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Abstract—By 2020 it is estimated that 20 billion devices will
be connected to the Internet. While the initial hype around
this Internet of Things (IoT) stems from consumer use cases,
the number of devices and data from enterprise use cases is
significant in terms of market share. With companies being chal-
lenged to choose the right digital infrastructure from different
providers, there is an pressing need to objectively measure the
hardware, operating system, data storage, and data management
systems that can ingest, persist, and process the massive amounts
of data arriving from sensors (edge devices). The Transaction
Processing Performance Council (TPC) recently released the first
industry standard benchmark for measuring the performance of
gateway systems, TPCx-IoT. In this paper, we provide a detailed
description of TPCx-IoT, mention design decisions behind key
elements of this benchmark, and experimentally analyze how
TPCx-IoT measures the performance of IoT gateway systems.

Index Terms—performance measurement; benchmark; perfor-
mance methodologies; Internet of Things; TPC;

I. INTRODUCTION

Without doubt, the Internet of Things (IoT) has been an
influential key driver of innovation, both in the consumer
and the business segments of many industries. The initial
hype around the IoT has stemmed from typical consumer
use cases such as wearable fitness trackers, smart watches,
and smart home devices. However, the number of devices
and data from enterprise use cases such as smart city, patient
healthcare, preventative maintenance, and smart power grid
have a significant market share. Regardless of use case, IoT
will continue to drive innovation of physical devices, networks,
and back-end analytical infrastructure. According to a 2017
projection by Gartner [1], the total number of IoT devices
will more than double between now and 2020 (8.4 Billion to
20.4 Billion). The breakdown between consumer and business
devices will remain steady at 62% and 38%, respectively.

Figure 1 shows a simplified three-tier architecture of a
typical IoT system with edge devices on the left, gateways
in the middle, and datacenter on the right. Data flows with
very high frequencies and very low latency requirements from
a myriad of sensors into edge devices, where the, typically,

Fig. 1: Schematic overview of a typical IoT infrastructure

analog signals are converted into digital data. The frequencies
at which sensors generate data depend on the sensor type. For
instance, a phasor measurement unit (PMU), which measures
electrical waves using synchrophasors [2], can generate 60-121
readings per second. Vibration sensors for monitoring machine
health as part of predictive machine maintenance are capable
of generating data at a much higher rate of thousands of
samples per second (sps). The edge devices then send that data
at high frequencies with low latency requirements by using a
variety of network protocols, such as TCP/IP, Bluetooth Low
Energy (BLE) [3], ZigBee [4], Wireless Internet (WiFi) [5],
Global System for Mobile (GSM) [6], and MQTT [7], to
gateway systems. Acting as a single point of access for these
devices, gateways perform the functions of short-term persis-
tent storage and lightweight local analytics (filter, aggregation)
in their own DBMS, which often runs open-source software on
industry standard servers1. With these capabilities, gateways
serve as a crucial monitoring tool for a selected area of an
operational field by providing dashboard-like functionality.
The back-end system on the right side of Figure 1 ingests
data from, potentially multiple gateways at low frequencies,
for example, once a day, without much latency requirement. It
stores data long-term and performs complex global analytics.

Analytics that run on gateways are restricted to the data

1Usually x86-based servers built with commodity hardware parts.



sent from the edges connected directly to a given gateway.
Typical analytical queries in gateways run frequently and
include data aggregation, duplicate removal, and outlier and
error detection. They usually operate on a subset of the data,
for example, they are restricted to a specific sensor or date
range (ingested within the previous minutes). Because they are
run very frequently and, potentially, concurrently with other
queries, they are required to be completed in sub-second.

Analytics that run on datacenters usually span multiple
gateways and consider data from previous weeks to years.
They include both reporting and ad-hoc queries, which tend
to be complex, long-running and based on a large subset of
the data. Usually, few queries run concurrently, and they are
allowed to run for an extended period.

Foreseeing a massive increase in the volume of data orig-
inating from edge devices that needs to be processed by
gateway systems with high reliability and performance, the
Transaction Processing Performance Council (TPC) [8] de-
veloped the TPC Express BenchmarkTM IoT (TPCx-IoT) [9],
the first industry standard benchmark for gateway systems.
Its first version was released in May 2017. Following the
tradition of previous TPC benchmarks TPCx-IoT provides
an objective measure of hardware, operating system, data
storage, and data management systems to the industry and
academia with verifiable performance, price-performance, and
availability metrics.

TPCx-IoT specifically targets the gateway tier because the
edge and the datacenter tiers are already covered by exist-
ing industry standard benchmarks. IoTMark, developed by
Embedded Microprocessor Benchmark Consortium (EEMBC),
is a suite of IoT connectivity benchmarks for testing and
analyzing microcontrollers and connectivity interfaces of edge
devices. The datacenter tier is covered by the TPC’s own
benchmarks TPC-H and TPC-DS. Covering gateway systems
seemed a natural fit for the TPC because it focuses on data
intensive applications. TPC discussed combining benchmarks
from all three tiers into one end-to-end benchmark, but it
concluded that there would be too many different devices and
software solutions distributed by different vendors in such an
end-to-end benchmark. This would make benchmarking very
time consuming and expensive. In addition, interpretation of
the benchmark results would be extremely difficult.

TPCx-IoT provides an objective measure of hardware,
operating system, data storage, and data management sys-
tems to offer the industry with verifiable performance, price-
performance, and availability metrics for systems that are
meant to ingest and persist massive amounts of data from large
a number of devices and provide real-time insights, typical in
IoT gateway systems running commercially available systems,
both software and hardware. The TPCx-IoT benchmark mod-
els a continuous system available 24h a day, 7 days a week.
It can be used to assess a broad range of system topologies
and implementation methodologies in a technically rigorous,
directly comparable, and vendor-neutral manner.

