
Pump Up the Volume: Processing Large Data on GPUs
with Fast Interconnects

Clemens Lutz
clemens.lutz@dfki.de

DFKI GmbH
Berlin, Germany

Sebastian Breß
sebastian.bress@tu-berlin.de

TU Berlin
Berlin, Germany

Steffen Zeuch
steffen.zeuch@dfki.de

DFKI GmbH
Berlin, Germany

Tilmann Rabl
tilmann.rabl@hpi.de

HPI, University of Potsdam
Potsdam, Germany

Volker Markl
volker.markl@tu-berlin.de
DFKI GmbH, TU Berlin

Berlin, Germany

ABSTRACT
GPUs have long been discussed as accelerators for database
query processing because of their high processing power and
memory bandwidth. However, two main challenges limit the
utility of GPUs for large-scale data processing: (1) the on-
board memory capacity is too small to store large data sets,
yet (2) the interconnect bandwidth to CPU main-memory is
insufficient for ad hoc data transfers. As a result, GPU-based
systems and algorithms run into a transfer bottleneck and
do not scale to large data sets. In practice, CPUs process
large-scale data faster than GPUs with current technology.
In this paper, we investigate how a fast interconnect can

resolve these scalability limitations using the example of
NVLink 2.0. NVLink 2.0 is a new interconnect technology
that links dedicated GPUs to a CPU. The high bandwidth of
NVLink 2.0 enables us to overcome the transfer bottleneck
and to efficiently process large data sets stored in main-mem-
ory on GPUs. We perform an in-depth analysis of NVLink 2.0
and show how we can scale a no-partitioning hash join be-
yond the limits of GPUmemory. Our evaluation shows speed-
ups of up to 18× over PCI-e 3.0 and up to 7.3× over an op-
timized CPU implementation. Fast GPU interconnects thus
enable GPUs to efficiently accelerate query processing.
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Figure 1: NVLink 2.0 eliminates the GPU’s main-
memory access disadvantage compared to the CPU.
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1 INTRODUCTION
Over the past decade, co-processors such as GPUs, FPGAs,
and ASICs have been gaining adoption in research [17, 35, 38,
56] and industry [88] to manage and process large data. De-
spite this growth, GPU-enabled databases occupy a niche [67]
in the overall databases market [28]. In contrast, there is
wide-spread adoption in the deep learning [21, 71] and high
performance computing domains. For instance, 29% of the
Top500 supercomputers support co-processors [92]. Data-
base research points out that a data transfer bottleneck is
the main reason behind the comparatively slow adoption of
GPU-enabled databases [31, 100].

The transfer bottleneck exists because current GPU inter-
connects such as PCI-e 3.0 [1] provide significantly lower
bandwidth than main-memory (i.e., CPU memory). We break
down the transfer bottleneck into three fundamental limita-
tions for GPU-enabled data processing:
L1: Low interconnect bandwidth. When the database de-
cides to use the GPU for query processing, it must transfer
data ad hoc from CPU memory to the GPU. With current
interconnects, this transfer is slower than processing the
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data on the CPU [13, 31, 100]. Consequently, we can only
speed up data processing on GPUs by increasing the inter-
connect bandwidth [16, 26, 51, 89, 95]. Although data com-
pression [24, 85] and approximation [81] can reduce transfer
volume, their effectiveness varies with the data and query.
L2: Small GPU memory capacity. To avoid transferring
data, GPU-enabled databases cache data in GPUmemory [13,
38, 50, 83]. However, GPUs have limited on-board GPU mem-
ory capacity (up to 32 GiB). In general, large data sets cannot
be stored in GPU memory. The capacity limitation is inten-
sified by database operators that need additional space for
intermediate state, e.g., hash tables or sorted arrays. In sum,
GPU co-processing does not scale to large data volumes.
L3: Coarse-grained cooperation of CPU and GPU. Us-
ing only a single processor for query execution leaves avail-
able resources unused [16]. However, co-processing on mul-
tiple, heterogeneous processors inherently leads to execution
skew [22, 32], and can even cause slower execution than on
a single processor [13]. Thus, CPU and GPU must cooperate
to ensure that the CPU’s execution time is the lower bound.
Cooperation requires efficient synchronization between pro-
cessors on shared data structures such as hash tables or
B-trees, that is not possible with current interconnects [4].
In this work, we investigate the scalability limitations of

GPU co-processing and analyze how a faster interconnect
helps us to overcome them. A new class of fast interconnects,
that currently includes NVLink, Infinity Fabric, and CXL,
provides high bandwidth, and low latency. In Figure 1, we
show that fast interconnects enable the GPU to access CPU
memory with the full memory bandwidth. Furthermore, we
propose a new co-processing strategy that takes advantage of
the cache-coherence provided by fast interconnects for fine-
grained CPU-GPU cooperation. Overall, fast interconnects
integrate GPUs tightly with CPUs and significantly reduce
the data transfer bottleneck.

Our contributions are as follows:

(1) We analyze NVLink 2.0 to understand its performance
and new functionality in the context of data manage-
ment (Section 3). NVLink 2.0 is one representative of
the new generation of fast interconnects.

(2) We investigate how fast interconnects allow us to per-
form efficient ad hoc data transfers. We experimentally
determine the best data transfer strategy (Section 4).

(3) We scale queries to large data volumes while consider-
ing the new trade-offs of fast interconnects. We use a
no-partitioning hash join as an example (Section 5).

(4) We propose a new cooperative and robust co-processing
approach that enables CPU-GPU scale-up on a shared,
mutable data structure (Section 6).

(5) We evaluate joins as well as a selection-aggregation
query using a fast interconnect (Section 7).
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Figure 2: Architecture and cache-coherence domains
of GPU interconnects, with their electrical band-
widths annotated.

The remainder of the paper is structured as follows. In Sec-
tion 2, we briefly explain the hash join algorithm and high-
light NVLink 2.0. We present our contributions in Sections
3–6. Then, we present our experimental results in Section 7
and discuss our insights in Section 8. Finally, we review re-
lated work in Section 9 and conclude in Section 10.

2 BACKGROUND
In this section, we provide an overview of the no-partitioning
hash join, and the PCIe 3.0 and NVLink 2.0 interconnects.

2.1 No-Partitioning Hash Join
In this work, we focus on the no-partitioning hash join algo-
rithm as proposed by Blanas et al. [10]. The no-partitioning
hash join algorithm is a parallel version of the canonical
hash join [8]. We focus on this algorithm because it is simple
and well-understood. Loading base relations from CPU mem-
ory requires high bandwidth, scaling the hash table beyond
GPU memory requires low latency, and sharing the hash
table between multiple processors requires cache-coherence.
Thus, the no-partitioning hash join is a useful instrument to
investigate fast GPU interconnects.
The anatomy of a no-partitioning hash join consists of

two phases, the build and the probe phase. The build phase
takes as input the smaller of the two join relations, which
we denote as the inner relation R. In the build phase, we
populate the hash table with all tuples in R. After the build
phase is complete, we run the probe phase. The probe phase
reads the second, larger input relation as input. We name
this relation the outer relation S . For each tuple in S, we
probe the hash table to find matching tuples from R. When
executing the hash join in parallel on a system with p cores,
its time complexity observes O(1/p(|R | + |S |)).

