential and random access
patterns and investigate how often they occur. To understand where
the different access patterns originate from, we have to understand
how DBMS pass intermediate results between query operators that
compose the operator tree (cf. [15]).

3.1.1 Column-oriented Representations of Intermediate Results. We
consider two strategies for representing intermediate results be-
tween operators: position lists and intermediate materialization.
We distinguish this definition from the terms early materialization
and late materialization, which describe the point of time when the
DBMS constructs tuples from column-oriented data [2].

The first strategy for passing intermediate data is the usage
of Position Lists (PosLists). It is extensively used by Hyrise [15],
SAP HANA [16], and partially MonetDB [20]. These PosLists offer
constrained data characteristics (i.e., as they are used as indices
whose integers are unsigned and cannot be larger than the initial
input tables) and avoid materializing and passing the actual data
between operators. A drawback of the PosList approach is that
duplicate work must be done when accessing data more than once
(e.g., multiple joins on the same column). Furthermore, in cases such
as expression evaluations (e.g., a + 4), merely passing a PosList is
impossible due to the alteration of underlying data.

The second strategy, materialization of intermediate results, is
implemented by systems such as MonetDB [20], MorphStore [12],
and Vertica [23].

Notably, also systems that pass materialized intermediate results
require efficient non-sequential access to columns, e.g., when ma-
terializing the projected columns after a scan operation. Hyrise
delays the materialization as much as possible, ideally until the
result is returned to the user. This approach significantly reduces
the data that is passed between operators. However, it can also add
many random accesses when tuples need to be reconstructed. This
reconstruction can be on an ordered position list (e.g., returning
a table that has only been filtered). But it can also happen on a
position list that is more or less in random order (e.g., the result of
a radix-clustered inner join, cf. [14]).

Figure 4: Tuple access count by access type of all operators

3.1.2 Random Access through Position Lists. We will focus on the
first strategy, passing intermediate results through positional refer-
ences, such as implemented in Hyrise [15]. Let us consider a simple
aggregated sum over a column. As input, the operator receives the
encoded base data and the position list of indices from the previous
operator’s output. This PosList can be the output of a predicate and
thus reference substantially less data than the referenced segment
holds. Subsequent predicates and key-selecting Online Transaction
Processing (OLTP) workloads such as implemented in the TPC-C
benchmark only amplify this effect. Furthermore, the PosList does
not have to be sorted, as join operators shuffle the indices.

The first option for computing the sum is to fully decode and
materialize the underlying data and then access it at the indices
from the PosList. If the PosList only contains very few references
while the original encoded segment has much more entries, this
can be inefficient. Depending on the context, it could make more
sense to use random access decoding and only retrieve the desired
indices’ data.

Theworkload analyses shown in Figure 4 indicate that the second
option with random access is worth considering: on average, more
than 44 % of all tuple accesses by operators can be performed
through PosList access on other operators’ output. Furthermore,
the mean selectivity per predicate is 36 %, implying the presence of
significantly shorter PosLists.

3.2 Compression Algorithms
For our goal to optimize memory consumption and performance,
we consider four lightweight integer compression techniques [10]
concerning random access.



Name License Technique Language Random
Access

Docu-
mented

Tested &
Matured Platforms

FastPFor Apache 2.0 FoR C++ x64/SSE3

TurboPFor GPL FoR, NS C x64/AVX2,
ARM/NEON, Power9

SIMDCompressionAnd-
Intersection (SIMDCAI) Apache 2.0 FoR, NS C++ x64/SSE4.1

MaskedVByte Apache 2.0 NS C x64/SSE4.1
StreamVByte Apache 2.0 NS C x64/SSE4, ARM
Oroch MIT FoR, NS C++ cross-platform
dictionary Apache 2.0 DICT C++ x64/AVX512
compact_vector MIT NS C++ cross-platform

