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Abstract:
There is an increasing interest in fusing data from heterogeneous sources. Combining
data sources increases the utility of existing datasets, generating new information and
creating services of higher quality. A central issue in working with heterogeneous sources
is data migration: In order to share and process data in different engines, resource
intensive and complex movements and transformations between computing engines,
services, and stores are necessary.
Muses is a distributed, high-performance data migration engine that is able to
interconnect distributed data stores by forwarding, transforming, repartitioning, or
broadcasting data among distributed engines’ instances in a resource-, cost-, and
performance-adaptive manner. As such, it performs seamless information sharing across
all participating resources in a standard, modular manner. We show an overall
improvement of 30% for pipelining jobs across multiple engines, even when we count the
overhead of Muses in the execution time. This performance gain implies that Muses can
be used to optimise large pipelines that leverage multiple engines.

ACM CCS: Information systems → Data management systems → Middleware for
databases

Keywords: Distributed systems, data migration, data transformation, big data engine,
data integration.

1 Introduction

Polystores are designed to abstract applications from
the underlying execution platform while harvesting the
performance from cross-engines execution. Modern po-
lystores [6, 22, 16] have four layers of abstraction: the
language layer, the logical representation layer, the phy-
sical implementation layer, and the data storage layer.
In this paper, we concentrate on the fourth layer and
its connection with the third layer. Polystore consists
of a set of heterogeneous data processing engines. An
essential element of the storage layer management is the
data migration among the various data processing engi-
nes. Thus, a crucial concern in cross-engine execution is
the data migration overhead.

The key factors when deploying an application on poly-
store instead of a single processing engine are the perfor-
mance gain from the application operations on polystore
engines and the communication overhead introduced
between the engines. Polystores are efficient when the
performance gain by utilizing various engines overcome
the cost of network communication.

An application in distributed systems consists of a set of
logical operations organized in a graph. Each operation
consists of one or more physical implementation tasks.
The tasks are either computation-intensive or communi-
cation intensive. For example, a join query (an operation)
in a distributed system consists of shuffle and merge tasks.
The current polystore platforms consider execution en-
gine and storage as separated layers [6], which makes
sense for the simplicity of the design, but not for the
performance. Executing the mentioned example would
first migrate the data to the executing engines then per-
forms the application first task, which is a shuffle task,
resulting in new data movement. Polystore optimizers
should be aware of the application tasks and have the
flexibility to push shuffle logic to the data migration
layer to optimize data migration.

Most of the current polystore engines consider single
node stores in the architecture of the polystore, such as
PostgreSQL and Neo4j. Efficient data migration between
distributed engines, such as Apache Spark [14] or Apache
Flink [13], is difficult due to numerous reasons. First,
the topology of application deployment is determined at
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run-time by the resource manager. Second, engines have
different data production and consumption rates (varied
based on the application tasks). Third, the execution
engines are different in the number of input (m ) and
output (n) threads, which makes it hard to balance the
data among engines, for example, moving data from n
workers in a Flink cluster to m workers of a Spark clu-
ster. Fourth, in cross-engine execution, many-to-many
connections among engines are needed for efficient data
migration. In a many-to-many connection, two distri-
buted engines could send data to a single distributed
engine, for example. Fifth, the polystore should not mo-
dify the source code of the underlying engines. Sixth,
additional complexity comes from engine execution types;
some engines are native streaming engines, and others
are batch processing engines. These reasons make using
a simple data migration approach based on direct socket
connections or manual data migration not feasible.

Most of the polystore execution projects (e.g., [6, 22, 16])
have built prototypes with the data migration either
hardcoded as a simple one-to-one connection [4], sim-
plified as shared storage (HDFS [17]), or performed as
manual data transformation, repartitioning, and migrati-
on [5]. We believe that these strategies for data migration
are not suitable for distributed engines where the appli-
cations drive the deployment architecture.

In this paper, we discuss the architecture of Muses, a
data migration engine for distributed systems. Our con-
tributions can be summarized as follows:

1. Muses is reactive to changes of the topology of the
engine instances: Distributed engines such as Apache
Spark and Apache Flink, assign the application tasks
to the cluster nodes at run-time based on the resource
manager. Thus, the application deployment topology
differs based on resource availability. Muses reacts to
the application topology changes.