2.2 GPU Interconnects
Discrete GPUs are connected to the system using an inter-
connect bus. In Figure 2, we contrast the architectures of
PCI-e 3.0 and NVLink 2.0.
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2.2.1 PCI-e 3.0. State-of-the-art systems connect GPUs with
a PCI Express 3.0 [1] interconnect.
Physical Layer. PCI-e connects devices point-to-point to
bridges in a tree topology rooted at the CPU. All connections
therefore share the available bandwidth. Each connection
consists of multiple physical lanes. The lanes are full-duplex,
which enables bidirectional transfers at full speed. GPUs
bundle 16 lanes and aggregate their bandwidth (16 GB/s in
total). However, the electrical bandwidth is not achievable
for data transfers, due to packet, encoding, and checksum
overheads. PCI-e specifies a packet-based communication
protocol. Packets consist of a payload of up to 512 bytes
and a 20–26 byte header. Although the header incurs little
overhead for bulk transfers, the overhead is significant for
the small payloads of irregular memory accesses [70].
Transfer Primitives. PCI-e provides two data transfer prim-
itives: memory-mapped I/O (MMIO) and direct memory ac-
cess (DMA). MMIO maps GPU memory into the CPU’s ad-
dress space. The CPU then initiates a PCI-e transfer by ac-
cessing themapped GPUmemorywith normal load and store
instructions. In contrast, DMA allows the GPU to directly ac-
cess CPU memory. The key difference to MMIO is that DMA
only allows access to a pre-determined range of pinned mem-
ory. Memory is “pinned” by locking the physical location
of pages, which prevents the OS from moving them. DMA
operations can thus be offloaded to copy engines. These are
dedicated hardware units that facilitate both bidirectional
transfers and overlapping transfers with computation.
Software APIs. CUDA [74] exposes these two primitives
through three abstractions. cudaMemcpyAsync copies page-
able (i.e., non-pinned) memory through MMIO, but copies
pinned memory using DMA copy engines. In contrast, Uni-
fied Virtual Addressing exposes “zero-copy” pinned memory
to the GPU via DMA. Finally, Unified Memory transparently
moves CPU pages to GPU memory. The page migration is
triggered by a memory access to a page not present in GPU
memory. The operating system receives a page fault, and
moves the requested page from CPU memory to GPU mem-
ory [102]. To avoid the page fault’s latency, pages can be ex-
plicitly prefetched using cudaMemPrefetchAsync. Although
UnifiedMemory is built on the aforementioned transfer prim-
itives, CUDA hides the type of memory used internally.

2.2.2 NVLink 2.0. Nvidia Volta GPUs and IBM POWER9
CPUs support NVLink 2.0 [15, 40, 41, 73], which is a new
fast interconnect for GPUs.
Physical Layer. NVLink 2.0 connects up to one CPU and
six GPUs in a point-to-point mesh topology, which has the
advantage of higher aggregate bandwidth compared to a
tree. Connections consists of multiple full-duplex links that
communicate at 25 GB/s per direction. A device has up to six
links. Of these, up to three links can be bundled for a total of

75 GB/s. Thus, two GPUs can saturate CPU memory band-
width, but adding a third reduces the per-GPU bandwidth by
1⁄3. Like PCI-e, NVLink transmits packets. However, packet
headers incur less overhead for small packets, with a 16 byte
header for up to 256 bytes of payload.
Transfer Primitives. Data transfers from CPU memory
can use MMIO and DMA copy engines. However, in contrast
to PCI-e, NVLink gives the GPU direct access to pageable
CPU memory. GPU load, store, and atomic operations are
translated into CPU interconnect commands (i.e., X-bus on
POWER9) by the NVLink Processing Unit (NPU). The NPU is
connected by three X-Bus links, each capable of 64 GB/s.
Address Translation. The GPU is integrated into a system-
wide address space. If a TLB miss occurs on a GPU access
to CPU memory, the NVLink Processing Unit provides the
address translation by walking the CPU’s page table. Thus, in
contrast to Unified Virtual Addressing and Unified Memory,
address translations do not require OS intervention.
Cache-coherence.Memory accesses are cache-coherent on
128-byte cache-line boundaries. The CPU can thus cache
GPU memory in its cache hierarchy, and the GPU can cache
CPU memory in its L1 caches. Cache-coherence guarantees
that writes performed by one processor are visible by any
other processor. The observable order of memory operations
depends on the memory consistency model. Intel CPUs guar-
antee that aligned reads and writes are atomic, and that
writes are (nearly) sequentially consistent [42, vol.3A, §8.2].
In contrast, IBM CPUs and Nvidia GPUs have weaker mem-
ory consistency models [63].
Related Interconnects. In contrast to NVLink 1.0 [72],
NVLink 2.0 provides higher bandwidth, cache-coherence,
and more advanced address translation services. AMD Infin-
ity Fabric [3] and Intel CXL [19, 44] offer similar features as
NVLink 2.0, but are commercially not yet available for GPUs.
ARMAXI [96], IBMOpenCAPI [2], and Intel QPI/UPI [43, 77]
are comparable interconnects for FPGAs.

3 ANALYSIS OF A FAST INTERCONNECT
In this section, we analyze the class of fast interconnects
by example of NVLink 2.0 to understand their performance
and new functionality in the context of data management.
The main improvements of fast interconnects compared to
PCI-e 3.0 are higher bandwidth, lower latency, and cache-
coherence. We investigate these properties and examine the
benefits and challenges for scaling co-processing.
Bandwidth & Latency.We start by quantifying how much
NVLink 2.0 improves the GPU’s interconnect performance.
We compare NVLink 2.0’s ➁ performance to GPU (PCI-e 3.0
➀) and CPU interconnects (Intel Xeon Ultra Path Intercon-
nect (UPI) ➂, IBM POWER9 X-Bus ➃), CPU memory (Intel
Xeon ➄, IBM POWER9 ➅), and GPU memory (Nvidia V100
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Figure 3: Bandwidth and latency of memory reads on
IBM and Intel systems with Nvidia GPUs. Compare to
data access paths shown in Figure 4.

➆). We visualize these data access paths in Figure 4. In all
our measurements we show 4-byte read accesses on 1 GiB
of data. We defer giving further details on our measurement
setup and methodology to Section 7.1.
We first compare NVLink 2.0 to the other GPU and CPU

interconnects in Figure 3(a). Our measurements show that
NVLink 2.0 has 5×more sequential bandwidth than PCI-e 3.0,
and twice as much as UPI and X-Bus. Random accesses pat-
terns are 14× faster than PCI-e 3.0, and 35% faster than UPI.
However, while the latency of NVLink 2.0 is 45% lower than
PCI-e 3.0, it is 3.6× higher than UPI and 2× higher than X-
Bus. Overall, NVLink 2.0 is significantly faster than PCI-e 3.0,
and more bandwidth-oriented than the CPU interconnects.
Next, we show the NVLink 2.0 vs. CPU memory in Fig-

ure 3(b).We note that the IBMCPUhas 8DDR4-2666memory
channels, while the Intel Xeon only has 6 channels of the
same memory type. We see that for sequential accesses, the
Intel Xeon and IBM POWER9 have 28% and 65% higher band-
width than NVLink 2.0, respectively. For random accesses,
NVLink 2.0 is on par with the Intel Xeon, but 30% slower
than the IBM POWER9. The latency of NVLink 2.0 is 6×
higher than the latency of CPU memory. We take away that,
although NVLink 2.0 puts the GPU within a factor of two of
the CPUs’ bandwidth, it adds significant latency.
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Figure 4: Data access paths on IBM and Intel systems.