Table 1: Open-source Lightweight Integer Encoding Implementations

Random <technique>_<library> Sequential PosList Decoding Compression
Access [_<specialization>] Decoding by Length Rate

1 103 104 106

for_SIMDCAI_simd 10.1 0.007 6.0 60.1 6044 0.26
pfor_turboPFOR 54.3 0.006 5.0 55.1 5494 0.34

bitpacking_turboPFOR 29.0 0.007 2.5 40.0 3053 0.38
bitpacking_compactvector 161.3 0.005 3.0 32.7 6976 0.39
bitpacking_Oroch_intArray 14 820.3 0.29 245.4 2308.0 204 491 0.57

Unencoded (std::vector<T>) 9.3 0.002 0.8 15.5 1470 1.0

pfor_fastPFOR 10.7 10.5 11.3 16.2 854 0.34
bytepacking_MaskedVByte 87.1 124.7 73.9 87.5 1742 0.57
bytepacking_StreamVByte 17.4 14.8 20.9 22.4 1991 0.60

Table 2: CPU time in microseconds for decoding the whole vector, per library. For sequential decoding, runtime measured as
mean across all data distributions. Compression rate as average across data distributions.

• Delta encoding works by only storing the difference to the
previous value [33]. Because we require knowledge of previ-
ous entries, this technique does not provide constant-time
random access decoding.

• Frame of Reference (FoR) represents each original value as a
difference to a reference value [18]. The Patched Frame of
Reference scheme [26] is an extension to it, and we expect
both to offer fast random access.

• Dictionary Encoding [1] stores all distinct values in a sorted
dictionary and represents the original sequence (Attribute
Vector (AV)) through offsets into the dictionary..

• Null suppression (NS) [1] is implemented in VByte [27] or
varint [13]. It either operates bit- (bitpacking) or byte-aligned
(bytepacking). We can apply it independently per value, or
uniformly with fixed width. We focus on the latter, as only
this allows fast random access.

As a reference, we further evaluate Hyrise’s Unencoded segment
encoding in the end-to-end benchmarks, which stores its segment
data without any compression in a plain std::vector<T> (plus an
optional std::vector<bool> to mark NULL values).

3.2.1 Lightweight Integer Compression Libraries. For each com-
pression technique, we use open-source implementations shown
in Table 1. Since this work aims to improve encoding size and per-
formance in an actual DBMS, we do not consider libraries that are
not well tested or no longer actively maintained. We experienced
many memory access violations during the integration of the Tur-
boPFOR library and did not find sufficient documentation on input
constraints.

Furthermore, we observe a mismatch between recent compres-
sion algorithm research and the demand for random access de-
coding in our DBMS application Hyrise. While DBMS alongside
search engines are a frequently referenced application of compres-
sion [25, 26, 36], random access decoding is often not or only poorly
supported by these libraries.

4 EVALUATION OF INTEGER SEGMENT
ENCODING ALGORITHMS AND
IMPLEMENTATIONS

To evaluate the libraries’ schemes from Table 1, we proceed in
two steps. First, we create an exhaustive set of benchmarks for all

https://github.com/lemire/FastPFor
https://github.com/powturbo/TurboPFor-Integer-Compression
https://github.com/lemire/SIMDCompressionAndIntersection
https://github.com/lemire/SIMDCompressionAndIntersection
https://github.com/lemire/MaskedVByte
https://github.com/lemire/streamvbyte
https://github.com/ademakov/Oroch
https://github.com/lemire/dictionary
https://github.com/gmarcais/compact_vector


codecs that the libraries offer. There, we model the access patterns
described in Section 3. In the second step, we then implement and
benchmark only the most promising candidates in Hyrise to reduce
implementation efforts.