The contributions of this paper can be summarized as
follows.

1) We introduce TPCx-IoT.
2) We provide a detailed description of TPCx-IoT beyond

what is available in its specification, including design
rationales that lead to key decisions.

3) We explain how the ideas of TPCx-IoT are embedded
in the TPC infrastructure that makes TPCx-IoT a robust
industry standard benchmark.

4) We analyze how TPCx-IoT measures the performance
of IoT gateway systems by running it against different
hardware configurations.

The remainder of this paper is divided into five sections.
The second section describes related work. The third section
describes TPCx-IoT in detail, including its use case, execution
rules, metrics, data ingestion workload, query workload and
workload driver. The fourth section explains how TPCx-IoT
is embedded in TPC’s benchmark infrastructure including a
description of its benchmark class, and its pricing and auditing
requirements. In the fifth section we demonstrate how TPCx-
IoT measures the performance of real systems by analyzing
TPCx-IoT performance data gathered on different hardware
configurations running HBase. We conclude our paper with a
summary of our results.

II. RELATED WORK

While there have been industry standard benchmarks for
measuring the performance of IoT edge devices and datacenter
analytic systems, TPCx-IoT is the first industry standard
benchmark for measuring the performance of IoT gateway
systems. Because TPCx-IoT is an express benchmark that
provides a working kit, the TPC specification is limited
to providing high-level information. This paper provides a
detailed description of TPCx-IoT. This paper describes TPCx-
IoT to an extent that is beyond what is available in the TPC
specification.

The nonprofit Embedded Microprocessor Benchmark Con-
sortium (EEMBC) has developed and is actively supporting
IoTMark [10], a suite of micro-benchmarks for analyzing edge
devices. The benchmark suite focuses on measuring the energy
consumption of the three main parts of an edge node, sensors,
processing, and communication protocol. IoTMark is based on
real-world use cases and, therefore, determines the combined
energy consumption of the entire edge platform (sensor inter-
face, processor, and radio interface). However, EEMBC does
not include any performance or price-performance metric in
contrast to TPCx-IoT.

IoTABench [11] is an experimental benchmark toolkit. It
currently implements a smart meter use case (electricity)
[12], which includes the loading of synthetic data, performing
simple data cleansing, and six analytical queries. The synthetic
data is generated by a Markov chain data generator that
was trained using real data from Irish households. The data-
cleansing step requires insertion of missing data (1% dropped
samples) and the six analytical queries perform projection,
aggregation, selection, and order by operations. The sophisti-
cated data generator of IoTBench generates very realistic data
in parallel. IoTABench models a data ingestion rate of about



Fig. 2: High level description of TPCx-IoT’s use-case

67,000 smart meter readings per second. In comparison, TPCx-
IoT models millions of inserts per second. IoTABench models
a single sensor type, while TPCx-IoT models 200 sensor
types. IoTABench measures the data ingestion rate and query
performance sequentially, while TPCx-IoT measures insert and
query operations concurrently. The number of queries executed
by the two benchmarks is also different. While TPCx-IoT exe-
cutes five queries for every 10,000 sensor readings, IoTABenc
executes a total of 12 queries (two times six different queries).
With this model, IoTABench can be considered a datacenter
and not a gateway benchmark. In addition, IoTABench is not
an industry standard benchmark.

TPC-H [13] and TPC-DS [14], [15] are two industry stan-
dard benchmarks that are used extensively in industry and
academia for measuring the performance of complex analytical
systems because they are deployed in IoT datacenter back-end
systems. TPC-H being the older of the two standards requires
an ACID compliant database system, while TPC-DS does not,
because it specifically targets big data systems.

III. DESCRIPTION OF TPCX-IOT

This section provides a detailed description of the design
of TPCx-IoT, including background information for key deci-
sions. For the full specification and kit download of TPCx-IoT,
please refer to the TPC website [16].

A. Use Case: Power Substations of Electric Utility Providers

While the performance data of TPCx-IoT may be applied
to any IoT installation that must ingest and persist massive
amounts of data from a larger number of sensors, and provide
real-time analysis of incoming data, the workload of TPCx-
IoT has been granted a realistic context. It is used to model
the power substations of a typical electric utility provider.

A schematic description of an electric utility provider’s
infrastructure is illustrated in Figure 2. It consists of power
producers, for example, power plants and distributed energy
resources (DERs), a power grid, and power consumers.

To transport power from producers to consumers, it needs
to be converted to various voltages and distributed over a
grid of transmission lines. Situated at every junction of this

Fig. 3: Overview of a gateway architecture serving power
substations

power grid are power substations that undertake a variety of
tasks: Step-up transmission substations increase the voltage
so large amounts of electricity can be moved efficiently over
long distances. Step-down transmission substations do the
reverse, i.e., reduce voltage as the electric power approaches
its destination. Transmission substations connect two or more
transmission lines. They contain high-voltage switches that
allow transmission lines to be connected or disconnected for
maintenance. Distribution substations transfer power from the
transmission system to the distribution system of an area. In
case power needs to be fed into the power grid from dis-
tributed power generation, for example, wind farms, collector
substation are used. They allow for power flow in the opposite
direction, back into the transmission grid. According to a
2017 report of the California Energy Commission [17], the
power grid of the state of California includes 3,200 power
substations, of which 982 are owned by one utility provider,
Pacific Gas and Electric Company (PG&E) [18].