Finally, in Figure 3(c), we compare GPU accesses to CPU
memory over NVLink 2.0 with GPU memory. We observe
that both access patterns have an order-of-magnitude higher
bandwidth in GPUmemory, but that latency over NVLink 2.0
is only 54% higher. As GPUs are designed to handle such high-
latency memory accesses [39, 94], they are well-equipped to
cope with the additional latency of NVLink 2.0.
Cache-coherence. Cache-coherence simplifies the practical
use of NVLink 2.0 for data processing. The advantages are
three-fold. First, the GPU can directly access any location in
CPU memory, therefore pinning memory becomes unnec-
essary. Second, allocating pageable memory is faster than
allocating pinned memory [25, 68, 93]. Third, the operating
system and database are able to perform background tasks
that are important for long-running processes, such as mem-
ory defragmentation [18] and optimizing NUMA locality
through page migration [61].
In contrast, the non-cache-coherence of PCI-e has two

main drawbacks. First, data consistency must be managed in
software instead of in hardware. The programmer eitherman-
ually flushes the caches [74], or the OS migrates pages [72].
Second, system-wide atomics are unsupported. Instead, a
work-around is provided by first migrating Unified Mem-
ory pages to GPU memory, and then performing the atomic
operation in GPU memory [76].

Research shows that adding fine-grained cache-coherence
to PCI-e is not feasible due to its high latency [27]. However,
NVLink 2.0 removes these limitations [41] and thus is better-
suited for data processing.
Benefits.We demonstrate three benefits of NVLink 2.0 for
data processing with a no-partitioning hash join. First, we
are able to scale the probe-side relation to arbitrary data vol-
umes due to NVLink 2.0’s high sequential bandwidth. With
the hash table stored in GPU memory, we retain the GPU’s
performance advantage compared to a CPU join. Second, we
provide build-side scalability to arbitrary data volumes using
NVLink 2.0’s low latency and high random access bandwidth.
Thus, we are able to spill the hash table from GPU to CPU
memory. Third, we employ the cache-coherence and system-
wide atomics of NVLink 2.0 to share the hash table between
a CPU and a GPU and scale-up data processing.
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Challenges. Despite the benefits of NVLink 2.0 for data
processing, translating high interconnect performance into
high-performance query processing will require addressing
the following challenges.
First, an out-of-core GPU join operator must perform

both data access and computation efficiently. Early GPU
join approaches cannot saturate the interconnect [34, 35].
More recent algorithms saturate the interconnect, and are
optimized to access data over a low-bandwidth intercon-
nect [47, 89]. This can involve additional partitioning steps
on the CPU [89].We investigate how a GPU join operator can
take full advantage of the higher interconnect performance.

Second, scaling the build-side volume beyond the capacity
of GPU memory in a NP-HJ requires spilling the hash table
to CPU memory. However, spilling to CPU memory implies
that the GPU performs irregular accesses to CPUmemory, as,
by design, hash functions map keys to uniformly distributed
memory locations. Such irregular accesses are inefficient
over high-latency interconnects. For this reason, previous
approaches either cannot scale beyond GPU memory [34,
47], or are restricted to partitioning-based joins [89]. Higher
interconnect performance requires us to reconsider howwell
a NP-HJ that spills to CPU memory performs on GPUs.

Third, fully exploiting a heterogeneous system consisting
of CPUs and GPUs requires them to cooperatively process
the join. We must take into account data locality, synchro-
nization costs, and the differences in hardware architectures
to achieve efficiency.

4 EFFICIENT DATA TRANSFER
BETWEEN CPU AND GPU

In order to process data, the GPU needs to read input data
from CPU memory. Since the GPU memory is limited to
tens of gigabytes, we cannot store a large amount of data on
the GPU. As a consequence, any involvement of the GPU in
data processing requires ad hoc data transfer, which makes
interconnect bandwidth the most critical resource (L1).

GPUCPU

Pull

Push

Figure 5: Push- vs.
pull-based data trans-
fer methods.

We can choose between dif-
ferent strategies to initiate
data transfers between CPU
and GPU. Each strategy shows
different performance on the
same interconnect. In this sec-
tion, we discuss these data
transfer strategies to identify

the most efficient way for data transfer. We build on these
insights in the following sections.
Recent versions of CUDA provide a rich set of APIs that

abstract the MMIO and DMA transfer primitives described
in Section 2.2. From these APIs, we derive eight transfer
methods that we list in Table 1. We divide these methods

Table 1: An overview of GPU transfer methods.
Method Semantics Level Granularity Memory
Pageable Copy

Push SW Chunk
PageableStaged Copy

Dynamic Pinning
Pinned Copy Pinned
UM Prefetch Unified
UM Migration

Pull
OS Page Unified

Zero-Copy HW Byte Pinned
Coherence Pageable

into two categories based on their semantics, push-based and
pull-based. On a high level, push-based methods perform
course-grained transfers to GPU memory, whereas in pull-
based methods the GPU directly accesses CPU memory. We
depict these differences in Figure 5. We first describe push-
based methods, and then pull-based methods.

4.1 Push-based Transfer Methods
In order to transfer data, push-based methods rely on a
pipeline to hide transfer latency. The pipeline is implemented
in software and executed by the CPU. We describe the
pipeline stages of each method and contrast their differences.
Pageable Copy. Pageable Copy is the most basic method
to copy data to the GPU. It is exposed in the API via the
cudaMemcpyAsync function, and transfers data directly from
any location in pageable memory. As the API is called on
the CPU, data are pushed to the GPU. Before we setup the
pipeline, we split the data into chunks. Subsequently, we
setup a two-stage pipeline by first transferring each chunk
to the GPU, and then processing the chunk on the GPU. As
both steps can be performed in parallel, the computation
overlaps with the transfer.
Pinned Copy. As Nvidia recommends using pinned mem-
ory instead of pageable memory for data transfer [75], we
apply the same technique as in Pageable Copy to pinned
memory. Thus, the hardware can perform DMA using the
copy engines instead of using a CPU thread to copy via mem-
ory-mapped I/O. Therefore, Pinned Copy is typically faster
than Pageable Copy, but requires the database to store all
data that is accessed by the GPU in pinned memory.
Staged Copy. However, storing all data in pinned memory
violates Nvidia’s recommendation to consider pinned mem-
ory as a scarce resource [75], and pinning large amounts of
memory complicates memory management. Therefore, we
setup a pinned staging buffer for the copy. In the pipeline,
we first copy a chunk of data from pageable memory into the
pinned memory buffer. Then, we perform the transfer and
compute stages. We thus pipeline the transfer at the expense
of an additional copy operation within CPU memory.
Dynamic Pinning. CUDA supports pinning pages of preex-
isting pageable memory. This allows us to pin pages ad hoc
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before we transfer data to the GPU, avoiding an additional
copy operation in CPU memory. After that, we execute the
copy and compute stages.
Unified Memory Prefetch. If we use Unified Memory and
know the data access pattern beforehand, we can explicitly
prefetch a region of unifiedmemory to the GPU before the ac-
cess takes place. This avoids a drawback of the Unified Mem-
ory Migration method that we describe next, namely that
migrating pages on-demand has high latency and stalls the
GPU [102]. We execute the transfer in a two-stage pipeline
that consists of prefetching a chunk of data to the GPU, and
then running the computation. Thus, prefetching requires a
software pipeline in addition to using Unified Memory.