4.1 Standalone Evaluation on Synthetic Data
To evaluate the selection of codecs from Table 1, we first create sim-
ple standalone benchmarks that approximate the access patterns
described in Section 3. In the benchmarked scenario, we operate on
a vector 𝐶 of integer values. We set its size |𝐶 | to the default chunk
size in Hyrise, 216 − 1. Per benchmark, we fill 𝐶 with synthetic se-
quences of integers and compress it using the compression scheme
under test. We then measure the required CPU time for sequential
decoding and random access decoding. In Hyrise, sequential encod-
ing performance is of lower importance. While the system could
re-encode the immutable segments (cf. [15]), it typically encodes
segments only once when the most recent chunk reaches its tuple
limit and becomes immutable. The synthetic benchmarks have been
executed on an Intel Xeon Platinum 8180 CPU.

4.1.1 Sequential Decoding. To test the sequential decoding perfor-
mance of the libraries, we create sequences of integers that model
several distributions: (i) uniformly distributed random numbers
between 0 and 232, (ii) sorted numbers with an equal distance of 5,
(iii) years between 1900 and 2100, (iv) months between 1 and 12, (v)
a time series starting at 106.

One application of sequential decoding is the linear table scan
that directly operates on base table data (i.e., no PosList is given).
For them, it can be advantageous to decode the whole segment all
at once because this allows vectorization. Among the compression
schemes, only bitpacking_Oroch_intArray and bitpacking_compact-
vector do not leverage vectorized sequential decoding, which is
apparent in the results in Table 2. Here, both of them are orders of
magnitudes slower than the fastest schemes, for_SIMDCAI_simd
and pfor_fastPFOR. The compression rate ranges from 0.26 for for-
_SIMDCAI_simd to 0.6 for bytepacking_StreamVByte.

4.1.2 Random Access. As we have explained in Section 3, Hyrise
passes intermediate query results via positional references. Depend-
ing on data and workload, the size of an intermediate PosList varies.
To test how the PosList size affects the decoding performance, we
create PosLists of different sizes, ranging from 1 to 107 elements.
Each PosList contains a random set of indices in [0, |𝐶 |), referencing
a vector𝐶 of uniformly distributed values. The task is to decode all
referenced entries.

The schemes that support random access decoding only access
the indices specified in the PosList. For the other schemes, we first
sequentially decode the whole vector and then retrieve the values
at the indices given in the PosList.

As we can see in Table 2, random access allows faster decoding
speed for short PosLists. The point where vectorized sequential
decoding (if possible) performs better than the respective random
access implementation varies between schemes. For bitpacking-
_turboPFOR, the point lies just short of a PosList length of 104,
which equals 1

6 of the chunk size. Above this, sequential decoding
performs better due to optimizations and the use of vectorization. In
Hyrise, the default length of the PosList is 216 − 1, but as discussed,

predicates quickly decrease this further, which is why we focus on
schemes that support random access decoding.
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Figure 5: Size of integer columns and runtime performance
of various segment encodings (TPC-H SF 10) for the three
evaluated CPU architectures, single- and multi-threaded.
Not all libraries can be built on an Apple M1.

4.2 End-to-End Evaluation Setup
For the end-to-end benchmarks, we evaluated various benchmarks
on three CPU architectures: (i) an Intel Xeon Gold 6240L (18 physi-
cal cores, 36 threads, 1024 KB L2 cache, 24.75 MB shared L3 cache),
(ii) an AMD EPYC 7742 (64 physical cores, 128 threads, 512 KB
L2 cache, 256 MB shared L3 cache), and (iii) an Apple M1 (2020
M1 Mac Mini, 4 high-performance cores, 4 high-efficiency cores,
320/192 KB L1 cache, 12 MB shared L2 cache). For measurements
on multi-socket systems, we pinned processes and memory to a
single node using numactl to exclude any NUMA effects. The op-
erating systems version are Ubuntu 20.10 (GNU/Linux 5.9.10) and
MacOS 11.4 with clang-12 as the compiler. Per benchmark, we spec-
ify whether we run it in single-threaded or multi-threaded mode.