Utility providers use IoT technology in every step from
thousands of edge sensors in power plants to a few sensors
measuring power consumption at consumer sites. Require-
ments for gateways serving edge devices in each step vary
dramatically. For instance, fossil fuel power plants deploy up
to 4,000 sensors [19], while neighborhood smart meters only
contain one. Hence, for TPCx-IoT, we decided to model sensor
data generated by power substations with 200 sensors each.
Power producers, consumers, and the actual transmission lines
are outside of the scope of TPCx-IoT, as indicated by the non-
shaded boxes in Figure 2.

The size of power substations vary depending on their
purpose and how many customers they serve. For instance,
the Larkin power substation in downtown San Francisco[20]
measures 12,200 square feet, while the Martin power substa-
tions [21] occupies 319,000 square feet. Power substations
contain various types of sensors [22]. Figure 3 illustrates four
examples: load tap changers gassing sensors measure gas
levels in load tap changes (LTC) that regulate output voltages
of transformers. Gas levels can identify overheating, coking
and worn contacts of an LTC. Metalinsulatorsemiconductor
(MIS) gas sensors measure H2 and C2H2 levels[23]. Phasor
measurement units (PMU) measure electrical waves using
synchrophasors [2]. Leakage current sensors measure the
amount of current leakage to earth (ground). These sensors
send their data via edge devices to a gateway that can be
situated close to the power substation or in a datacenter/cloud.



Fig. 4: Mapping of real-world, benchmark, and physical de-
vices

The gateways ingest sensor data at a high rate, store that data
for short durations, and provide real-time analytics to help take
immediate action in associated power substations. Gateways
send data for long-term storage and complex analytics to an
analytical platform. This is, however, out of scope of TPCx-
IoT.

Figure 4 shows how the real-world use case of power sub-
stations (see Figure 2) is mapped to the specification of TPCx-
IoT and how it is mapped to physical systems. Each power
substation in the simulated “real-world” maps directly to one
instance of TPCx-IoT workload driver on the benchmark level.
One instance of the workload driver generates sensor data from
one power substation and the corresponding queries that can be
run against that data. The physical level shown in the bottom
of Figure 4 lists the number of physical systems needed to
support the number of simulated power substations, i.e., the
number of driver instances that can be run. So long as the
run-time requirements for the driver are met, driver instances
can be run on one or across multiple physical systems. These
systems are not priced.

The gateway supporting our power substations is mapped di-
rectly to the system being tested, the System Under Test (SUT).
SUT is a TPC term that defines all components of the system
being tested. It contains priced and non-priced components.
Each TPC benchmark defines the mandatory and optional parts
of its SUT. TPCx-IoT defines the SUT to represent an IoT
gateway system consisting of commercially available servers,
switches, and storage systems running a database management
system, for example, a NoSQL database. Figure 5 shows a
diagram of the SUT as defined in the TPCx-IoT specification.

B. Execution Rules

Execution rules are a basic component of any benchmark
definition. Because execution rules can highlight the strengths
and reveal the weaknesses of products, discussions to reach
an agreement about these rules are usually very controversial
and long lasting in benchmark consortia.

Fig. 5: TPCx-IoT system under test (SUT)

Fig. 6: Benchmark Execution Rules

A TPCx-IoT benchmark run is composed of two benchmark
iterations (see Figure 6). Each benchmark iteration executes
the TPCx-IoT workload twice, one to warm up the system and
one for the measured execution of the workload. Before the
first warmup run, the benchmark driver performs a couple of
prerequisite checks: The file check compares the checksums
(md5sum) of all non-changeable kit files2 on the system with
reference checksums in the kit; The data replication check
makes sure that the storage system uses three way replication
of data. If any of these two checks fail, the benchmark driver
aborts the run.

The warmup run is not timed. The start and end time-
stamps of the measured run are denoted by TSa,b where a ∈
{start, end} and b ∈ {1, 2}. The elapsed time of a workload
execution is TEa where a ∈ {1, 2}. Each workload execution
performs concurrent data ingestion (write) and query (read)
operations.

The amount of data to be ingested is a parameter to the
workload driver. After the measured workload execution is
completed a data check assures that the benchmark run fulfills

2Most files in the kit must not be altered by a benchmark sponsor. However
configuration related files may be altered.



all necessary runtime requirements. The second benchmark
iteration is a repetition run to ensure measurement repeata-
bility. To achieve identical conditions in both runs, a system
cleanup is performed between iterations. A cleanup consists
of purging all data ingested into the data management system
during the previous warmup and measured workloads, deleting
all temporary files, and restarting the data management system.
No additional activities are allowed between the end of the
first benchmark iteration and start of the second one. After the
system cleanup is complete the second iteration is executed.
After data check of the second iteration, the TPCx-IoT driver
runs a report that prints all information needed to audit and
publish a benchmark result.

For each benchmark run the benchmark sponsor must
choose the amount of ingest data and the number of simulated
power substations, such that the following two execution rule
requirements are fulfilled:

1) Workload execution elapsed time: Both the warmup and
the measured workload execution need to run for at least
1800s each.

2) Sensor data ingest rate: The benchmark system must
guarantee a minimal average data ingest rate per sensor
of 20kvps

s .

kvp stands for key-value-pair, plural is kvps. It is commonly
used in NonSQL systems to describe a set of two data items,
key and value. The key is a unique identifier for the value.
In our use case kvp stand for the sensor readings arriving to
the gateway system from edge devices. In the remainder of
the paper we will use the terms kvp(s) and sensor reading(s)
interchangeably.

Each workload run must be at least 1, 800s so that the
benchmarked system can demonstrate that it can sustain high
performance during an extended period before data gets for-
warded to analytical systems in the back-end.