2. Muses links heterogeneous data sources: A data ex-
port/import in a single stream, multiple streams on a
single machine (e.g., PostgreSQL with n threads for
data export/import), or multiple streams on a cluster
of machines (e.g., Apache Spark). To the best of our
knowledge, the last case has not been solved by any
previous system. Muses can connect all these types of
data stores.

3. Muses provides a rich platform for cross-engine exe-
cution layers. To enable smart integration between
the data migration layer (Muses) and a cross-engine
execution layer, Muses provides the ability to perform
data shuffling or broadcasting during the first data
migration from a source engine to a destination engi-
ne. Muses also efficiently connects stream and batch
processing engines.

4. It is easy to connect engines to Muses: Only a single
Connector to Muses is needed to join Muses, as des-
cribed in Section 3.2.2. No change to the source code
of the engine is required.

This paper is an extended version of a short paper publis-
hed in ICDE 2019 [21]. The rest of the paper is organised

as follows: Section 2 discusses a motivating example, a
spatial join in genomics, which utilises the cross-engine
execution. Section 5 shows the state of art in data migra-
tion for polystores. Section 3 describes the architecture of
Muses in detail. Section 4, shows the performance of the
distributed data migration. Finally, Section 6 concludes
the paper for future work.

2 Motivating Example

Recent advancements in genomic materials reading tech-
niques, a.k.a., Next Generation Sequencing (NGS), make
reading genomic materials faster and cheaper, which
leads to a vast increase in the generation of genomic
data. Several methods are used to extract signals from
the genomic data that associate a region (interval) of the
genome with some interesting information - such as a mu-
tation or a peak of expression [15]. Each interval (record)
in a sample (file) has a set of attribute/value associated
with each interval, where the files are tab-delimited.

Genomic applications integrate several data types from
different storage technologies. The GenoMetric Query
Language (GMQL) [18] was developed to perform queries
on heterogeneous genomic data. GMQL is a SQL-like
language to query region-based genomic data. The com-
plexity of a GMQL application comes from integrating
heterogeneous data sources and performing operations
with various complexities. GMQL contains operations on
both the data of regions, DNA intervals with a start and
a stop position representing regions, and the meta-data
that describes the genomic data (clinical data). A single
GMQL script can contain aggregation operations, meta
operations, and domain-specific operations.

Our polystore deployment is shown in Figure 1 and con-
tains two types of connections between engines. The
connection between the SciDB cluster and the Spark
cluster is many-to-many, and the connection between
Spark/SciDB and PostgreSQL is many-to-one. In this
paper, we will consider the GMQL execution engine as a
running example for polystores. The reason for choosing
this ploystore deployment is based on previous studies.
The clinical data (metadata) is small in size relative to
genomic data (region data), and it is stored in a Post-
greSQL database. Previous work has shown that GMQL
operations on metadata perform well on a PostgreSQL
engine in comparison to other engines such as Spark and
SciDB. Cattani et. al. [25] showed a performance diver-
gence between implementations of GMQL commands in
SciDB [2] (a multi-dimensional scientific database) and
Apache Spark [14]. Apache Spark exhibited high per-
formance for complex genomic operations using UDFs,
while SciDB is an order of magnitude faster than Spark
for aggregations. In some operations like region histo-
grams, SciDB performed almost 12 times faster. The
challenges in a polystore of both SciDB and Apache
Spark for implementing GMQL engine are: 1. Indepen-
dent storage units that make it hard to move the data
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Figure 1: A polystore consisting of three engines, two of which
are distributed engines.

Figure 2: Muses general architecture.

between tasks running on the two engines. 2. Different
physical and logical data representations. 3. A different
number of engine instances, as shown in Figure 1.

3 Muses Architecture

Muses is designed to connect distributed data engines
for cross-engine execution. Figure 2 shows the general
architecture of Muses. Muses consists of a single Mu-
ses Manager Node and one or more Muses Nodes,
which are described in detail in Sections 3.1 and 3.2,
respectively. In Muses, two types of data are exchanged;
control data and application data streams. The Muses
manager sends configurations (control data) to node
managers and receives profiling information. While the
Muses nodes exchange only the data streams.

Each data migration job in Muses contains a logical da-
ta Producer and a data Consumer. We refer to engines
as sources or sinks; one or more sources form a Pro-
ducer, and one or more sinks form a Consumer. Sinks
and sources might be distributed engines. We denote
the output threads of a source as source instances and
the sink input threads as sink instances. For simplici-
ty of the description of Muses architecture in Figure 2,
Muses nodes are logically either marked as producer or
consumer nodes. Since each machine can host several

sinks and sources, a Muses node can be a producer and
a consumer node at the same time.