2000 4000

30

32

34

36

C
um

u.
 R

un
tim

es
 [s

] Single-Threaded

2000 4000

160

180

200 TP
C

-D
S

Multi-Threaded

750 1000 1250
Size integer columns [MB]

90

95

100

C
um

u.
 R

un
tim

es
 [s

]

750 1000 1250
Size integer columns [MB]

350

400

Join O
rder B

enchm
.

Intel Xeon Gold 6240L

Unencoded (std::vector<T>)
bitpacking_compactvector
bitpacking_turboPFOR
dictionary_Hyrise

for_Hyrise
for_SIMDCAI_simd
pfor_turboPFOR

(a) Intel Xeon Gold 6240L

2000 4000

35.0

37.5

40.0

C
um

u.
 R

un
tim

es
 [s

] Single-Threaded

2000 4000

260

270

280

TP
C

-D
S

Multi-Threaded

1000 2000
Size integer columns [MB]

220

230

240

C
um

u.
 R

un
tim

es
 [s

]

1000 2000
Size integer columns [MB]

1000

1200

1400

Join O
rder B

enchm
.

AMD EPYC 7742

Unencoded (std::vector<T>)
bitpacking_compactvector
bitpacking_turboPFOR
dictionary_Hyrise

for_Hyrise
for_SIMDCAI_simd
pfor_turboPFOR

(b) AMD EPYC 7742

Figure 6: Size of integer columns and runtime performance of various integer segment encodings (TPC-DS SF 10 and Join
Order Benchmark), single- and multi-threaded.

For the latter, we spawn multiple clients that issue the benchmark
queries in a randomized order. The number of clients is set in way
to maximize the load on the system. For a CPU with 𝑡 threads,
we spawn ⌈𝑚𝑎𝑥 (𝑡 + 1, 𝑡 ∗ 1.1)⌉ clients (i.e., 140 clients for the 64
cores and 128 threads of the AMD EPYC 7742 CPU, 40 clients for
the Intel Xeon Gold 6240L, and 9 clients for the Apple M1). We do
not recommend running that many concurrent clients for Hyrise
and using these settings solely to maximize load on the CPU. The
Hyrise instance is set to use all physical and logical cores.

Please note that the shown performance results for different
CPU architectures are not meant to compare them with each other
but rather to compare the relative performance between various
compression schemes on different platforms. The single-threaded
benchmark shown in Figure 1 uses a single CPU core (of up to 64
of the AMD EPYC 7742) and for each CPU the clock speed when
using a single core only (which we do not consider to be a realistic
scenario) can vastly differ from the clock speed when most cores are
used. For the multi-threaded benchmarks, we use different client
counts to ensure that each architecture is fully utilized. As such,
the resulting performance cannot be directly compared.

4.3 End-to-End Evaluation in Hyrise
We compare the best-performing codecs from Section 4.1 and seg-
ment encodings already implemented in Hyrise. In Hyrise, Dic-
tionary Encoding is the default encoding, with byte-aligned null

suppression of the attribute vector (AV, cf. [16]). Dictionary Encod-
ing is widely used in analytical databases such as SAP HANA [16],
MonetDB [20], and HyPer [24].We only encode the integer columns
with the respective codec, and all other columns are dictionary-
encoded. Then we measure the performance of Hyrise using the
TPC-H, TPC-DS4, and Join Order benchmarks5. The TPC-H and
TPC-DS benchmarks are executed using a scale factor of 10. ??
displays the benchmark results. We discard results for LZ4 as it is
mainly used for string columns in Hyrise. For most integer columns,
LZ4 does not improve the compression ratio significantly and is
up to 10× slower that other encodings. The performance drop is
mainly caused by slow random accesses due to the block-based
format of LZ4 (cf. [6]).