A minimal average data ingest rate per sensor is required
to prevent benchmark sponsors3 from artificially reducing the
amount of reads required by queries. Assuming a fixed number
of sensors there is a direct correlation between the system-
wide data ingest rate per sensor and the average number of
readings retrieved by each query, because each query reads
data from a 5s interval. Keeping the system-wide data ingest
rate constant, because the gateway system is saturated, one
could reduce the average per sensor ingest rate by increasing
the number of sensors, that is, by increasing the number of
power substations/TPCx-IoT driver instances.

Requiring a minimal average ingest rate of 20kvps
s per

sensor has a couple of other consequences, which we are
discussing below. Because one power substation has 200
sensors, the system-wide minimal average ingest rate is:

200sensors ∗ 20 kvps

sensors ∗ s
= 4000

kvps

s
= 3.91

MB

s
(1)

3Vendors producing benchmark results and publishing them under TPC
rules.

Fig. 7: Sensor reading (kvp) generated by the driver program
of TPCx-IoT

The minimal average number of kvps retrieved per query is:

20
kvps

sensor ∗ s
∗ 5s = 100

kvps

sensor
(2)

C. Data Ingestion Workload

The TPCx-IoT workload generator is based on the Yahoo!
Cloud Serving Benchmark framework (YCSB) [24]. We chose
YCSB for developing of TPCx-IoT because it is well-known,
open source, easily adaptable to specific needs, and its built-
in database interface layer allows for connections to many
common open-source database management systems including
NoSQL DBMS.

Before diving into the details of the changes, we briefly
review the requirements of the data ingestion part of our
workload driver. As outlined in the use case description
(Figure 4) workload driver of TPCx-IoT must be able to
generate sensor data related to different power substations.
In real life, power substations vary in size depending on the
number of transmission lines they connect or the number of
customers they serve. The number of sensors in a substation
varies accordingly. However, in our model, we assume that
each substation has the same number of sensors, namely, 200.

To distinguish sensor data from different power substations,
we added support in YCSB for keys and values that are
based on attributes from sensors commonly deployed in power
substations of utility companies. Each YCSB instance, which
we refer to as a TPCx-IoT driver instance, generates sensor
data arriving from one power substation. The power substation
key is passed to the TPCx-IoT driver instance along with the
number of sensor readings it should generate (SR). Figure 7
shows the structure of key-value pairs. Each represents one
reading of one sensor of one power substation. The key part
consists of the power substation key, which uniquely identifies
a power substation, the sensor key, which uniquely identifies
a sensor within a power substation and the timestamp, coded
as POSIX time, which represents the time the sensor reading
was taken. The value part consists of the sensor value, which
represents the value that the sensor read, sensor unit, which
represents the measurement unit of the sensor value, and
padding, which contains random text to fill a kvp to one
KByte.

Figure 8 illustrates the bare generation speed at which
TPCx-IoT drivers generate kvps. We measure this speed by
redirecting the driver’s output to /dev/null. These experi-
ments where conducted on a Cisco UCS C220 M4 driver
system with 128GB main memory and two Intel Xeon 2680



Fig. 8: Key-Value Pair Generation Speed

v4 CPUs running at 2.4 GHz. Each socket had 14 cores,
28 multi-threaded. On the x-axis, we varied the number of
TPCx-IoT drivers from 1 to 64. The left y-axis shows the
aggregated driver throughput in thousand kvps per second
(kvpss ). The right y-axis shows the CPU utilization of the
driver system in percentage. As we increased the number of
TPCx-IoT drivers from 1 to 64, the total throughput increased
from 120,000kvps

s with one driver to 1.1 Millionkvps
s with

32 drivers, while CPU utilization increases from 4% with
one driver to 75% with 32 drivers. Total throughput drops to
900,000kvps

s with 64 drivers with CPU utilization increasing
to 100% with the system CPU portion increasing from 5%
to 15%. This is not surprising because 64 drivers spawn 640
threads, which impose overheads of garbage collection and
scheduling. The above generation speed of 1.1 Millionkvps

s
is sufficient to simulate the amount of data generated by one
power substation. Each TPCx-IoT driver simulates the data
volume of one power substation with 200 sensors. That means,
1.1 Millionkvps

s generated with 32 drivers simulates a sensor
frequency of about 170 samples per second (sps) per sensor.

D. Query Generation/Execution

We added support for the concurrent querying of ingested
sensor data. Unlike in the traditional YCSB deployments,
where YCSB picks a random set of keys to read, TPCx-
IoT issues queries that read random key ranges. Queries are
generated from the following four query templates, which
represent typical dash-board-like queries:

1) Max-Reading: The max-reading query compares the max-
imum sensor reading in the two intervals.

2) Min-Reading: The min-reading query compares the min-
imum sensor reading in the two intervals.

3) Average-Reading: The average-reading query compares
the average sensor reading in the two intervals.

4) Reading-Count: The sample-count query compares the
number of sensor readings in the two intervals.

Each query compares the readings of one sensor of one power
substation ingested in the last 5s by using the data from a
randomly selected 5s interval from the previous 1800s. We
chose the interval of the second query to be randomly picked,

