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ABSTRACT
Effective collaboration among data scientists results in high-
quality and efficient machine learning (ML) workloads. In
a collaborative environment, such as Kaggle or Google Co-
labratory, users typically re-execute or modify published
scripts to recreate or improve the result. This introduces
many redundant data processing and model training oper-
ations. Reusing the data generated by the redundant oper-
ations leads to the more efficient execution of future work-
loads. However, existing collaborative environments lack a
data management component for storing and reusing the
result of previously executed operations.
In this paper, we present a system to optimize the exe-

cution of ML workloads in collaborative environments by
reusing previously performed operations and their results.
We utilize a so-called Experiment Graph (EG) to store the
artifacts, i.e., raw and intermediate data or ML models, as
vertices and operations of ML workloads as edges. In the-
ory, the size of EG can become unnecessarily large, while
the storage budget might be limited. At the same time, for
some artifacts, the overall storage and retrieval cost might
outweigh the recomputation cost. To address this issue, we
propose two algorithms for materializing artifacts based on
their likelihood of future reuse. Given the materialized ar-
tifacts inside EG, we devise a linear-time reuse algorithm
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to find the optimal execution plan for incoming ML work-
loads. Our reuse algorithm only incurs a negligible overhead
and scales for the high number of incoming ML workloads
in collaborative environments. Our experiments show that
we improve the run-time by one order of magnitude for re-
peated execution of the workloads and 50% for the execution
of modified workloads in collaborative environments.
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1 INTRODUCTION
Machine learning (ML) plays an essential role in industry
and academia. Developing effective ML applications requires
knowledge in statistics, big data, and ML systems as well as
domain expertise. Therefore, ML application development is
not an individual effort and requires collaborations among
different users. Recent efforts attempt to enable easy collab-
oration among users. Platforms such as AzureML [37] and
Kaggle [20] provide a collaborative environment where users
share their scripts and results using Jupyter notebooks [23].
Other platforms such as OpenML [41] and ModelDB [43] en-
able collaboration by storing ML pipelines, hyperparameters,
models, and evaluation results in experiment databases [40].

The collaborative platforms typically act as execution en-
gines for ML workloads, i.e., ML scripts. Some platforms also
store artifacts. Artifacts refer to raw or intermediate datasets
or ML models. By automatically exploiting the stored arti-
facts, the collaborative platforms improve the execution of fu-
ture workloads by skipping redundant operations. However,
the existing collaborative platforms lack automatic manage-
ment of the stored artifacts and require the users to manually
search through the artifacts and incorporate them into their
workloads. In the current collaborative environments, we
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identify two challenges that prohibit the platforms from au-
tomatically utilizing the existing artifacts. First, the quantity
and size of the artifacts are large, which renders their storage
unfeasible. For example, we observe that three popular ML
scripts in a Kaggle competition generate up to 125 GB of
artifacts. Second, ML workloads have a complex structure;
thus, automatically finding artifacts for reuse is challenging.

We propose a solution for optimizing the execution of ML
workloads, which addresses these two challenges. Our solu-
tion stores the artifacts with a high likelihood of reappearing
in the future workloads. Furthermore, our solution organizes
the ML artifacts and offers a linear-time reuse algorithm.
We model an ML workload as a directed acyclic graph

(DAG), where vertices represent the artifacts and edges rep-
resent the operations in the workload. An artifact comprises
of two components: meta-data and content. Meta-data refers
to the column names of a dataframe, hyperparameters of a
model, and evaluation score of a model on a testing dataset.
Content refers to the actual data inside a dataframe or the
weight vector of an ML model. We refer to the union of all
the workload DAGs as the Experiment Graph (EG), which is
available to all the users in the collaborative environment.
The size of the artifact meta-data is small. Thus, EG stores
the meta-data of all the artifacts. The content of the artifacts
is typically large. Therefore, there are two scenarios where
storing the content of the artifacts in EG is not suitable, i.e.,
storage capacity is limited and recomputing an artifact is
faster than storing/retrieving the artifact. We propose two
novel algorithms for materializing the content of the arti-
facts given a storage budget. Our materialization algorithms
utilize several metrics such as the size, recreation cost, ac-
cess frequency, operation run-time, and the score of the ML
models to decide what artifacts to store. To the best of our
knowledge, this is the first work that considers the score of
ML models in the materialization decision.
To optimize the execution of the incoming ML work-

loads, we propose a linear-time reuse algorithm that decides
whether to retrieve or recompute an artifact. Our reuse al-
gorithm receives a workload DAG and generates an optimal
execution plan that minimizes the total execution cost, i.e.,
the sum of the retrieval and the computation costs. However,
for some ML model artifacts, due to the stochasticity of the
training operations and differences in hyperparameters, we
cannot reuse an existing model. Instead, we warmstart such
training operations with a model artifact from EG. Model
warmstarting increases the convergence rate resulting in
faster execution time of the model training operations.