4.3.1 Memory Consumption. Compared to Dictionary Encoding,
the lightweight integer encodings use up to 53 % less memory
to store the integer columns. In the TPC-DS benchmark, the size
reductions of the schemes are smaller, but even here, only for_Hyrise
and Unencoded use more memory than Dictionary Encoding. As can
be seen in Figure 8, the segments in the TPC-DS benchmark contain
fewer distinct values on average compared to the TPC-H and JOB
benchmarks. Fewer distinct values cause a smaller dictionary size
and are more suitable for Dictionary Encoding. In general, the

4As of August 2021, Hyrise supports 41 of 99 TPC-DS queries.
5The source code that was used to implement the encodings in Hyrise is publicly
available: https://github.com/benrobby/hyrise/

https://github.com/benrobby/hyrise/
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Figure 7: Cache access and bandwidth metrics for various integer segment encodings and TPC-H (multi-threaded, SF 10).

Figure 8: Distinct values per segment, showing TPC-DS has
on average fewer distinct values.

most space-efficient implementations of FoR, PFoR, and bitpacking
achieve similar compression rates in each of the three benchmarks.

4.3.2 Runtime Performance. Inmost benchmarks, bitpacking_turbo-
PFOR and bitpacking_compactvector have a smaller total runtime
than pfor_turboPFOR and for_SIMDCAI_simd. This finding is in line
with the random access decoding results we observed earlier. As
shown for TPC-H in Figure 5, almost all alternatives improve on
performance as well as memory consumption compared to Dic-
tionary Encoding. Unencoded (std::vector<T>) performs best in
the single-threaded setting but is slower in the multi-threaded
setting due to its comparatively large size and the bandwidth bottle-
neck. Compared to Dictionary Encoding, bitpacking_compactvector
achieves a 5 - 16 % shorter runtime in the TPC-H benchmark. With

the exception of the AMD CPU, it is the best performing scheme
for multi-threaded settings.

For TPC-DS and Join Order Benchmark, the picture looks dif-
ferent as shown in Figure 6. For TPC-DS, Dictiontary Encoding is
among the best schemes both for single- as well as multi-threaded
settings. For the Join Order Benchmark, bitpacking_compactvector
is the fastest scheme while also being among the smallest.

There is no single conclusion possible for the usage of Dictionary
Encoding and the three benchmark workloads. While it does not
perform well in TPC-H, it is among the best schemes for TPC-DS,
and acceptable for the Join Order Benchmark.

In regards to the higher runtime of Dictionary Encoding, this may
be influenced by the number ofmemory accesses it needs to perform.
Dictionary Encoding performs two data-dependent lookups, which
is why its performance deteriorates when the dictionary does not
fit into the last level cache of the processor [31]. This problem is
less pronounced in the other integer encodings. FoR and PFoR also
need to perform two lookups, one for the offset value, and one for
the reference value of the block. However, due to the small number
of reference values, they can be kept in the cache more easily.
bitpacking and Unencoded (std::vector<T>) only need to perform
one lookup. In Figure 7, we see that in the TPC-H benchmark,
Dictionary Encoding has indeed the most L2 and L3 cache misses,
as we would expect. We also notice that the bitpacking schemes
tend to have fewer cache misses than FoR and pfor, which also fits
to the simpler access patterns of bitpacking.
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5 EVALUATION OF SECOND-ORDER VECTOR
COMPRESSION TECHNIQUES AND
IMPLEMENTATIONS IN HYRISE

In Hyrise, an abstraction for further auxiliary compression is used
on top of the existing column encodings discussed in Section 4. We
will refer to this abstraction as vector compression. Use cases of this
second-level compression in Hyrise include Dictionary Encoding,
where the sequence of dictionary indices, the Attribute Vector (AV),
can be compressed. A further application is the compression of
offset vectors for FoR and LZ4 column encodings. In the following,
we will focus on the usage in Dictionary Encoding and evaluate
how integer compression techniques affect DBMS performance.