We represent sources and sinks in Figure 2 as either
distributed sources/sinks or local sources/sinks. Engine
’A’ is shown as a distributed source and has three instan-
ces (’A1’, ’A2’, and ’A3’) distributed on two machines
(Server 1 and Server 2). Engine ’C’ has one instance ’C1’
on Server 1 while engine ’DB’ is a database instance on
Server 2. The Muses manager node should be aware of
the topology of the data engines. When allocating the
instances of a data engine dynamically, the deployment
topology must be passed to the Muses job configurations
at runtime.

In the following, we discuss the details of the Muses
architecture, its components, the resource management,
and the distributed pipelines.

3.1 Muses Manager

The Muses Manager registers new sources/sinks, distri-
butes job configuration on nodes, monitors job execution,
and collects profiling information.

The manager registers sources/sinks before running any
data migration operation. The registration process requi-
res the user to provide a list of the machines hosting the
source/sink, and the Connectors (described in Section
3.2.2) of the registered source/sink.

The manager controls the data migration and transfor-
mation between S sources and K sinks. The user, or the
cross-engine execution dispatcher, submits the migration
job to Muses Manager along with the job configuration,
which includes:

• The producers and consumers for the migration job,
• the data distribution operation between the producer

and the consumer,
• and the engines’ topology, in case it has been dynami-

cally set.

The manager configures Muses Nodes based on the to-
pology, resource availability, and the shuffling method of
the migration job. The manager sends the task configu-
ration to each Node involved in the job execution, then
executes the migration. The task configuration includes:

• The number of Connector instances for each sour-
ce/sink on the machine, which is equal to the number
of source/sink instances on that machine.

• The number of expected input streams for each sink
instance, which depends on the number of sources
instances and the data distribution strategy.

• The data distribution procedure for Muses Node rou-
ters with a list of destination (sinks) machines addres-
ses.

3.2 Muses Node

Figure 2 shows Muses Nodes, which consists of a set of
Connectors (Pn), consumer and producer routers, and a
Node manager. The Node Manager is the only process
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Figure 3: Muses Connector: Read, is the read operation. Wri-
te, is the write operation. Producer client, is the Connector to
the producer router. Consumer client, is the Connector to the
consumer router.

that keeps running on each node for Muses engine. At the
same time, Muses routers and connectors are initialized
on-demand at the job configuration phase by the Node
Manager, which reduces the overall overhead of Muses.

For efficient data migration, Muses creates direct connec-
tions from the source machine to the destination machi-
nes without being mediated by the Muses Manager node.
Muses establishes the connection as follows: First, the
Muses Manager sends the job configurations to the Node
Managers. Second, the Node Manager instantiates the
Connectors and Muses routers on both the source and
sink machines. Third, The router gets the data distri-
bution procedure from the node manager. At this point
the connection is established from the source connectors
through the producer routers to the consumers routers
and finally to the sink instances. In the end, Muses Ma-
nager triggers the sources and sinks executions.

3.2.1 Node Manager

The Node Manager is responsible for keeping a connecti-
on with Muses Manager for receiving job configurations
and sending status and aggregated streams profiling in-
formation through heartbeats messages.

The Node Manager initialises the routers for the job by
setting up consumer/producer stream. The Node Ma-
nager also manages resources reserved by the routers
and connectors. The Node Manager is responsible for
restoring the stream in case of nodes failure.

3.2.2 Connector

Intermediate data representation (Apache Arrow [11]) is
used to facilitate connecting several engines with minimal
coding requirements. The intermediate data representa-
tion connects a set of data engines with only two data
transformations (from and to the intermediate data repre-
sentation). More information about data transformation
is mentioned in Section 3.4. We discuss the overhead of
using an intermediate data format in Section 4.

Figure 3 shows the logical representation of the Muses
Connector in details, the position in the complete archi-
tecture is illustrated in Figure 2. The Connector consists
of a Read operator that reads from the source and trans-
lates the data into the Apache Arrow data structure, a
Write operator that reads from an Arrow data structure
and writes to the data sink, and a socket client to the
routing module (described in Section 3.2.3).