In summary, we make the following contributions. (1) We
propose a system to optimize the execution of ML workloads
in collaborative environments. (2) We present Experiment
Graph, a collection of the artifacts and operations of the ML

workloads. (3) We propose novel algorithms for materializ-
ing the artifacts based on their likelihood of future reuse.
The algorithms consider run-time, size, and the score of ML
models. (4) We propose a linear-time reuse algorithm for
generating optimal execution plans for the ML workloads.
The rest of this paper is organized as follows. In Section

2, we provide some background information. We introduce
our collaborative workload optimizer in Section 3. In Sec-
tion 4, we discuss our data model and programming API.
In Sections 5 and 6, we introduce the materialization and
reuse algorithms. In Section 7, we present our evaluations. In
Section 8, we discuss the related work. Finally, we conclude
this work in Section 9.

2 BACKGROUND AND USE CASE
In this section, we first present a typical collaborative envi-
ronment. Then, we discuss a motivating example.

Collaborative Environment for Data Science. A typi-
cal collaborative environment consists of a client and server.
Users write a script to fetch datasets from the server, analyze
the data, and train ML models. Then, the client executes the
script. Although the client can be a single machine, users
typically utilize Jupyter notebooks [23] to write and execute
their scripts in isolated containers [29] within the server it-
self [15, 20, 39]. Users can publish the results and the scripts
on the server. Isolated execution environments enable better
resource allocation for running scripts.

Motivating Example. Kaggle is a collaborative environ-
ment that enables users and organizations to publish datasets
and organize ML competitions. In every competition, the or-
ganizer defines a task. Users submit their solutions as ML
scripts. Kaggle utilizes docker containers, called kernels, to
execute user workloads.
For example, let’s consider the competition Home Credit

Default Risk1. The task is to train a classification model to
predict whether clients can repay their loans. There are a
total of 9 datasets, 8 for training and 1 for evaluation, with a
total size of 2.5 GB. The goal of the submitted workloads is
to train an ML model that maximizes the area under the ROC
curve, which measures how well a classifier works. Three
of the most popular submitted workloads are copied and
edited by different users more than 7000 times [24–26]. The
three workloads produce 100s of data artifacts and several
ML models with a total size of 125 GB. The execution time
of each workload is between 200 to 400 seconds.
Kaggle does not store the artifacts, nor does it offer au-

tomatic reuse. Therefore, every time a user executes these
workloads (or a modified version of them), Kaggle runs them
from scratch. Our system, which stores the artifacts and
reuses them later, can save hundreds of hours of execution

1https://www.kaggle.com/c/home-credit-default-risk/
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Figure 1: Workload DAG constructed from the Listing
1. The highlighted node shows a terminal vertex.

time only for the three workloads in the motivating exam-
ple. In the next sections, we show how we selectively store
artifacts, given a storage budget, and how we quickly find
the relevant artifacts for reuse.

3 COLLABORATIVE MLWORKLOAD
OPTIMIZATIONS

In this section, we present our collaborative ML workload
optimization system. Figure 2 shows the architecture of our
system, which comprises of a client and server component.
The client parses the user workload into a DAG (Step 1) and
prunes the workload DAG (Step 2). The server receives the
workload DAG and utilizes our reuse algorithm to optimize
the DAG (Step 3) and returns it to the client. Finally, the client
executes the optimized DAG (Step 4) and prompts the server
to update the Experiment Graph and store the artifacts of
the workload DAG (Step 5). This architecture enables us to
integrate our system into the existing collaborative environ-
ments without requiring any changes to their workflow. The
client and server can run within a single cloud environment
where each client is an isolated container.

3.1 Client Components
ML Script and Parser.We design an extensible DSL, which
enables integration with Python data analysis and ML pack-
ages, such as Pandas [28] and scikit-learn [5]. After invoking
a script, the parser generates a DAG. Listing 1 shows an exam-
ple of a workload script. The workload processes a dataset of
ads description and trains a model to predict if an ad leads to
a purchase. Our system supports both long-running python
scripts and interactive Jupyter notebooks.