5.1 Attribute Vector Characteristics and Access
Patterns

The Attribute Vectors (AV) that we want to compress in Hyrise
contain as many elements as the enclosing chunk. While the user
can change the chunk size at runtime, it defaults to𝐶 = 216 −1. The

integer values in the AV can reach from 0 to 𝐷 , the dictionary size,
which is smaller than𝐶 . Therefore, we can efficiently represent the
AV indices using two bytes per value, assuming 𝐷 = 216 − 1.

When only a few distinct values are in a segment, the dictionary
has significantly fewer elements than 𝐶 . In these cases, a more
compact representation of the values in the AV with fewer bits can
be worth additional compression overhead. In the opposite case,
with no duplicates in the segment, other encodings can be more
efficient than Dictionary Encoding.

Depending on the size and duplication of the segment’s values,
the size of the AV makes up a significant part of the memory con-
sumption. Hence, it makes sense to apply compression to it. It is
also possible to compress the dictionary entries further, but this is
not done in Hyrise.

Since we apply this vector compression on top of other encoding
schemes, the need for a performant, lightweight compression is of
even higher importance.

The access patterns for Dictionary AVs are the same as described
in Section 4.3. We have to execute a lookup in the AV and a subse-
quent data-dependent lookup in the dictionary for each retrieval of
a value. For this reason, we can apply the learnings from Section 4
and only explore the compression schemes that support random
access while offering a good performance.

5.2 End-to-End Evaluation in Hyrise
In the benchmarked scenario, we Dictionary-encode all columns
to measure the effects of compressing the attribute vector (cf. Sec-
tion 4.3).

5.2.1 Benchmark Results. For the TPC-H results shown in Figure 9,
we see that the bitpacking_compactvector and bitpacking_turbo-
PFOR libraries’ runtime performance lies within +7 % to the existing
baseline bytepacking_Hyrise_fsba for Intel and AMD. In contrast,
for the Apple M1, both bitpacking approaches perform worse that
Dictionary Encoding in the single-threaded setting. Furthermore,
the uncompressed std::vector<uint32_t> performs well in the
single-threaded setting on Intel andAMD, but performsmuchworse
in the multi-threaded setting as it is limited by the CPU’s bandwidth.

Formost settings, bytepacking_Hyrise_fsba provides a good trade-
off as it is among the smallest encodings and mostly performs well.
The only exception is the the multi-threaded setting on the AMD,
where both bitpacking approaches perform better.

Similar to the integer segment encoding results, using SIMDCAI
is not a good trade-off as alternatives are only slightly larger but
perform significantly better. For each scheme, we also implemented
a version where we decode the whole AV sequentially and then
access the indices. These versions perform strictly worse than the
corresponding random access implementation. Hence, we do not
study them further.

For the total memory sizes in TPC-H, we observe that the bitpack-
ing_turboPFOR and for_SIMDCAI_simd algorithms reduce the over-
all memory consumption compared to std::vector<uint32_t>
by 27 %. Furthermore, bitpacking algorithms compress 4 % better
than bytepacking. Depending on the number of distinct values,
the ratio largely differs. Here, the primary key columns dominate
the memory consumption, leaving less compression potential for
bitpacking.
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Figure 11: Cache access and bandwidth metrics for various vector compression schemes and TPC-H (multi-threaded, SF 10).

5.2.2 Bitpacking and Bytepacking Memory Consumption. Upon de-
tailed comparison of the bitpacking-compressed to the bytepacking-
compressed segments in Figure 12, we observe significantly higher

memory consumption reductions compared to bytepacking_Hyrise-
_fsba for chunks with non-byte-aligned distinct value count. We
see reductions up to a factor of eight when only one bit is required
to represent entries of the AV.
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Figure 12: bitpacking_turboPFOR and for_Hyrise compres-
sion ratio relative to baseline bytepacking_Hyrise_fsba, per
segment. Data for TPC-DS benchmark with Scale Factor 10.