3.2.3 Routers

The Router is an Akka [12] streaming graph that controls
the flow of streams in and out of a Muses Node. The
Router controls the connector instances. The Connectors
share the same pool of threads on the machine. The
number of threads is set by the node manager relative to
the source/sink performance and the resources available
on the hosting machine.

When the node has only one Consumer instance, we
configure the Consumer Router as a forward router to
optimise the link. When consumer engine instances vary
in their consumption rate, we perform stream balancing
as the default in case the job manager does not set a
specific shuffling mechanism. Stream balancing uses an
Akka Balancing Router. The Balance Router adjusts the
stream when all the Connectors in the same node have
the same buffer. Then the Balancing Router redistributes
the load from busy consumer instances to idle consumer
instances.

Muses can use either the same or different data distri-
bution procedures (shuffle function) on the consumer
and producer routers for the migration job. For example,
when performing a data shuffling operation, the same
shuffle function should be on both sides of the stream
because the producer and consumer routers on the source
node and the sink nodes should share the same shuffle
mechanism. Different distribution procedures are used
when the producer balances data to a set of sink nodes,
and the consumer routers on the sink nodes use a for-
ward routing to forward the data to the local instances
without performing any distribution.

The Consumer Routers and Producer Routers start and
stop the Connector instances based on the data streams
tags and the job configurations. The end of a stream is
determined by stream tags sent at the beginning and
end of a stream.

In addition to data migration, the Router aggregates
profiling information and sends it to the Node Manager.
Profiling information includes amounts of data read or
written from or to any data source or sink. This profi-
ling information is useful for the cross-engine-execution
optimiser.

3.3 Distributed Pipeline

Muses streams data between data stores to minimize the
data spilled on hard disks. The most straightforward pipe-
line between two distributed data stores (multi-threaded),
when the number of source’s threads equals the number of
sink’s threads, is to connect each thread from the source
to respective thread in the sink using a socket connection
[4]. The above mentioned simple pipeline would perform
the best under the following assumptions: The number of
export and import threads in both data stores is identi-
cal. The data throughput of the source threads is unified
on all the producer threads. The consumer’s threads can
keep up with the producers’ throughput. There is no
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need for physical schema change. Moreover, there is no
need for shuffling or changing the logical format of the
data between the source and the sink data stores.

In real-life examples, the above assumptions do not ne-
cessarily hold. Thus, Muses streams data from the source
data store of N exporting threads to the sink data store
of M importing threads, considering the following into
account: The number of producer instances and consu-
mer instances, the producer throughput, the speed of the
consumer, the schema changes, and the shuffling process.

To solve the general data migration problem in Muses,
we define a stream by a start and end tags. In case the
number of threads of the consumer does not match the
number of threads in the producer, we perform stream
fan-out at the producer routers and streams fan-in at the
consumer routers to balance the data on the consumers
and producers. The data received at the consumer router
does not necessarily come from a single data store.

As a fan-out operator creates several streams with start
and end tags, the number of output streams is dependent
on the distributing operation (balance routing, key-based
shuffle, or broadcasting). A fan-in operator (consumer
router) will receive several streams and will not close
the sink stream until it gets all the end tags of all the
streams it is configured to receive. The Manager configu-
res the consumer routers with the number of expected
streams for each sink instance. For example, the number
of streams generated from a balance producer router
will be the same as the number of nodes running the
sink instances. In contrast, the number of streams the
consumer router would receive is equal to the number of
nodes hosting the source data store instances.

3.4 Data Transformation

Data transformation is the main challenge in connecting
engines for polystores. There are two types of schema
transformations between distributed systems, the logical
and physical schema transformations. The logical sche-
ma, for example, represents a row-based, column-based,
key-value, or array-based data layout. Therefore, a trans-
formation example would be to transform a row data
representation into a key-value schema. We select from
the row-based data format the attributes that represent
the key and the attributes that represent the value; this
step represents the logical transformation. The physical
schema represents the data types; for example, an un-
signed 64-bit integer. Data types might differ from the
source to the sink engine. The unsigned-integer at the
source might need to be transformed by Muses into a
Long as sink data type.

For Muses to be a general approach for connecting dif-
ferent distributed engines, we decided to translate all
engine data format to an intermediate data format. The
Muses Connector, Section 3.2.2, is the main block in
the data transformation mechanism. All newly added
engines need to define the Connector functions. Thus,

describe the physical transformation between the engine
types and the standard data types.