Scan s=new Scan ( ) ;
R e s u l t S c a n n e r s c a n n e r = n u l l ;
t r y {

s . se tTimeRange ( t imes tamp , t imes t amp + 5000) ;
S t r i n g B u f f e r s t a r t K e y =new S t r i n g B u f f e r ( ) ;
s t a r t K e y . append ( c l i e n t F i l t e r ) ;
s t a r t K e y . append ( ” : ” ) ;
s t a r t K e y . append ( f i l t e r ) ;
s t a r t K e y . append ( ” : ” ) ;
s t a r t K e y . append ( t imes t amp ) ;
S t r i n g B u f f e r endKey=new S t r i n g B u f f e r ( ) ;
endKey . append ( c l i e n t F i l t e r ) ;
endKey . append ( ” : ” ) ;
endKey . append ( f i l t e r ) ;
endKey . append ( ” : ” ) ;
endKey . append ( t imes t amp +5000) ;
s . s e t S t a r t R o w ( s t a r t K e y . t o S t r i n g ( ) . g e t B y t e s ( ) ) ;
s . se tStopRow ( endKey . t o S t r i n g ( ) . g e t B y t e s ( ) ) ;
i f ( f i e l d s == n u l l ) {

s . addFami ly ( co lumnFami lyBytes ) ;
} e l s e {
f o r ( S t r i n g f i e l d : f i e l d s ) {

s . addColumn ( columnFamilyBytes , By te s . t o B y t e s ( f i e l d ) ) ;
}
}
s c a n n e r = c u r r e n t T a b l e . g e t S c a n n e r ( s ) ;
i n t numResu l t s = 0 ;
f o r ( R e s u l t r r = s c a n n e r . n e x t ( ) ;

r r != n u l l ;
r r = s c a n n e r . n e x t ( ) ) {

S t r i n g key = Bytes . t o S t r i n g ( r r . getRow ( ) ) ;
i f ( debug ) {

System . o u t . p r i n t l n ( ” Got r e s u l t f o r key : ” + key ) ;
}
}
}

Listing 1: Sample Query Code

as opposed to be from a fixed time window to minimize
caching effects. All four query templates perform projections,
selections, and aggregations. The projection returns the fields
required by the query, namely sensor value and time stamp.
The selection filters data relevant to a specific power substa-
tion, sensor, and date range. The aggregation performs max,
min, average, and count operations. Listing 1 shows a sample
query.

Because the database is empty before the start of the
warmup run, queries issued during the warmup run might not
return any data for the second, randomly chosen, time interval,
because there might not exist any data in that time interval.
This is not a problem as the warmup run is not timed nor is
any information from it part of the metric.

E. Benchmark Driver

Figure 9 shows the architecture of the benchmark driver of
TPCx-IoT. It is responsible for running the entire workload:
performing prerequisite checks, performing data inserts (write
operations), executing queries (read operations), checking
data, performing system cleanup, and, generating reports. It
serves as a wrapper around the TPCx-IoT driver instances,
which are based on YCSB. Depending on the gateway size
many of the TPCx-IoT driver instances are spawn.

The benchmark driver is invoked with two arguments, num-
ber of TPCx-IoT driver instances and total number of kvps.
The number of TPCx-IoT driver instances determines how
many processes generate data, how many power substations



Fig. 9: Architecture of TPCx-IoT workload generator

are simulated and how many different sensors send data to
the gateway. The total number of kvps, which simulates the
number of sensor readings sent to the gateway, determines how
many kvps are ingested into the gateway. The default number
of kvps is 1 Billion. By increasing the number of kvps the
benchmark sponsor can adjust the run time of the workload
run. Because the metric is throughput-based longer runs offer
no advantages.

Each TPCx-IoT driver instances i generates about the same
number of kvps, KV P (i). With P being the number of
simulated power substations and K being the total number of
kvps generated by all drivers, the number of kvps generated
by each driver can be calculated as follows:

KV P (i) =

{
bKP c if 1 ≤ i < P

bKP c+K mod P otherwise
(3)

Because real benchmark configurations are expected to use
values for K that are much larger (Billions) than P (hundreds),
the above equation will not introduce a significant workload
skew.

F. Metrics

One of the core values of the TPC is to develop benchmarks
with robust, simple and verifiable performance and price
performance metrics. TPC benchmark sponsors invest consid-
erable amount of money and engineering hours to produce
benchmark results. Therefore, one of the main goals of the
TPC is to provide a single robust performance metric that
allows for system performance comparisons over extended pe-
riods of time and, thereby, preserving benchmark investments.
TPCx-IoT defines three primary metrics:

1) Performance metric: IoTps;
2) Price-performance metric: $/IoTps; and
3) System availability: Date.
The performance metric reflects the effective gateway in-

gestion rate in seconds that the SUT can support during a

30 minute measurement interval, while executing real-time
analytic queries. The total number of kvps ingested into the
database, Ni, where i ∈ {1, 2} being the iteration, is used
to calculate the performance metric. The performance run is
defined as the measured run m with the lower number of kvps
ingested, i.e., m ∈ {1, 2}, n ∈ {1, 2} such that m 6= n and
Nm < Nn. IoTps is calculated as follows:

IoTps =
Nm

TSend,m − TSstart,m
(4)

The price-performance metric reflects the total cost of owner-
ship per unit IoTps performance. It is calculated as follows:

$

IoTps
=

ownership cost ∗ (TSend,m − TSstart,m)

Nm
(5)

The system availability metric reflects the date when all line
items of the price configuration are generally available,that is,
to any costumer. The system availability metric is important
because it guarantees that the benchmarked system is a pro-
duction system that can be purchased and not an experimental
system.

IV. APPLYING TPC BENCHMARK MODEL

Formal specifications for data generation, workload gener-
ation and benchmark execution are key for defining a good
benchmark. However, industry standard benchmarks have ad-
ditional requirements. They need to ensure that the bench-
marked systems use realistic configurations and are priced in a
fair and consistent manner. Moreover, they need to ensure that
all benchmark rules are followed, and benchmark execution
is documented properly. The TPC has developed benchmark
models and rules that aid in turning a benchmark into an
industry standard benchmark.