4.2 Pull-based Transfer Methods
Many database operators access memory irregularly, espe-
cially operators based on hashing. Hashed accesses are ir-
regular, because hash functions are designed to generate
uniform and randomly distributed output. These accesses
are also data-dependent, as the hash function’s input are
attributes of a relation (e.g., the primary key).

Push-based transfer methods cannot handle these types of
memory access. The CPU decides which data are transferred
to the GPU. Thus, the GPU has no control over which data
it processes, and cannot satisfy data-dependencies.
In contrast, pull-based methods are able to handle data-

dependencies, as they intrinsically request data. In the fol-
lowing, we introduce three pull-based transfer methods.
Unified Memory Migration. Instead of dealing with page-
able and pinned memory inside the database, Unified Mem-
ory allows us to delegate data transfer to the operating sys-
tem. Internally, memory pages are migrated to the GPU on
a page access [102] (4 KiB on Intel CPUs, 64 KiB on IBM
CPUs [69]). Therefore, the GPU pulls data, and pipelining in
software is unnecessary. However, the database must explic-
itly allocate Unified Memory to store data.
Zero-Copy. The previous approaches involve software or
the operating system tomanage transferring data. In contrast,
we can use Unified Virtual Addressing to directly access
data in CPU memory during GPU execution. We are able to
load data with byte-wise granularity, but are restricted to
accessing pinnedmemory. As Zero-Copy is managed entirely
in hardware, software or operating system are not involved.
Coherence. NVLink 2.0 offers a new transfer method that is
unavailable with previous interconnects. Using the hardware
address translation services and cache-coherence, the GPU
can directly access any CPU memory during execution. In
contrast to Unified Memory Migration, NVLink 2.0 accesses
memory with byte-wise granularity. In contrast to Unified
Virtual Addressing, NVLink 2.0 does not require pinnedmem-
ory. Instead, the GPU is able to directly access pageable CPU

GPUCPU
NVLink 2.0

#

#

#

#

hash(key)

memcopy

#

(a) Data and hash table in
GPU memory.

GPUCPU
NVLink 2.0

#

#

#

#

hash(key)

#

(b) Data in CPUmemory and
hash table in GPU memory.

Figure 6: Scaling the probe side to any data size.

memory. Thus, NVLink 2.0 lifts previous constraints on the
memory type and access granularity.

5 SCALING GPU HASH JOINS TO
ARBITRARY DATA SIZES

Current algorithms and systems for data processing on GPUs
are all limited to some degree by the capacity of GPUmemory
(L2). Being limited by GPU memory capacity is the most
fundamental problem in adopting GPU acceleration for data
management in practice. In this section, we study how fast
interconnects enable us to efficiently scale up data processing
to arbitrary database sizes.

We study the impact of fast interconnects on the example
of a no-partitioning hash join because of its unique require-
ments: (1) The build phase performs random memory ac-
cesses and thus requires either a low-latency interconnect to
access the hash table in CPU memory, or enough GPU mem-
ory to store the hash table. The latter is a common scalability
constraint. (2) The probe phase puts high demands on the
interconnect’s bandwidth. We discuss how we can scale up
the probe side (Section 5.1) and the build side (Section 5.2),
respectively, and propose our hybrid hash table approach to
improve performance (Section 5.3).

5.1 Scaling the Probe Side to Any Data Size
Transferring the inner and outer relations on-the-fly allows
us to scale the relations’ cardinalities regardless of GPU
memory capacity. We begin by describing a simple, baseline
join [29, 99] that is non-scalable. After that, we remove the
probe-side cardinality limit by comparing the baseline to the
Zero-Copy pull-based join introduced by Kaldewey et al. [47].
Based on the Zero-Copy join, we contribute our Coherence
join that uses the Coherence transfer method. To simplify
the discussion, we focus on pull-based methods. However, at
the cost of additional complexity, we could instead use push-
based pipelines to achieve probe-side scalability [34, 35].

First, in the baseline approach that we show in Figure 6a,
we first copy the entire build-side relation R to GPU mem-
ory. When the copy is complete, we build the hash table in
GPU memory. Following that, we evict R and copy the probe-
side relation S to GPU memory. We probe the hash table
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Figure 7: Scaling the build side to any data size.

and emit the join result (i.e., an aggregate or a materializa-
tion). The benefit of this approach is that it only requires the
hardware to support synchronous copying. However, this
baseline doesn’t scale to arbitrary data sizes, as it is limited
by the GPU’s memory capacity.
Next, in Figure 6b, we illustrate our probe-side scalable

join. By using a pull-based transfer method, we are able to
remove the scalability limitation. Zero-Copy and Coherence
enable us to access CPU memory directly from the GPU (i.e.,
by dereferencing a pointer). Therefore, we build the hash
table on the GPU by pulling R tuples on-demand from CPU
memory. Behind the scenes, the hardware manages the data
transfer. After we finish building the hash table, we pull S
tuples on-demand and probe the hash table.
Finally, we replace the Zero-Copy transfer method with

the Coherence transfer method in the Zero-Copy join. The
Zero-Copy method requires the base relations to be stored in
pinned memory. However, databases typically store data in
pageable memory. We enable the GPU to access any memory
location in pageable memory by replacing Zero-Copy with
Coherence, which simplifies GPU data processing.

5.2 Scaling the Build Side to Any Data Size
We assume that the hash table is small enough to fit into
GPU memory in Section 5.1. This limits the cardinality of R.
We now lift this limitation and consider large hash tables.

We show our build-side scalable join in Figure 7a. The join
is based on our probe-side scalable join, that we introduce in
Section 5.1. However, in contrast to our probe-side scalable
join, we store the hash table in CPU memory. By storing the
hash table in CPU memory instead of in GPU memory, we
are no longer constrained by the GPU’s memory capacity.
In contrast to reading in base relations, hash table opera-

tions (insert and lookup) are data-dependent and have an ir-
regular memory access pattern. Pull-based transfer methods
(e.g., Coherence) enable us to perform these operations on
the GPU in CPU memory. As we typically allocate memory
specifically to build the hash table, we can allocate pinned
memory or Unified Memory for use with the Zero-Copy or
Unified Memory Migration methods. This flexibility allows
us to choose the optimal transfer method for our hardware.

CPU MemoryGPU Memory

1

Virtual Memory

allocalloc

mapping

Figure 8: Allocating the hybrid hash table.

5.3 Optimizing the Hash Table Placement
Although the Coherence transfer method enables the GPU to
access any CPUmemory location, access performance is non-
uniform and varies with memory locality. CPU memory is an
order-of-magnitude slower than GPU memory for random
accesses (see Section 3). We combine the advantages of both
memory types in our new hybrid hash table. We design the
hybrid hash table such that access performance degrades
gracefully when the hash table’s size is increased.
In Figure 7b, we show that our hybrid hash table can re-

place a hash table in CPUmemory without anymodifications
to the join algorithm. This is possible because the hybrid
hash table uses virtual memory to abstract the physical loca-
tion of memory pages. We use virtual memory to combine
GPU pages and CPU pages into a single, contiguous array.
Virtual memory has been available previously on GPUs [49].
However, fast interconnects integrate the GPU into a sys-
tem-wide address space, which enables us to map physical
CPU pages next to GPU pages in the address space.

We allocate the hybrid hash table using a greedy algorithm,
that we depict in Figure 8. By default, ➀ we allocate GPU
memory. If the hash table is small enough, we allocate the
entire hash table in GPUmemory. Otherwise,➁ if not enough
GPU memory is available, we allocate memory on the CPU
that is nearest to the GPU. Therefore, we spill the hash table
to CPU memory. If that CPU has insufficient memory, we
recursively search the next-nearest CPUs of a multi-socket
NUMA system until we have allocated sufficient memory
for the hash table. Overall, we allocate part of the hash table
in GPU memory, and part in CPU memory.