Muses streams support Muses Connectors for solving
the data transformation between distributed engines.
A Muses stream consists of several Arrow streams and
the Muses schema, as described in Section 3.3. Muses
schema contains the stream ID and extra information
about the data set in the original logical format, such
as the source logical schema, primary keys, secondary
keys, the dimensions for array databases, and the keys
and values for key-value databases.

The receiving Connector reads the stream schemata from
the first batch, maps the Arrow data types to the con-
sumer engine data types using Arrow schema, then con-
structs the receiver’s logical schema from Arrow data
using Muses Schema.

3.5 Resource Management of Engines Under
Shared Resources

The Muses data streaming strategy between engines takes
into account the shared resources between the sources
and sinks, which is essential for performance measures.
Some systems, such as databases, keep daemon processes
always running as background processes, while other
systems, such as Flink and Spark, reserve resources only
on demand. Running two applications (source and sink
application) on the same machine (or sharing resources)
can result in a resource-draining problem and lead to
the CPU context switching problem, which will degrade
the overall performance.

For example, Apache Hadoop Yarn [1] is considered as
a distributed operating system that allows distributed
applications to reserve resources for execution. Flink,
Spark, and other data flow engines can run on top of
Yarn at the same time (if free resources are available).
When we pipeline data from Spark to Flink (or any other
Yarn application) in a Yarn setup, they have to share
resources. Let’s consider the Yarn cluster provides 100
slots (resource units) for processing; we have three ways
to schedule the data migration along with managing
the resources running. As a first option, we can run
the Spark application with all the resources (100 slots),
which will allow higher parallelism until Spark finishes
execution, spilling the data on HDFS. Then run Flink
with input as the distributed data on HDFS from the
previous Spark run. Finally, spill the data to HDFS.
HDFS will distribute, replicate the data on cluster nodes,
which is efficient for the next engine run. The second
option is to split the resources into half and run Spark
on 50 slots and Flink on 50 Slots, then stream the data
between the two engines. The third option is to profile
the two applications, the producer application running
on Spark and the consumer application running on Flink,
then assign a percentage of the resource to each of the
applications based on the computational needs for each
stage. In this option, we stream the data between the
engines for better performance.

5



The Muses Manager decides to choose one of the three
options above based on profiling information received
in the job parameters from higher-level optimizer. We
call this physical deployment optimization. Muses can
orchestrate all the three options since it considers HDFS
as a distributed source/sink for other data engines (when
a Connector for HDFS is available).

3.6 Lightweight Implementation - Performance
Efficiency

To make Muses lightweight, we built Muses as a reac-
tive application, which is resilient, interactive, scalable,
and event-driven. Muses is built on top of Akka [12],
which provides high-level and straightforward abstracti-
ons for distribution, concurrency, and parallelism. Akka
is an asynchronous, non-blocking, and highly performant
message-driven programming model.

Since Akka is event-based, all actors only get activated if
data are in the sending queue of the actor, it does not use
blocking threads for communication and data transfer.
For efficient implementation, in cases where the source
and the sink are on the same machine, Muses routes
the data internally by message passing between actors
referencing the same in-memory Arrow structure. Muses
also uses Akka streaming between nodes to optimize the
data transfer and provides back-pressure to optimize IO
communication.

4 Evaluation

In this section, we perform three sets of experiments: an
end-to-end experiment based on the motivating example,
a simple profiling for data migration techniques, and
a specific experiment to show Muses performance in
connecting distributed systems.

The data set is collected from the Encode genomics repo-
sitory [15]. The Encode data is a tab-delimited text with
ten columns. The schema of the data has two Long fields,
two String fields, one Char field, and four Double fields.
We built 9 data sets of different sizes to show the perfor-
mance with increasing data sizes. Our experimentation
platform is a cluster comprised of machines containing
Intel E5620 processors with eight hyper-threads and
32GB memory.

4.1 Single Engine Solution Versus Polystores
for Genomic Application

In this section, we discuss the comparison between two
deployments of the motivation example, discussed in
Section 2, on a cluster of eight machines: the first deploy-
ment is the single system deployment, and the second
deployment is a polystore deployment. We have an app-
lication of three parts to run on three engines; Apache
Spark, SciDB, and PostgreSQL. In the single system
deployment, Apache Spark uses all the eight machines
resources; once spark applicaiton finishes, PostgreSQL

Figure 4: GMQL Script execution.