A. About TPC Benchmark Classes and Why Express for IoT

A benchmark class in TPC is a set of benchmark standards
that share the same characteristics and the same rules for
creation, maintenance, and publication. The TPC currently has
two benchmark classes, namely, enterprise and express. Enter-
prise class benchmarks, namely, TPC-C, TPC-E, TPC-H, TPC-
DS, and TPC-DI, are defined in a technology agnostic way in
the form of paper specifications. They can be implemented
using any technology that fulfills the requirements defined
in their respective specifications. This model has served the
TPC well for many years because it accommodates differences
hardware architecture and software functions and features. The
last decade has seen a shift toward the construction of enter-
prise systems based on commodity hardware, especially, x86-
based systems and open-source software. This convergence to
fewer architectures has weakened the need for a technology-
agnostic specification. This led the TPC to develop the express
benchmark framework. Express benchmarks are based on
predefined executable software kits. They are restricted to the
technology implemented in the kit. Consequently, they can be
deployed rapidly with minimal modifications, while satisfying
the rigid rules TPC benchmarks are known for. There are
many pros and cons in choosing a benchmark class for a given



benchmark. For a detailed discussion see [25]. TPC currently
supports four express benchmarks, TPCx-BB, TPCx-V, TPCx-
HS, and TPCx-IoT.

Regardless of class, all benchmarks developed by the TPC
share the same values of the TPC, namely:
• publish only one performance metric,
• publish a price/performance metric,
• ensure availability of the measured system,
• ensure repeatability of a benchmark run and
• rigid audit process
We selected the express model for TPCx-IoT because

gateway architectures are mostly based on industry standard
servers (x86-based) and use open software stacks, which
makes the development of a kit feasible. Development times
for express benchmarks are much shorter compared to those
for enterprise benchmarks.

B. Priced Configuration

The TPC is one of the few performance consortia that
defines very strict rules for pricing a system and defining
availability of components of a system. Karl Huppler from
IBM has summarized the pricing methodology and outlined
future direction of TPC pricing in [26].

Rules for pricing the priced system and its associated
software and maintenance are included in the TPC pricing
specification [27], which is listed under common benchmark
specifications. Common benchmark specifications apply to all
TPC benchmarks.

The system to be priced must include all hardware and
software components listed in the SUT, a communication
interface that can support user interface devices, additional
operational components configured on the test system, and
maintenance of all above components. The cost of a priced
system consists of the following costs:
• SUT price;
• Price of additional products (software or hardware) in

system;
• Price of additional products (software or hardware) re-

quired for customary operation, administration and main-
tenance of the SUT for three years;

• Price of all products required to create, execute, adminis-
ter and maintain the executables necessary to create and
populate the test environment.

The following components are excluded from the cost of a
priced system:
• End-user communication devices and related cables, con-

nectors, and switches and
• Equipment and tools used exclusively for FDR4 produc-

tion.
Pricing is strictly associated with the availability of system

components. If any component of a benchmark becomes
unavailable, the benchmark result must be withdrawn. If, how-
ever, components with comparable performance are available,

4Full Disclosure Report

the TPCx-IoT pricing rules allow for component substitutions.
If corrections to components of the priced configuration are
required during the life of a product, these changes are not
considered substitutions as long as the part number of the
priced component is identical to the new component. The idea
behind this change is that hardware and software suppliers
may update the components of the priced configuration so
long as these updates do not negatively impact the reported
performance metric or numerical quantities by more than two
percent.

The following are not considered substitutions:
1) Software patches to resolve a security vulnerability;
2) Silicon revision to correct errors;
3) New supplier of functionally equivalent components, for

example, memory chips and disk drives.
4) Durable Media (for example, disk drives) and cables5

C. Full Disclosure Report and Executive Summary

Each benchmark results is required to provide a full disclo-
sure report (FDR) and executive summary (ES). The intent of
these disclosures is to simplify comparisons between results
and for a facilitating replication of the results of any given
benchmark, given appropriate documentation and products.
The FDR must contain all customer-tunable parameters and
options that have been changed from the defaults found in
actual products, including but not limited to the configura-
tion parameters and options of the operating system, server,
storage, network, and any other hardware components incor-
porated into the pricing structure. In addition if any software
is specifically compiled for running TPCx-IoT, any compiler
optimization options must be disclosed.

Furthermore, the FDR must list diagrams of both the
measured and the priced configurations, along with by a
description of the differences. The diagrams must clearly show
the number of nodes used and the total number and type of
processors used including sizes of L2 and L3 caches. The
diagrams must further show the size of memory; any specific
mapping/partitioning of memory that is unique to the SUT;
number and type of disk units (and controllers, if applicable),
number of channels or bus connections to disk units, including
protocol type, number and speed of LAN connections and
switches; and any other hardware components physically used
in the test or incorporated into the pricing structure.

D. Audit Requirements

Before publishing any TPCx-IoT result, the data must be
audited by an independent audit or by peer audit. The bench-
mark sponsor may choose between the two audit methods.
An independent audit is conducted by a third party with no
interest in the benchmark sponsor, while a peer audit is defined
as the process of reviewing benchmark results by a peer review
committee consisting of three members from TPC companies
other than the benchmark sponsor.

5A durable medium is defined as a data storage medium that is inherently
non-volatile, such as a magnetic disk or tape



V. EXPERIMENTS

We ran our tests against HBase 1.2.0 [28], [29], which is
a good representative system for this workload. Key-value
stores for IoT data are being used in a variety of products
and services, such as Google Cloud IOT [30] and Microsoft
Azure IoT [31]. Our benchmarks are run on a cluster of eight
Cisco UCSB-B200-M4 blade servers, each with the following
configuration:
• 2 Intel(R) Xeon(R) CPU E5-2680 v4 clocked at 2.40GHz,

each with 14 cores and 28 threads.
• 256 GB RAM
• 2 Cisco UCS 6324 FI (10 GBps per server node)
• 2 Samsung 3.8 TB 2.5-inch Enterprise Value 6G SATA

SSD
We used the following tuning parameters for HBase:
• hbase.client.write.buffer=8GB
• hbase.regionserver.handler.count=224
• Maximum number of Write-Ahead Log (WAL) files=128
• hbase.hstore.blockingStoreFiles=28
• Java Heap Size of HBase RegionServer=32GB
• Client Java Heap Size=8GB
This section is intended to show basic performance charac-

teristics of TPCx-IoT. It is not intended to showcase the best
performance of HBase nor to analyze HBase in detail. The
above tuning steps for HBase follow best practices.