Those advantages of bitpacking come into play very frequently.
In fact, in the TPC-H dataset, in 57 % of all segments, the AV has
≥ 210 timesmore entries than the dictionarywhile the distinct value
counts are not byte-aligned. Interestingly, the data distributions
where bitpacking excels are the same cases with high duplication
where Dictionary Encoding already outperforms other encodings
such as FoR. Hence, we expect to see even more significant memory
size reductions with compression configurations that chose better-
suited encodings for segments where Dictionary Encoding performs
poorly (i.e., primary key columns).

5.2.3 Performance Analysis. The end-to-end runtime varies sig-
nificantly for different compression algorithms. We explain this
variance with two factors: CPU load and memory access. Several
algorithms perform better than std::vector<uint32_t> although
they add decoding overhead. Our analysis of L2 and L3 cache loads
and misses in Figure 11 shows that these metrics mostly correlate
with the compression schemes’ memory consumption.

Still, improved caching behavior does not explain all runtime
differences between the algorithms. Especially when we regard for-
_SIMDCAI_simd, we see that it has a low memory consumption and
few cache accesses/misses but still performs considerably worse
than bitpacking_turboPFOR, with a similar compression rate. We
explain this difference with the codecs’ higher CPU decoding load
as shown in Section 4.1, which results in a lowermemory bandwidth
usage since the CPU can not issue enough reads.

6 SELECTION OF ENCODING AND VECTOR
COMPRESSION SCHEMES

The results shown Sections 4 and 5 emphasize that the decision
which segment encoding or vector compression to use is not trivial.
Each approach on the pareto frontier is a viable alternative when
runtime performance and memory consumption need to be bal-
anced, as no other alternative dominated in runtime performance
and size. The effects of multi-threading on cache miss rates and the
DRAM bandwidth further complicate the selection. Moreover, the

analyzed approaches sometimes differ significantly in their runtime
performance on different platforms.

Several recent publications have recognized this issue and pro-
pose automated selection methods. These methods optimize run-
time performance and memory consumption by analyzing data and
access patterns in order to find the best configuration of a database
instance [4, 8, 11, 21]. Most approaches either use database-internal
access counters (e.g., Hyrise or SAP HANA [7]) or analyze the data-
base’s query plan cache [4]. To estimate the runtime performance,
several approaches use calibration phases and machine learning
to create prediction models that allow estimating the performance
for a given system [4, 28]. While simple heuristics (cf. decision tree
of Abadi et al. [1]) are helpful (e.g., to avoid dictionary encoding
for columns with many distinct values), more sophisticated meth-
ods are required to ensure robust runtime performance or allow
optimizing compression schemes with certain constraints (e.g., on
memory budget or runtime).

In the long run, automated compression selection needs to be
combined with other methods for footprint reduction, such as data
tiering. If and how well various automated optimization methods
can be combined is studied in various previous and current projects
(cf. [22, 37]).

7 CONCLUSION
We have analyzed integer compression schemes in a synthetic sce-
nario as well as in various end-to-end database benchmarks. While
most libraries perform well for sequential accesses, e.g., by vec-
torization using SIMD instructions, accesses are often different
database systems. We have shown that many accesses in the colum-
nar in-memory database Hyrise are performed as random accesses
when executing TPC-H, TPC-DS, and JOB. For these workloads,
integer compression techniques with fast random access perfor-
mance, such as simple bitpacking, often outperformed widely used
schemes such as Dictionary Encoding. For columns other than in-
teger columns, we can compress Dictionary Encoding’s attribute
vector further with second-order vector compression techniques
such as bit-aligned null suppression. This technique is especially
effective in the canonical use case of Dictionary Encoding with only
a few distinct values in a segment where it reduces the memory us-
age significantly compared to byte-aligned compression techniques.
The results emphasize that cost-efficient database systems need to
be aware of different encoding alternatives to find the best balance
between runtime performance and space consumption.
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