Workload DAG. In our DAG representation, vertices are
the artifacts, i.e., raw or preprocessed data and ML mod-
els, and edges are the operations. A workload DAG has one
or more source vertices representing the raw datasets. A
workload DAG also contains one or more terminal vertices.
Terminal vertices are the output of the workload. For exam-
ple, a terminal vertex is a trained ML model or aggregated
data for visualization. Requesting the result of a terminal
vertex triggers the optimization and execution of the work-
load DAG. Figure 1 shows the workload DAG constructed
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Figure 2: Collaborative workload optimizer system

of the code in Listing 1. In the Figure, the terminal vertex is
the result of the print statement on Line 16 in Listing 1.

1 import wrapper_pandas as pd
2 from wrapper_sklearn import svm
3 from wrapper_sklearn.feature_selection import SelectKBest
4 from wrapper_sklearn.feature_extraction.text import CountVectorizer
5
6 train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]
7 ad_desc = train['ad_desc']
8 vectorizer = CountVectorizer()
9 count_vectorized = vectorizer.fit_transform(ad_desc)
10 selector = SelectKBest(k=2)
11 t_subset = train[['ts','u_id','price']]
12 y = train['y']
13 top_features = selector.fit_transform(t_subset, y)
14 X = pd.concat([count_vectorized,top_features], axis = 1)
15 model = svm.SVC().fit(X, y)
16 print model # terminal vertex

Listing 1: Example script

Local Pruner. Once the user requests the result of a ter-
minal vertex, the client prunes the DAG before sending it
to the server. The pruner identifies edges that are not in the
path from source to terminal and edges with their endpoint
vertex already computed. The latter is very common in in-
teractive workloads since every cell invocation in Jupyter
notebooks computes some of the vertices. As a result, in the
future cell invocations, previously executed operations can
be skipped. Note that the pruner does not remove the edge
from the DAG and only marks them as inactive. For example,
in Figure 1, if t_subset is computed, the local pruner marks
the edge between train and t_subset as inactive. After the
pruning, the client sends the DAG to the server.

Executor. After the server optimizes a workload DAG,
the executor receives the optimized DAG to execute the
operations and returns the result to the user. The executor
runs the operations in the optimized DAG in their topological
order and returns the result to the user. After the executor
completes the execution of a workload DAG, it annotates the
DAG vertices with compute-time and sizes before sending it
to the updater for storage.



3.2 Server Components
Experiment Graph (EG). EG is the union of all the exe-
cuted workload DAGs, where vertices represent the artifacts
and edges represent the operations. Every vertex in EG has
the attributes f requency, size , and compute_time , represent-
ing the number of workloads an artifact appeared in, the
storage size, and the compute-time of the artifact, respec-
tively. Every vertex in EG carries the meta-data of the artifact
it represents. For datasets, the meta-data includes the name,
type, and size of the columns. For ML models, the meta-data
includes the name, type, hyperparameters, and the evalua-
tion score of the model. To save storage space, EG does not
contain the content, i.e., underlying data and model weights,
of all the artifacts. The updater component decides whether
to store the content of an artifact.

EGmaintains a list of all the source vertices that it contains.
Furthermore, every edge in the graph stores the hash of the
operation it represents. Therefore, given a workload DAG,
EG quickly detects if it contains the artifacts of the workload
DAG by traversing the edges starting from the source.

Optimizer. The optimizer receives the workload DAG
from the client and queries EG for materialized artifacts.
Then, the optimizer utilizes our reuse algorithm to generate
an optimized DAG by retrieving the optimal subset of the
materialized vertices from EG. The optimized DAG guaran-
tees to incur the smallest cost, i.e., the transfer cost of the
materialized artifacts plus execution cost of the operations.

Updater.The updater receives the executed DAG from the
client. The vertices in the executed DAG contain the size and
compute-time of the artifacts they represent. The updater
performs the three following tasks. First, it stores any source
artifact, both the meta-data and the content, that is not in
EG. This is to ensure that EG contains every raw dataset.
Second, it updates EG to include all the vertices and edges
of the executed DAG. If EG already contains a vertex, the
updater increases its frequency. Lastly, by utilizing our novel
materialization algorithms, the updater stores the content of
a selected set of artifacts, i.e., the output of thematerialization
algorithms. Note that EG contains the meta-data of all the
artifacts, including the unmaterialized artifacts.