A. Scaling the Number of Power Substations

In order to determine how many power substations our gate-
way system supports, while still fulfilling the execution rule
requirements outlined in Section III-B, we ran experiments
varying the number of power substations (number of TPCx-
IoT instances) from 1 to 48. We increased the number of power
substations in steps of power of 2, except from 32-48, where
we added 16.

TABLE I: Experiment Parameters & Requirement Fulfillment

Power Rows Elapsed Time [s] Ingestion Rate kvps
s

sub- Ingested Warm- Mea- System- Per-
stations [Million] up sured Wide Sensor

1 50 4,795 5,099 9,806 49.0
2 60 2,024 2,222 26,999 67.5
4 100 1,813 1,812 56,822 71.0
8 240 2,606 2,837 84,602 52.9

16 400 2,822 2,986 133,940 41.9
32 400 1,897 2,149 186,109 29.1
48 400 1,992 2,188 182,815 19.0

Table I lists the benchmark input parameters, number of
power-substations and number of kvps to be ingested, in the
first two columns. As we increased the number of power
substations from 1 to 48, we increased the number of rows
ingested from 50 Million to 400 Million to keep the elapsed
times of the warmup and measured executions of the workload
larger than 1800 s (columns three and four). Finding a suitable
number of rows to ingest was not difficult. We binary-searched
a suitable number for one power substation and extrapolated

Fig. 10: System-wide kvp inserted per second [IoTps]

Fig. 11: Per Sensor kvp inserted per second

to multiple power substations. The system-wide throughput,
which corresponds to the main metric (IoTps) of TPCx-
IoT, increases from 9,806 kvps

s with one power substation to
186,109 kvps

s with 32 power substations. Adding 16 more
power substations keeps the throughput constant at about
182,815 kvps

s . The per-sensor ingestion rate requirement of
20kvps

s is fulfilled up to 32 power substations. At 48 substa-
tions it falls to 19kvps

s .
The following graphs show additional metrics of the above

conducted experiments. Unless noted otherwise, the number
presented are measured, not derived numbers. Figure 10 plots
the system-wide throughput (IoTps). For each data point
we display the scaling number s based on the throughput
with one power substations, that is, Si = IoTpsi

IoTps1
with i ∈

2, 4, 8, 16, 32, 48 being the number of power substations.
IoTps scales super-linear until eight power substations. With
two power substations S2 is 2.8, with 4 power substations S4 is
5.5 and with 8 power substations S8 is 8.6. With 16 and more
power substations IoTps scales sub-linearly at S16 = 13.7,
S32 = 19.0 and S48 = 18.6.

Figure 11 plots the measured average per-sensor IoTps.
The red line at 20 IoTps indicates the minimum allowed for
a valid benchmark run. IoTps increases from 49.0 IoTps with
one power substation to 67.8 IoTps with 4 power substations.



Fig. 12: Average sensor readings aggregated per query

Increasing the number of power substations to 48 causes
IoTps to drop below the allowable limit. The reason for the
initial increase and subsequent drop in per-sensor throughput is
the initial super-linear system-wide throughput scaling, which
turns into a sub-linear scaling with 16 power substations.
Because the throughput per sensor is calculated by dividing the
system-wide throughput by the number of sensors and because
the number of sensors increases linearly with the number of
power substations, there is a direct correlation between the
system-wide scaling and the per-sensor throughput: Sub-linear
system-wide scaling causes a decrease in per-sensor through-
put, linear system-wide scaling causes constant per-sensor
throughput, and super-linear system-wide scaling causes an
increase in per-sensor throughput.

Figure 12 plots the measured average number of kvps
aggregated by each query. This is essentially the average
number of readings read per query to calculate the dash-board
value for each sensor. The curve looks very similar to that of
the previous Figure 11, because the number of data aggregated
as the same correlation as the Iotps per sensor. We include this
graph to show that a reasonable number of values is considered
to calculate the aggregate for each of the query template. If
the number drops below 200, the benchmark run is invalid.

Figure 13 plots the average system-wide query elapsed time
for each of our runs. Average query elapsed time is betweem
11.8 ms and 14.4 ms with up to 8 power substations. With 16
power substations average query elapsed time increases to 33.1
ms and reduces slightly to 29.1 ms with 32 power substations
and 25.4 ms with 48 respectively.

The bar chart in Figure 14 shows minimum, maximum
and average query elapsed times in milliseconds. For each
number of power substations the minimum and average query
elapsed times are in the double digit milliseconds (max is
36 milliseconds). However, the maximum query elapsed times
are very high starting with 4 power substations (larger than
1000 ms). The numbers above each bar show the coefficient
of variation ( stdev

mean ). For each of the runs the coefficient
of variation is larger than 1, which indicates a very large
variation. We also calculated the 95 percentiles for each run
(not shown in figure). They are below 25 ms up to 16 power

Fig. 13: Average system-wide query elapsed time [s]

Fig. 14: Query elapsed time variation

substations. They increase to 185 ms with 32 and 143 ms
with 48 power substations. The benchmark currently does not
require a query elapsed time percentile. However, because of
the dash-board like use-case of TPCx-IoT, this is something
to consider.