The hybrid hash table is optimized for handling the worst
case of a uniform join key distribution. We model this case as
follows. We assume that the hash table consists ofGmem and
Cmem bytes of GPU and CPU memory. We then expect that
AGPU =

Gmem
Gmem+Cmem

of all accesses are to GPU memory. We
estimate hash join throughput to be Jtput = AGPUGtput +

(1 − AGPU )Ctput , where Gtput and Ctput are the hash join
throughputs when the hash table resides in GPU and CPU
memory, respectively. Overall, throughput is determined by
the proportion of accesses to a given processor.

There are two additional benefits to our hybrid hash table
that cannot be replicated without hardware support. First,
the contiguous array underlying the hybrid hash table comes
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Figure 9: Scaling-up using CPU and GPU.

at zero additional cost, because processors perform virtual-to-
physical address translation regardless of memory location.
We could simulate a hybrid hash table on hardware with-
out a system-wide address space by mapping together two
non-contiguous arrays in software. However, the software
indirection would add extra cycles on each access. Second,
besides a change to the allocation logic, we leave the hash
join algorithm unmodified. Thus, our hybrid hash table can
easily be integrated into existing databases.

6 SCALING-UP USING CPU AND GPU
The third fundamental limitation (L3) of GPU co-processing
is single processor execution. Without a way that enables
CPUs and GPUs to collaborate in query processing, we leave
available processing resources unused and cannot take full
advantage of a heterogeneous CPU+GPU system.
In this section, our goal is to increase throughput by uti-

lizing all available processors cooperatively, i.e., combining
CPUs and GPUs. The main challenge is to guarantee that
performance always improves when we schedule work on a
GPU, even for the first query that is executed on the GPU.
For this, the scheduling approach must be highly robust with
respect to execution skew. As a consequence, truly scalable
co-processing has the following three requirements. (a) We
must process chunks of input data such that we can exploit
data parallelism to use CPU and GPU for the same query.
(b) At the same time, the task scheduling approach needs to
avoid load imbalances. (c) The approach must avoid resource
contention (e.g., of memory bandwidth) to prevent slowing
down the overall execution time.

We first propose a heterogeneous task scheduling scheme.
Following that, we optimize our hash table placement strat-
egy for co-processing. Finally, we describe scaling up on
multiple GPUs that are connected with a fast interconnect.

6.1 Task Scheduling
Load imbalances inherently occur on heterogeneous architec-
tures due to the relative throughput differences of processors.
As the throughput of a processor depends on many variable
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strategy
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hash table
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Fast CPU?
Probe
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yes
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Figure 11: Hash table placement decision.

parameters that change over time (e.g., query, data, proces-
sor clock speeds), we cannot know the relative differences
upfront. A task scheduler ensures that all processors deliver
their highest possible throughput.

We adapt the CPU-oriented, morsel-driven approach [10,
57] for GPUs. In the CPU-oriented approach, all cores work
concurrently on the same data and, in the case of joins, the
same hash table. Cores balance load by requesting fixed-sized
chunks of data (i.e., morsels) from a central dispatcher, that
is implemented as a read cursor. Each core advances at its
own processing rate.

GPUCPU

Dispatcher

Morsel

Morsel Batch

Figure 10: Dynamically
scheduling tasks to CPU
and GPU processors.

In Figure 10, we show
our heterogeneous sched-
uling approach. In contrast
to the CPU-oriented ap-
proach, we give each pro-
cessor the right amount
of work to minimize exe-
cution skew by consider-
ing the increased latency of

scheduling work on a GPU, and the higher processing rate
of the GPU. Instead of dispatching one morsel at-a-time, we
dispatch batches of morsels to the GPU. Batching morsels
amortizes the latency of launching a GPU kernel over more
data. We empirically tune the batch size to our hardware.

6.2 Heterogeneous Hash Table Placement
Processors are fastest when accessing their local memories.
Consequently, our hybrid hash table (Section 8) prefers data
in GPU memory, and spills to CPU memory only when nec-
essary. In our hybrid hash table, however, we consider only
a single processor. In this section, we optimize for multiple,
heterogeneous processors accessing the hash table via a fast
interconnect. We consider two cases: one globally shared
hash table, and multiple per-processor hash tables. We sum-
marize the placement decision process in Figure 11.

In Figure 9a, we show the CPU and GPU processing a join
using a globally shared hash table (Het strategy). Globally
sharing a hash table retains the build-side scaling behavior
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that we achieve in Section 5.2. However, we avoid our hybrid
hash table optimization and store the hash table in CPU
memory. We choose this design because we aim to always
speed up processing when using a co-processor. Therefore,
we avoid slowing down CPU processing through remote
GPUmemory accesses. In addition, the CPU has significantly
lower performance when accessing GPU memory than the
GPU accessing CPU memory, due to the CPU coping worse
than the GPU with the high latencies of GPU memory and
the interconnect [41].
We handle the special case of small build-side relations

separately (GPU + Het strategy), because processors face
contention when building the hash table. Furthermore, small
hash tables allow us to optimize hash table locality. We show
our small table optimization in Figure 9b. In a first step,➀ one
processor (e.g., the GPU) builds the hash table in processor-
local memory (in this case, GPU memory). Following that,
➁ we copy the finished hash table to all other processors.
By storing a local copy of the hash table on each proces-
sor, we ensure that all processors have high random-access
bandwidth to the hash table. Finally, ➂ we execute the probe
phase on all processors using our heterogeneous scheduling
strategy. Our strategy could be extended to multi-way joins
(e.g., for a star schema) by building hash tables on a different
processor in parallel, and then copying all hash tables to all
processors. However, in this work, we focus on investigating
fast interconnects using a single join.

6.3 Multi-GPU Hash Table Placement
Systems with multiple GPUs are connected in a mesh topol-
ogy similar to multi-socket CPU systems. For small hash
tables, we can use the GPU+Het execution strategy with
multiple GPUs. However, for large hash tables, multi-GPU
systems can distribute the hash table over multiple GPUs,
as GPUs are latency insensitive [39, 94]. We distribute the
table by interleaving the pages over all GPUs. This strategy
is used in NUMA systems [57]. Fast interconnects enable us
to use the strategy in multi-GPU systems.

In contrast to CPU+GPU execution, distributing computa-
tion over multiple GPUs provides three distinct advantages.
First, using only GPUs avoids computational skew. Second,
distributing large hash tables within GPUmemory frees CPU
memory bandwidth for loading the base relations. Finally, in-
terleaving the hash table over multiple GPUs utilizes the full
bi-directional bandwidth of fast interconnects, as opposed
to the mostly uni-directional traffic of the Het strategy.

7 EVALUATION
In this section, we evaluate the impact of NVLink 2.0 on data
processing. We describe our setup in Section 7.1. After that,
we present our results in Section 7.2.