Figure 5: GenomicCover performance over different platforms.

and SciDB share the eight machines. For the polystore
deployment, the three engines share the eight machines
at the same time. Apache Spark is installed on the eight
machines while 4 out of those eight machines host a
SciDB installation, and one machine hosts Postgres, all
running.

Figure 4 shows the performance of both the single system
and polystore solution. In the polystore solution, we run
only a part of the execution plan on SciDB, which is
mainly the GenomicCover operator. We show the per-
formance gain from running the GenomicCover operator
over SciDB in Figure 5.

The automated distributed data migration using Muses
allows overlapping the engines’ executions and hides
the overhead of the data migration between the engines.
As soon as Apache Spark generates the first output
sample, it is streamed to SciDB nodes and imported
into SciDB so SciDB can start execution even though
Spark did not finish the whole job execution. For a
more in-depth look inside the GenometricJoin operator,
we use GenometricJoin as an optimal example to link
distributed systems in Section 4.3.

4.2 Data migration profiling

We designed our experiments to show the overhead of
using intermediate data representation. Our goal is not
to replicate the work of Haynes et al. [4] but to extend
it, so we did not cover all the data representations expe-
riments discussed in this work. The authors in [4] shows
that Apache Arrow is the best performing intermediate
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Figure 6: Three data migration scenarios: A socket connection
is a direct connection between two engines. An Akka pipeline
with data transformation during migration. An Akka pipeline
with data transformation to intermediate Arrow stream repre-
sentation.

representation, thus we concentrated on using Apache
Arrow in our experiments.

Exporting/importing data throughput is relative to the
architecture of the engine. Some engines have a single
thread for importing and another thread for exporting;
others have multiple threads for importing and expor-
ting. In addition to that, different engines have different
processing throughput that affects the importing and
exporting stream. Therefore, we exclude the data export
and load execution time in our experiments. We concen-
trate on the data migration process, but we discuss the
effect of the export and import parallelism.

The socket connection in Figure 6 exports the data from
the source, transfers the data to the sink engine machine,
and finally load the data into the sink engine. In this
scenario, no data is parsed but only a stream of bytes.
Though this scenario is the simplest with the highest
performance, it needs both engines to be almost identical.

Migrating data between two engines with different data
types requires data translation process. In the Akka
scenario, Figure 6, the data translation operation is used
to translate the data types from the source schema types
to the destination schema types. The drawback of this
translation is that it is connection specific. If one of
the two engines changes its data schema, the whole
connection becomes invalid. The performance of the data
migration with data transformation drops because of the
data transformation of data records to the destination
engine types. Increasing process parallelism can avoid
data transformation overhead.

By using Arrow, we abstract the engines internal schema
from the migrated data schema. For our experiments,
the tab-delimited files are translated to an Arrow struc-
ture and then back from Arrow to text. Even though
converting data to/from the intermediate data represen-
tation produces overhead, Muses performances similar to
the second scenario because Arrow columnar structure

Figure 7: Genomic Spatial Join sub-tasks.

reduced the data transferred on the network.

4.3 Linking Distributed systems

To present Muses performance in migrating data between
two distributed engines, we use the Genomic Spatial join
operation from our genomic application. We run our
experiments with the Genomic Spatial Join application
under three deployments, illustrated in Figure 8. The
first deployment is a single cluster of six machines. The
second deployment consists of two clusters with Mu-
ses as the connecting medium between the cluster. The
third deployment consists of two clusters with distcp
to connect the clusters. Distcp is an Apache Hadoop Ma-
pReduce tool for distributed data copy between HDFS
storages [3]. Clusters A and B, Figure 8, are independent
clusters in storage and processing.

We use two datasets of Encode data [15] in the join
experiment: 376 million intervals in the left dataset and
around 47 Billion intervals in the right dataset. The
total number of intervals is 70GB (7500 files).

4.3.1 Genomic Spatial Join

We perform the join operation in a polystore that uti-
lizes Muses. In order to focus on the performance of
Muses, we set the execution engines to Apache Spark
in our polystore. We created a custom input format
(extends CustomInputFormat class) and a custom out-
put format (extends CustomOutputFormat class) as our
Muses Connector (Section 3.2.2).