Because TPCx-IoT requires the complete ingestion of a
fixed number of sensor readings kvps from each power
substation, as opposed to run for a fix amount of time, the

Fig. 15: Power substation workload variation



benchmark tests the a gateway system’s ability to load-balance
the data ingestion between all power substations. Figure 15
plots the minimum, maximum, and average ingestion times
for data from all power substation (see Table II for a listing
of the numbers). Although with one power substation all three
values are identical, we include them for completeness. As
we increase the number of power substations the difference
between the fastest and the slowest ingest time increases from
5% to 81%. Table II shows the times for the fastest ingest in
the second column, the slowest ingest time in the third column
and the average ingest time in the fourth column for each of the
runs. The difference between the fastest and slowest are printed
in Column 4 (absolute) and Column 5 (relative). For instance,
the large difference of 81% in the 48 power substation case
indicates that there is large potential for speeding this run up.

TABLE II: Difference between fastest and slowest power
substation ingest time

Power Ingest Time [s] Difference
substation Min Max Avg Absolute Relative

1 5,099 5,099 5,099 n.a. n.a.
2 2,109 2,222 2165 113s 5%
4 1,637 1,845 1,676 208s 13%
8 2,524 2,837 2,704 313s 12%

16 2,497 2,986 2,735 489s 20%
32 1,563 2,149 1,861 586s 38%
48 1,212 2,188 1,653 976s 81%

B. Scaling the Number of Gateway Nodes (Scale-Out)

For the following set of experiments we scaled the number
of HBase servers from two to eight nodes. Due to the replica-
tion requirements in TPCx-IOT the minimum number of nodes
eligible for benchmark publication is two. All experiments
conducted in this section fulfilled the runtime requirement of
a minimal workload execution time of 1,800 s.

Figure 16 shows how TPCx-IoT throughput [IoTps] scales
with the number of power substations on all three configura-
tions. The corresponding data is also listed in Table III. With
the 2-node configuration (blue graph with rhombus markers)
system-wide throughput increases from 21,909 IoTps with
one power substation to 105,877 IoTps with eight power
substations. Increasing the number of substations beyond eight
increases system-wide throughput to a peak of 115,486 IoTps.
The 4-node configuration shows 15,706 IoTps with one power
substation (red graph with square markers). This is about 28%
less throughput than the two-node configuration. System-wide
throughput increases to 125,603 IoTps with 16 power sub-
stations. Increasing the number of power substations beyond
16 increases system-wide throughput to peak at about 134,248
IoTps. The 4-node configuration delivers a 16% higher peak
system-wide throughput. As discussed in Section V-A the 8-
node configuration scales until 32 power substations, after
which performance remains flat. At 9,806 IoTps the 8-node
configuration delivers the lowest performance with one power
substations. However, with 182,815 IoTps it is able to deliver
the highest peak system-wide throughput.

TABLE III: System-wide and per-sensor throughput for 2,4
and 8 nodes

Power Throughput [IoTps]
sub- System-wide Per-sensor

stations 2- 4- 8- 2- 4- 8-
node node node node node node

1 21,909 15,706 9,806 109.5 78.5 49.0
2 38,939 33,612 26,999 97.3 84.0 67.5
4 63,076 57,113 54,201 78.8 71.4 67.8
8 105,877 90,160 84,602 66.2 56.4 52.9

16 114,508 125,603 133,940 35.8 39.3 41.9
32 114,764 132,100 186,109 17.9 20.6 29.1
48 115,486 134,248 182,815 12.0 14.0 19.0

Fig. 16: System-wide kvp inserted per second [IoTps]

Figure 17 shows the per-sensor throughput for the three
configurations. Similarly to the 8-node configuration, the 4-
node configuration shows an initial increase in per-sensor
throughput from one to four power substations. Per-sensor
throughput decreases after that. It stays above the limit of
20 IoTps until shortly after 32 power substations. The 2-
node configuration does not show an increase in per-sensor
throughput from one to two power substations, because, unlike
the other configurations, the 2-node configurations shows sub-
linear scaling starting from one to two power substations. Per-
sensor throughput decreases steadily starting from one power
substation to 48 power substations. It crosses the limit of 20
IoTps exactly at 32 power substations.

VI. CONCLUSION

In this paper, we presented TPCx-IoT, the first industry
standard benchmark for measuring the performance of IoT
gateway systems. Similar to previous TPC express bench-
marks, TPCx-IoT is a kit-based benchmark modeled after
the real-world scenario of a power utility provider that must
distribute power through a smart grid with many power
substations. The target systems of the benchmark are gateway
systems that can ingest data from edge-devices at a high speed
while performing real-time analytic queries that feed a dash-
board for monitoring purposes. The TPCx-IoT benchmark was
accepted by the TPC in May 2017.

We presented performance results obtained from three dif-



Fig. 17: Per Sensor kvp inserted per second

ferent industry configurations running HBase 1.2.0. The first
set of performance experiments where we scaled the number
of power substations show that the read and write operations
of TPCx-IoT impose a significant workload to show system
limits. It also showed that the execution rule requirement of
executing the workload for at least 1,800s were easy to fulfill.
The second requirement of performing at least 20 kvps

s per
sensors showed to be reasonable and is also a good gatekeeper
to prevent benchmark sponsors to reduce the read requirements
during query execution. The larger the configuration the more
gateways could be supported. We also showed that TPCx-IoTs
fixed workload requirement, that is, to ingest a fixed number of
kvps per power substation, can reveal deficiencies in system’s
ability to load balance data ingestion across multiple power
substations.
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