Table 2: Workload Overview.
Property A (from [10]) B C (from [54])
key / payload 8 / 8 bytes 8 / 8 bytes 4 / 4 bytes
cardinality of R 227 tuples 218 tuples 1024 · 106 tuples
cardinality of S 231 tuples 231 tuples 1024 · 106 tuples
total size of R 2 GiB 4 MiB 7.6 GiB
total size of S 32 GiB 32 GiB 7.6 GiB

7.1 Setup and Configuration
We first introduce our methodology and experimental setup.
Then, we describe the data sets that we use in our evaluation.
Finally, we introduce our experiments.
Environment. We evaluate our experiments on one GPU
and two CPU architectures. We conduct our GPU measure-
ments using an Nvidia Tesla V100-SXM2 and a V100-PCIE
(“Volta”), on IBM and Intel systems, respectively. Both GPUs
have 16 GB memory. We conduct our CPU measurements
on a dual-socket IBM POWER9 at 3.3 GHz with 2 × 16
cores and 256 GB memory, and on a dual-socket Intel Xeon
Gold 6126 (“Skylake-SP”) at 2.6 GHz with 2 × 12 cores and
1.5 TB memory. The Intel system runs Ubuntu 16.04, and
the IBM POWER9 system runs Ubuntu 18.04. We implement
our experiments in C++ and CUDA. We use CUDA 10.1 and
GCC 8.3.0 on all systems, and compile all code with “-O3”
and native optimization flags.
Methodology. We measure throughput of the end-to-end
join. We define join throughput as the sum of input tuples
divided by the total runtime (i.e., |R |+ |S |

runtime ) [86, 89]. For each
experiment, we report the mean and standard error over
10 runs. We note that our measurements are stable with a
standard error less than 5% from the mean.
Workloads. In Table 2, we give an overview of our work-
loads. We specify workloads A and C similar to related
work [8, 10, 54]. We scale these workloads 8× to create an
out-of-core scenario. We define workload B as a modified
workload A with a relation R that fits into the CPU L3 and
GPU L2 caches and represents small dimension tables. All
workloads assume narrow 8- or 16-byte <key, value> tuples.
We generate tuples assuming a uniform distribution, and
a foreign-key relationship between R and S . Unless noted
otherwise, each tuple in S has exactly one match in R. We
store the relations in a column-oriented storage model.
Settings. In the following experiments, we use the Coher-
ence transfer method for NVLink 2.0 and the Zero Copy
method for PCI-e 3.0, unless noted otherwise. We set up
our no-partitioning hash join with perfect hashing, i.e., we
assume no hash conflicts occur due to the uniqueness of pri-
mary keys. Our join is equivalent to the NOPA join described
by Schuh et al. [86].
Baseline. As a CPU baseline, we use the radix partitioned,
multi-core hash join implementation (“PRO”) provided by
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Figure 12: No-partitioning hash join using different
transfer methods for PCI-e 3.0 and NVLink 2.0.

Barthels et al. [9]. We modify the baseline to use our perfect
hash function, thus transforming the PRO join into a PRA
join [86]. Furthermore, we tune our baseline to use the best
radix bits (12 bits), page size (huge pages), SMT (enabled),
software write-combine buffers (enabled) and NUMA locality
parameters for our hardware. As our experiments run on
one GPU, we run the baseline on one CPU.
Experiments.We conduct ten experiments. First, we evalu-
ate the impact of transfer methods on data processing when
using PCI-e 3.0 and NVLink 2.0. Then, we show the impact
of NUMA locality considering the base relations and the
hash table. Next, we explore out-of-core scalability when
exceeding the GPU memory capacity with TPC-H query 6,
the probe-side relation S , and the build-side relation R. Fur-
thermore, we investigate the performance impact of different
build-to-probe ratios, as well as skewed data and varying the
join selectivity. Lastly, we investigate heterogeneous cooper-
ation between a CPU and a GPU that share a hash table.

7.2 Experiments
In this section, we present our experimental results and de-
scribe our observations.

7.2.1 GPU Transfer Methods. In Figure 12, we show the
join throughput of each transfer method with PCI-e 3.0 and
NVLink 2.0 for workload A (2 GiB Z 32 GiB). The outer rela-
tion is thus larger than GPU memory. We load both relations
from CPU memory, and build the hash table in GPU memory.
PCI-e 3.0.We observe that pinning the memory is necessary
to reach the peak transfer bandwidth of 12 GB/s. The Staged
Copy method is within 5% of Zero Copy, despite copying
from pageable memory. The hidden cost of using pageable
memory is that we fully utilize 4 CPU cores to stage the
data into pinned buffers. In contrast, Unified Migration and
Unified Prefetch are 68% and 30% slower than Zero Copy.
Although prefetching avoids the cost of demand-paging, we
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Figure 13: Join performance of the GPUwhen the base
relations are located on different processors, increas-
ing the number of interconnect hops from 0 to 3.

observe the overheads of evicting cached pages and mapping
new pages in GPU memory. Pageable Copy and Dynamic
Pinning are both significantly slower than Zero Copy. We
note that the Coherence method is unsupported by PCI-e 3.0,
due to PCI-e being non-cache-coherent.
NVLink 2.0. In contrast to PCI-e 3.0, NVLink 2.0 achieves
up to 5× higher bandwidth. The Coherence method is within
14% of the maximum possible throughput. The through-
put of Zero Copy matches that of Coherence, despite using
pinned memory instead of pageable memory. In contrast,
the DMA transfer from pinned memory with Pinned Copy
is 11% slower. Transfers from pageable memory without
using cache-coherence (i.e., Pageable Copy, Staged Copy, Dy-
namic Pinning) all achieve less throughput than Coherence.
NVLink underperforms PCI-e in only two cases, when us-
ing either Unified Memory method1. Overall, the Coherence
and Zero Copy methods are fastest, and NVLink 2.0 shows
significantly higher throughput than PCI-e 3.0.

7.2.2 Data Locality. We measure the impact of base relation
locality in Figure 13. We process the workloads from Table 2,
and scale them down to fit into GPUmemory (13 GiB, 12 GiB,
and 10 GiB). We store R and S in GPUmemory, CPUmemory,
remote CPU memory, and remote GPU memory (compare to
Figure 4(a)). Each step increases the number of interconnect
hops to load the data. In all measurements, we store the hash
table in GPU memory.
Workload A. We observe that join throughput decreases
by 32–46% as we increase the number of hops. We see that
going from 1 to 2 hops has a larger effect than from 2 to 3
hops, because the X-Bus interconnect has lower throughput
than NVLink 2.0 (cf. Figure 3(a)).
Workload B. We notice that storing the memory in GPU
memory has 5.8× higher throughput than a single hop over
NVLink 2.0. The reason is that the hash table is cached in the
GPU’s L2 cache, which has higher random access bandwidth

1We speculate that this is due to the POWER9 driver implementation re-
ceiving less optimization than on x86-64.
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Figure 15: Scaling the data size of TPC-H query 6.

than GPU memory. For this workload, there is a 23% penalty
for traversing three interconnects instead of one.
Workload C. In contrast to the best-case scenario repre-
sented by B, C is a worst-case scenario, as the relations
have equal cardinalities (i.e., |R | = |S |). As a result, random
memory accesses to GPU memory dominate the workload.
Overall, NVLink 2.0 is not the bottleneck for hash joins that
randomly access GPU memory. In addition, increasing the
number of hops is mainly limited by the X-Bus’ bandwidth.