3.3 Improved Motivating Example
By utilizing our collaborative workload optimizer, we can
improve the execution of the workloads in our motivating
example. We maintain an EG for the Home Credit Default
Risk competition. After users publish their workload scripts
on Kaggle, other users will read, re-run, or modify the scripts.
The updater component of our system stores the artifacts
with a high likelihood of reuse into EG. Our optimizer gen-
erates efficient workloads by querying EG for materialized
artifacts and transforming the workload DAG into a more

optimized DAG. We highlighted three workloads that were
copied and modified 7000 times. Optimizing these workloads
saves hundreds of hours of execution time, which reduces
the required resources and operation cost of Kaggle.

4 REPRESENTATION AND
PROGRAMMING INTERFACE

In this section, we first introduce our graph data model and
then present the APIs of our system.

4.1 Graph Data Model
We represent an ML workload as a directed acyclic graph
(DAG). Here, we describe the details of the DAG components
(nodes and edges), the construction process, and our ap-
proach for representing conditional and iterative programs.

Nodes. Nodes in the graph represent data. We support
three types of data: (1) Dataset, which has one or more
columns of data, analogous to dataframe objects [28], (2)
Aggregate, which contains a scalar or a collection, and (3)
Model, which represents a machine learning model.
Edges. An edge (v1,v2) represents the operation that gen-

erates nodev2 using nodev1 as input. There are two types of
operations. (1) Data preprocessing operations, which include
data transformation and feature engineering operations that
generate either a Dataset (e.g., map, filter, or one-hot en-
coding) or an Aggregate (e.g., reduce). (2) Model training
operations, which generate a Model. A Model is used either
in other feature engineering operations, e.g., PCA model, or
to perform predictions on a test dataset.

Multi-input Operations. To represent operations that
have multiple inputs (e.g., join), we use a special node type,
which we refer to as a Supernode. Supernodes do not contain
underlying data and only have incoming edges from the
input nodes. The outgoing edge from a supernode represents
the multi-input operations.

DAG Construction. The DAG construction starts with
a source vertex (or multiple source vertices) representing
the raw data. For every operation, the system computes a
hash based on the operation name and its parameters. In
interactive workloads (i.e., Jupyter Notebooks), the DAG can
continue to grow after an execution.

Conditional Control Flows. To enable support for con-
ditional control flows, we require the condition statement
of the iteration or if-statement to be computed before the
control flow begins. This is similar to how Spark RDDs [47]
handles conditional control flows.

4.2 Parser and API
We use Python as the language of the platform. This allows
seamless integration to third-party Python libraries.



Parser and Extensibility. Our platform provides two
levels of abstraction for writing ML workloads. The code
in Listing 1 (Section 3) shows the high-level abstraction,
which exposes an identical API to the pandas and scikit-
learn models. The parser translates the code to the lower
level abstraction, which directly operates on the nodes of
the graph and creates the DAG components.
In the lower level abstraction, every node has an add

method, which receives an operation. There are two types
of operations, i.e., DataOperation and TrainOperation. To
define new data preprocessing or model training operations,
users must extend the DataOperation or TrainOperation
classes. When defining new operations, users must indicate
the name, return type, and the parameters of the operation.
Users must also implement a run method, which contains
the main data processing or model training code.
Listing 2 shows an example of implementing a sampling

operation. Users extend the DataOperation class (Line 1) and
specify the name and return type (Line 3). An instance of the
operation with different parameters can then be created (Line
9). Inside the run, users have access to the underlying data
and can perform the actual data processing. The parser gener-
ates a DAGwith the following components: (1) a node, which
represents data_node on Line 10, (2) an outgoing edge from
data_node representing the sample_op on Line 11, and (3)
another node representing sampled_data_node, the result
of the sampling operation. Once the optimizer returns the
optimized DAG, the code inside the run of the Sample class
is executed. The type of the underlying_data argument in
the run method (Line 5) depends on the type of the input
node of the operation. For example, in Listing 2, the user is
applying the sampling operation to the Dataset node loaded
from disk (Line 10); thus, the type of the underlying_data is
dataframe. Formulti-input operations, the underlying_data
argument is an array of data objects, where each item rep-
resents one of the input nodes to the multi-input operation.
Lastly, since the sample operation must return a Dataset,
the parser encapsulates the result of the run method inside
a Dataset node. The process of extending a model training
operation is similar. However, users must specify whether
the training operation can be warmstarted or not.

Program Optimization. To find the optimal reuse plan,
our optimizer only requires information about the size of
the nodes and the execution cost of the operations. The
system captures the execution costs and size of the nodes
after executing a workload. As a result, when implementing
new operations, users do not need to concern themselves
with providing extra information for the optimizer.