Genomic Spatial Join is considered a critical operation in
genomic applications. It combines the genomic data from
independent sources (stored on different engines) and
joins thousands of samples of genomic data (hundreds of
billions of records). It is, therefore, essential to perform
this operation efficiently.

Genomic spatial joins differ from relational joins in the
fact that joining an interval (record) from the left data
set with another interval (record) from the right data
set is not based on equality but on intervals (start and
stop) intersection [20].
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Figure 8: Deployments of the Genomic Spatial Join application.
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Figure 9: Execution time of the Genomic Spatial Join applica-
tion.

The genomic spatial join consists of three sub-tasks; data
binning, joining (find the intersecting intervals), and
finally aggregating the values of the intersected intervals,
as shown in Figure 7. We bin the data to reduce the
complexity of the join operation, by partitioning the data
into buckets (bins); where the intervals crossing a bucket
border are replicated to both adjacent bins [18, 19]. Then
pairs of bins with the same bin number from the two
datasets are selected. These pairs of bins are searched
for intersecting intervals. The intersection between two
intervals is defined as follows: the left end of the left
dataset interval is less than or equal to the right end of
the right dataset interval, and the left end of the right
dataset interval is less than or equal the right end of the
left dataset interval. Finally, an aggregation function is
applied on the values of the right dataset intervals that
intersect with the same interval from the left dataset.

4.3.2 Results

In Figure 9, we show the performance of the three de-
ployments described in Figure 8: The first scenario is a
deployment of the Genomic Spatial Join application on a
Single Spark Cluster of six machines where both the left
and the right data sets are located on the cluster HDFS.
The first scenario, a single cluster, is the ideal case and
is only an ideal baseline to show Muses overhead.

For the second and the third deployments, we use two
clusters in the deployment. Cluster A contains two ma-
chines of Spark with its own HDFS installation and
cluster B contains four machines of Spark with its own

HDFS installation. We chose to have the same execution
engine on the two clusters to concentrate only on the
data migration performance regardless of the variation
of systems performances running different operations.
Proving that distributing the execution of two engines
yields to better performance is the topic to be covered
by polystore optimizer and is not the scope of this pa-
per. In this paper, we concentrate on the best practice
for efficient data migration between distributed systems.
The left and right data sets are located on different data
centers (the left data set is on Cluster A and the right
data set is on B).

The second deployment scenario uses Muses as the dis-
tributed data migration engine between Spark clusters
A and B. The deployment plan for the application’s
subtasks in Figure 7 is split into three parts: the first
part is the binning of the left data set, to be executed on
Spark Cluster A. The second part is the shuffling of the
binned data, to be performed by Muses while migrating.
The third part is the rest of the operations (bin right
data set, shuffle right data set and join with data form
A) and they are executed on Spark cluster B.

The binning operation of the left data set involves rep-
licating the left data set for the number of files in the
right data set. Thus, the increase in the number of files
in the right data set will affect the intermediate data
sizeIn our experiments, even-though, we fixed the size
of the left data set, the intermediate data increases with
the increase of a number of files in the right data set
(because of the left data set binning replication).

Muses creates a pipeline between the two Spark installa-
tions. The pipeline consists of a set of data Akka streams
from spark distributed instances in A to Spark distribu-
ted instances in B, as discussed in the previous sections.
Therefore, the connection has no intermediate staging on
HDFS. The performance using Muses was gained from
both pipe-lining the distributed systems and the shuffle
performed in Muses while migrating the intermediate
data. The execution time overhead that results from
distributing this application on two engines while using
Muses as the distributed data migration is 15% of the
execution time for 70GB of data.

The third scenario is the intuitive way of connecting two
distributed clusters with independent distributed storage.
In this scenario, HDFS plays the role of intermediate
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Figure 10: Genomic Spatial Join performance breakdown.

storage for the data migration between the two Spark
engines. After the left data set binning on Cluster A, the
result is stored on the HDFS of A. Then the binned left
data set is migrated to the HDFS on Cluster B. Distcp
creates a MapReduce application that reads from the
HDFS on A and writes into the HDFS on B. The rest
of the operations are performed on Spark cluster B.

The DistCp setup is sensitive to the intermediate data si-
ze as shown in Figure 9. Muses transfers the intermediate
data in parallel to the execution of the two servers, see
Figure 10. With Muses, the intermediate data between
the engines are streamed and shuffled therefore decreases
the overhead of the linking the two distributed systems.