7.2.3 Hash Table Locality. In Figure 14, wemeasure the influ-
ence of hash table locality on join performance. We process
workloads A–C that have up to 34 GiB of data, and increase
the interconnect hops to the hash table. In all measurements,
we store the base relations in local CPU memory that is one
hop away over NVLink 2.0.
Workloads A and C.We see that a single NVLink 2.0 hop
causes an 75–82% throughput decrease. Adding a second hop
and third hop effects another 50% and 17–33%, respectively.
Workload B. We observe that, in contrast to GPU memory,
the small hash table is not cached in the GPU’s L2 cache for
NVLink 2.0. The L2 cache is memory-side [101], and cannot
cache remote data. We conclude that reducing random access
bandwidth and increasing latency has a significant impact
on join throughput.

7.2.4 Selection and Aggregation Scaling. We scale TPC-H
query 6 from scale factor 100 to 1000 in Figure 15. This
constitutes a working set of 8.9–89.4 GiB. We assume that no
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Figure 16: Scaling the probe-side relation.

data are cached in GPU memory, thus all data are read from
CPU memory. We run branching and predicated variants.
The CPU is an IBM POWER9 and we ensure that predication
uses SIMD instructions.
Interconnects. The CPU achieves the highest throughput,
and outperforms NVLink 2.0 by up to 67% and PCI-e 3.0 by
up to 15.8×. However, NVLink 2.0 achieves a speedup of
up to 9.8× over PCI-e 3.0, thus considerably closing the gap
between the GPU and the CPU.
Branching vs. Predication. Counterintuitively, branch-
ing performs better than predication on the GPU with
NVLink 2.0. This is caused by the query’s low selectivity
of only 1.3%, that enables us to skip transferring parts of the
input data. In contrast, predication loads all data and is thus
bounded by the interconnect bandwidth.

Overall, NVLink 2.0 significantly narrows the gap between
the CPU and the GPU for computationally light workloads,
and enables the GPU to process large data volumes.

7.2.5 Probe-side Scaling. We analyze the effect of scaling
the probe-side relation on join throughput in Figure 16. We
use workload C with 16-byte tuples, and increase the probe-
side’s cardinality from 128–8196 million tuples (1.9–122 GiB).
We store the base relations in CPU memory, and the hash
table in GPU memory.
Observations.We notice that the throughput of NVLink 2.0
is 3–6× faster than PCI-e 3.0 and 3.2–7.3× faster than the
CPU baseline. Throughput improves with larger data due
to the changing build-to-probe ratio, that we investigate in
detail in Section 7.2.7. In contrast, the throughput of PCI-
e 3.0 remains constant, because of the transfer bottleneck.
Thus, PCI-e 3.0 cannot outperform the CPU baseline.

Overall, we are able to process data volumes larger than
the GPU’s memory capacity at a faster rate than the CPU.

7.2.6 Build-side Scaling. In Figure 17, we scale the hash
table size up to 2× the GPU memory capacity. The total data
size reaches up to 91.5 GiB, counting both base relations
plus the hash table. While scaling, we examine the effect
of hash table placement strategies (see Section 5.3). We use
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Figure 17: Scaling the build-side relation.

workload C with 16-bytes tuples and increase the cardinality
of both base relations.
PCI-e 3.0.We note that throughput reaches 0.77 G Tuples/s
as long as the hash table can be stored in GPU memory,
which is up to 1.9× faster than the CPU baseline. For hash
tables that are larger, throughput declines by 97% to 0.02
G Tuples/s, which is 20× slower than the CPU baseline.
NVLink 2.0. Our first observation is that throughput is 3×
higher than PCI-e 3.0 and 3–5.8× higher than the CPU base-
line for in-GPU hash tables. Although throughput declines by
85% for out-of-core hash tables, performance remains 8–18×
higher than PCI-e 3.0. Although NVLink 2.0 is slower than
the CPU baseline for the out-of-core hash table, NVLink 2.0
remains within 13% of the CPU.
NVLink 2.0 with Hybrid Hash Table. We notice that
storing parts of the hash table in GPU memory achieves a
speedup of 1–2.2× over only NVLink 2.0, despite facing a uni-
form foreign key distribution.We summarize that NVLink 2.0
helps to achieve higher out-of-core throughput than PCI-
e 2.0, and that throughput degrades gracefully, instead of
riding over a performance cliff when the hash table is larger
than the GPU’s memory capacity.

7.2.7 Build-to-probe Ratios. In Figure 18, we quantify the
impact of different build-to-probe ratios on join throughput.
We use workload C with 16-byte tuples, and increase S with
a |R |-to-|S | ratio from 1:1 up to 1:16 (up to 2 GiB Z 30.5 GiB).
We store the base relations in CPU memory, and the hash
table in GPU memory.
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Figure 18: Different build-to-probe ratios on NVLink.
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Figure 19: Join performance when the probe relation
follows a Zipf distribution.

Observations. The build phase takes 71% of the time, and
is thus 45% slower than the probe phase. The impact is most
visible for 1:1 ratios. For larger ratios, the build-side takes
up a smaller proportion of time, which makes the join faster.
We are able to observe these differences because NVLink 2.0
eliminates the transfer bottleneck for this use-case.

7.2.8 Data Skew. We explore a join on data skewed with a
Zipf distribution in Figure 19. We use workload A (34 GiB),
but skew S with Zipf exponents between 0–1.75. With an
exponent of 1.5, there is a 97.5% chance of hitting one of the
top-1000 tuples. Thus, increasing data skew tends to increase
cache hits. To show the effect of caching, we place the hash
table in CPU memory, in GPU memory, and in a hybrid hash
table with a varying CPU-to-GPU memory ratio.
Observations. We observe that higher skew leads to a
higher throughput of 3.5×, 3.6×, and 6.1× for the CPU,
NVLink 2.0, and PCI-e 3.0, respectively. This effect is not
present for hash tables in GPU memory, as transferring the
base relations from CPU memory is the bottleneck. Thus, we
see throughput increase with the hybrid hash table.

7.2.9 Join Selectivity. We evaluate the effect of join selectiv-
ity on join throughput in Figure 20. We vary the selectivity
of Workload A (34 GiB) from 0–100% by randomly selecting
a subset of R. We show the performance of in-GPU and out-
of-core hash table placement, and compare the GPU against
an IBM POWER9 CPU running the same NOPA join variant.
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Figure 20: The effect of join selectivity on throughput.
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Figure 21: Cooperative CPU and GPU join. Het uses a
shared hash table in CPUmemory, whereasGPU +Het
uses private hash tables in processor-local memory.

Observations. Our measurements show that join through-
put decreases with higher selectivity. The decrease is largest
at 30% for NVLink 2.0 with a GPU memory hash table. In
contrast, PCI-e 3.0 slows down by only 7% with a hash table
in CPU memory. We notice that both interconnects achieve
throughput higher than the calculated bandwidth would
suggest. This is because only the join key is necessary to es-
tablish a match. If there is no match, the value is not accessed.
However, if there are one or more matches, the whole cache
line is loaded. In effect, at 10% selectivity, 81.5% of values are
loaded, resulting in a throughput drop.
Overall, NVLink 2.0 with an out-of-core hash table

achieves similar performance to the CPU, and up to 6× better
performance with a GPU-local hash table.