Overall, the deployment with Muses outperforms the
staging on HDFS. Figure 10 show a profile of one exe-
cution of the application on the three setups. Figure
10 shows Muses improves performance by 30% over the
DistCp while it is 15% slower in comparison to a single
engine execution. In the second scenario, both clusters
run in parallel to the intermediate data transfer. The
join execution in the single engine execution is faster
than the other cases because six machines are involved
in the join. The slowest join is performed in the third
scenario because only four machines are involved. Even
though only four machines are executing the join in the
second scenario, the performance is higher than the last
scenario. The improvement in the join performance is
because Muses shuffles the left data set while migrating
the data. As a result, the join operation does not
require additional data movement.

5 Related Work

There are several proposals for polystore implementati-
ons. Here, we focus on the state of the art data migration
methods in polystores.

The PolyStores project [6] is most related to our work.
Two separated proposals for data migration in the Poly-
Stores project are discussed in details in Pipegen [4] and
the work by Dziedzic et al. [5]. The former concentrates

on achieving the best possible performance at the expen-
se of generality of the approach, while the latter discusses
a more general approach at the expense of performance.
We discuss these approaches in detail below.

In order to connect engines, Bradon et al. [4] recompi-
le the source code of the data stores after modifying
the import and export methods code; adding a socket
connection and serialization operations. These source
code modifications are intended to enable only one pair
of data stores connection. For parallel data migration
between two data stores, Pipegen creates a global direc-
tory for the connections between execution engines using
sockets. Pipegen connects an only a number of threads.
In case of difference in parallelism degree between the
source and destination engines, the reminder threads are
neglected. In contrast to these works, Muses does not
require the source-code of the execution engine to be
available. Muses can connect one source data store to
many destination engines. Muses makes it possible to
establish many-to-many connections using specific data
shuffle or balance operators.

Dziedzic et al. [5] discuss the overhead of intermediate
data representations for a direct link between database.
Data migration is performed manually in three indepen-
dent steps: export, translate, and import. Binary files
are staged in between those steps. In case of a multi-
threaded export/import operation, the data balancing
between data stores is performed by manually splitting
the exported files equally to the number of threads in the
importing data store. Muses streams the data between
data stores and with no manual intervention. In case
of different number of parallelism between source and
destination engines, Muses balances/shuffles the data
between the engines threads.

Both approaches, Pipegen and Dziedzic, are manually
configured to migrate data between two data engines.
They do not have an automatic configuration mechanism
that can connect engines such as Flink [13] and Spark
[14], which have dynamic topologies setup at runtime
when allocating tasks on distributed machines based on
resource availability. We propose Muses as a solution for
connecting dynamically distributed execution engines.

To optimize cross-engine platform, Lim et al. [16], exe-
cuted applications with diverse sets of parameters. In
this work, the authors propose ideas for data migration
between engines and choose a shared HDFS as the medi-
um between execution engines for testing. Finally, they
left the data migration and transformation as an open
problem to be solved. Agrawal et al. [22] present the
architecture of a cross-engine polystore. However, they
do not address the issue of the data migration beyond
discussing data storage independence [23].

Gupta et al. present the cross-engine join query execu-
tion in federated database systems [24]. The authors
only discuss the reduction of data movement based on
join operation parameters. Muses performs a sub-task
(shuffle) of the join query while connecting distributed
data stores to hide the migration overhead. Therefore,
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the work is orthogonal and can be incorporated in Muses.

In general, most of the solutions that perform data mi-
grations in related work are either require hardcoding
in the source and sink engines, contain manual steps, or
dependent on shared storage. In contrast Muses does not
require any special code for engines and thus is engine
independent. It represents a general approach, and is
reactive to the engines dynamic topology.

6 Conclusions

We present the Muses architecture for efficient data mi-
gration between distributed data analysis systems. Muses
is a flexible, reconfigurable, distributed data migration
engine, and scalable in connecting new distributed engi-
nes. Scalability is achieved by the design of the connectors
to add new engines and the usage of the intermediate
data structure. Muses can connect engines with or wi-
thout intermediate storage. Our experiments show that
Muses outperforms baseline connections for cross engine
execution. For future work, our main future focus is to
optimize the Muses overhead and data packing.
This work has been supported through grants by the Ger-
man Ministry for Education and Research as s BIFOLD
(01IS18025A and 01IS18037).
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