7.2.10 CPU/GPU Co-processing Scale-up. In Figure 21(a),
we show the join throughput when scaling up the join to a
CPU and a GPU using the cooperative Het and GPU + Het
strategies described in Section 6.2. We use the workloads in
Table 2, that have a size up to 34 GiB. We drill down into
the individual join phases of workload C in Figure 21(b) to
gain more insights. As the CPU we use an IBM POWER9,
and execute the same NOPA algorithm that we run on the
GPU. We store the hash table in CPU memory for the CPU
and Het execution strategies, and in GPU memory for the
GPU and GPU + Het strategy. Note that in GPU + Het, we
copy the hash table to CPU memory for the probe phase. We
store the base relations in CPU memory for all strategies.
Workload A.We observe that the Het, Het + GPU, and GPU
execution strategies run faster than the CPU strategy by 1.5×,
5.6×, and 7.3×, respectively. Adding a GPU always increases
throughput, and the GPU without the CPU achieves the

highest throughput. The GPU-only strategy is faster than
both heterogeneous strategies.
Workload B. We see that Het achieves 3.2×, Het + GPU
9.7×, and GPU 8.32× higher throughput than the CPU-only
strategy. Like in workload A, all strategies that use a GPU
achieve higher throughput than the CPU-only strategy. The
cooperative GPU + Het strategy outperforms the GPU-only
strategy by 16%.
Workload C. We notice that the Het strategy is within 10%
of the CPU strategy, whereas GPU + Het and GPU are 1.6×
and 4.3× faster.
Time per Join Phase in Workload C. To understand why
the GPU-only strategy often outperforms the heterogeneous
strategies, we investigate the join phases individually.
In the build phase, we observe that two processors (Het)

are slower than one processor (all others). The GPU-only
strategy is faster than GPU + Het, because the latter first
builds the hash table on the GPU, and then synchronously
copies it to CPU memory.
In the probe phase, we notice that adding a GPU to the

CPU increases performance, but that the GPU by itself is
fastest.We observe that a processor-local hash table increases
throughput (Het vs. GPU + Het), and that transitioning from
a CPU-only to a CPU/GPU solution (Het and GPU + Het)
decreases processing time.
Overall, using a GPU always achieves the same or better

throughput than the CPU-only strategy, and never decreases
throughput. However, the GPU-only strategy achieves the
best throughput for most of our workloads.

8 DISCUSSION
In this section, we discuss the key insights that we obtained
from our fast interconnects characterization (Section 3) and
data processing evaluation (Section 7).
(1) GPUs have high-bandwidth access to CPUmemory.
We observed that GPUs can load data from CPU memory
with bandwidth similar to the CPU. Thus, offloading data
processing on GPUs becomes viable even when the data is
stored in CPU memory.
(2) GPUs can efficiently process large, out-of-core data.
A direct consequence of (1) is that transfer is no longer a
bottleneck for complex operators. We have shown speedups
of up to 6× over PCI-e 3.0 for hash joins operating on a data
structure in GPU memory. In these cases, performance is
limited by other factors, e.g., computation or GPU memory.
(3) GPUs are able to operate on out-of-core data struc-
tures, but should use GPU memory if possible. In our
evaluation, we showed up to 18× higher throughput with
NVLink 2.0 than with PCI-e 3.0. Despite this speedup, oper-
ating within GPU memory is still 6.5× faster compared to
transferring data over NVLink 2.0. However, for hash tables
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up to 1.8× larger than GPU memory, we achieved competi-
tive or better performance than an optimized CPU radix join
by caching parts of the hash table in GPU memory.
(4) Scaling-up co-processors with CPU + GPU makes
performancemore robust.A cache-coherent interconnect
enables processors to work together efficiently. Processors
that cooperate avoid worst-case performance, thus making
the overall performance more robust.
(5) Due to cache-coherence, memory pinning is no
longer necessary to achieve high transfer bandwidth.
We evaluated eight transfer methods, and discovered that fast
interconnects enable convenient access to pageable mem-
ory without any performance penalty. The benefit is that
memory management becomes much simpler because we
no longer need staging areas in pinned memory.
(6) Fair performance comparisons between GPUs vs.
CPUs have become practical. As a final point, in this pa-
per, we have studied the performance of a GPU and a CPU
that load data from the same location (i.e., CPU memory).
Fast interconnects enabled us to observe speedups without
caching data in GPU memory, although the CPU remains
faster in some cases.
Summary. With fast interconnects, GPU acceleration be-
comes an attractive scale-up alternative that promises large
speedups for databases.

9 RELATEDWORK
We contrast our paper to related work in this section.
Transfer Bottleneck. The realization that growing data
sets do not fit into the co-processor’s memory [31, 100] has
led recent works to take data transfer costs into account.
GPU-enabled databases such as GDB [34], Ocelot [38], Co-
GaDB/Hawk/HorseQC [13, 14, 26], and HAPE [16, 17], as
well as acceleratedmachine learning frameworks such as Sys-
temML [5] and DAnA [66], are all capable of streaming data
from CPU memory onto the co-processor. HippogriffDB [60]
and Karnagel et al. [51] take out-of-core processing one step
further by loading data from SSDs. The effect of data transfers
has also been researched for individual relational operators
on GPUs [30, 47, 51, 64, 65, 84, 89, 90]. All of these works
observe that transferring data over a PCI-e interconnect is a
significant bottleneck when processing data out-of-core. In
this paper, we investigate how out-of-core data processing
can be accelerated using a faster interconnect.
Transfer Optimization. The success of previous attempts
to resolve the transfer bottleneck in software heavily depends
on the data and query. Caching data in the co-processor’s
memory [13, 38, 50] assumes that data are reused, and is
most effective for small data sets or skewed access distribu-
tions. Data compression schemes [24, 85] must match the
data to be effective [20, 23], and trade off computation vs.

transfer time. Approximate-and-refine [81] and join pruning
using Bloom filters [32] depend on the query’s selectivity,
and process most of the query pipeline on the CPU. In con-
trast to these approaches, we show that fast, cache-coherent
interconnects enable new acceleration opportunities by im-
proving bandwidth, latency, as well as synchronization cost.
Transfer Avoidance. Another approach is to avoid the
transfer bottleneck altogether by using a hybrid CPU-GPU
or CPU-FPGA architecture [36, 37, 48, 62, 78]. Hybrid archi-
tectures integrate the CPU cores and accelerator into a single
chip or package, whereby the accelerator has direct access to
CPU memory over the on-chip interconnect [12, 33]. In con-
trast to these works, we consider systems with discrete GPUs,
because discrete co-processors provide more computational
power and feature high-bandwidth, on-board memory.
Out-of-core GPU Data Structures. Hash tables [11, 52],
B-trees [7, 46, 87, 98], log-structured merge trees [6], and
binary trees [53] have been proposed to efficiently access
data using GPUs. In contrast, we investigate hash tables in
the data management context. We demonstrate concurrent
CPU and GPU writes to a shared data structure, and perform
locality optimizations. In addition, our approach is more
space-efficient than previous shared hash tables [11].
Fast Interconnects. NVLink 1.0 and 2.0 have been inves-
tigated previously in microbenchmarks [45, 58, 59, 79, 80]
and for deep learning [55, 91, 97]. In contrast to these works,
we investigate fast interconnects in the database context.
To the best of our knowledge, we are the first to evaluate
CPU memory latency and random CPU memory accesses
via NVLink 1.0 or 2.0. Raza et al. [82] study lazy transfers
and scan sharing for HTAP with NVLink 2.0. In contrast, we
conduct an in-depth analysis of fast interconnects.

10 CONCLUSION
We conclude that, on the one hand, fast interconnects enable
new use-cases that were previously not worthwhile to ac-
celerate on GPUs. On the other hand, currently NVLink 2.0
represents a specialized technology that has yet to arrive in
commodity hardware. Overall, in this work we have made
the case that future database research should consider fast
interconnects for accelerating workloads on co-processors.
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