Integration Limitations. Our APIs allow integration
with other feature engineering packages, such as Feature-
Tools [21], and ML frameworks, such as TensorFlow [1].
However, our optimizer is oblivious to the intermediate data

that are generated inside the third-party system. As a result,
our optimizer only offers materialization and reuse of the
final output of the integrated system.
1 class Sample(DataOperation):
2 def __init__(self, params):
3 Operation.__init__('sample', Types.Dataset, params)
4
5 def run(self, underlying_data):
6 return underlying_data.sample(n=self.params['n'],
7 random_state=self.params['r_state'])
8
9 sample_op = Sample(params={'n':1000, 'r_state':42})
10 data_node = Dataset.load('path')
11 sampled_data_node = data_node.add(sample_op)

Listing 2: Defining and using a new operation

5 ARTIFACT MATERIALIZATION
Depending on the number of executed workloads, the gen-
erated artifacts may require a large amount of storage space.
For example, the three workloads in our motivating example
generate up to 125 GB of artifacts. Moreover, depending on
the storage and retrieval costs of the artifacts from EG, it
may be less costly to recompute an artifact from scratch. In
this section, we introduce two algorithms for materializing
the artifacts with a high likelihood of future reuse while en-
suring the storage does not surpass the recomputation cost.
The first algorithm (Section 5.2) utilizes general metrics, i.e.,
size, access frequency, compute times, and storage cost of
the vertices, and an ML specific metric, i.e., the quality of
the ML models, to decide what artifacts to materialize. The
second algorithm (Section 5.3) extends the first algorithm
and considers any overlap between the artifacts, i.e., a data
column appearing in multiple artifacts.

Notations. We use the following notations in this sec-
tion. Graph GE = (V , E) is the Experiment Graph, where
V represents the set of artifacts and E represents the set of
operations. We use the terms artifact and vertex interchange-
ably. Each vertex v ∈ V has the attributes ⟨f , t, s,mat⟩. f ,
t , and s refer to the frequency, computation time, and size
whilemat = 1 indicates v is materialized and 0 otherwise.
We also define the set of all ML models in GE as:

M(GE ) = {v ∈ V | v is an ML model}

and the set of all reachable ML models from vertex v as:

M(v) = {m ∈ M(GE ) | there is path from v tom}

Assumptions. We assume there exists an evaluation
function that assigns a score to ML models. This is a rea-
sonable assumption as the success of any ML application
is measured through an evaluation function. For instance,
our motivating example uses the area under the ROC curve
for scoring the submitted workloads. In EG, any vertex that
represents an ML model artifact contains an extra attribute,
q (0 ≤ q ≤ 1), representing the quality of the model.



5.1 Materialization Problem Formulation
Existing work proposes algorithms for the efficient storage of
dataset versions and their storage and recomputation trade-
off [4]. The goal of the existing algorithms is to materialize
the artifacts that result in a small recomputation cost while
ensuring the total size of the materialized artifacts does not
exceed the storage capacity. However, two reasons render the
existing algorithms inapplicable to our artifact materializa-
tion problem. First, existing approaches do not consider the
performance of ML workloads, i.e., the quality of ML models
when materializing artifacts. Second, existing solutions do
not apply to collaborative environments, where the rate of
incoming workloads is high. Here, we formulate the problem
of artifact materialization as a multi-objective optimization
problem. The goal of artifact materialization is to materi-
alize a subset of the artifacts that minimizes the weighted
recomputation cost while maximizing the estimated quality.

Weighted Recreation Cost Function (WC). The first
function computes the weighted recreation cost of all the
vertices in the graph:

WC(GE ) =
∑
v ∈V

(1 −v .mat) ×v . f ×v .t

Intuitively, the weighted recreation cost computes the total
execution time required to recompute the vertices while
considering their frequencies. Materialized artifacts incur a
cost of zero. Unmaterialized artifacts incur a cost equal to
their computation time multiplied by their frequencies.

Estimated Quality Function (EQ). EQ computes the es-
timated quality of all the materialized vertices in the graph.
To compute EQ, we first define the potential of a vertex:

p(v) =


0, ifM(v) = ∅
max

m∈M (v)
m.q, otherwise

Intuitively, the potential of a vertex is equal to the quality of
the best reachable model from the vertex. Note that vertices
that are not connected to any model have a potential of 0.
Now, we define the estimated quality function as:

EQ(GE ) =
∑
v ∈V

v .mat × p(v)

Multi-ObjectiveOptimization.Given the two functions,
we would like to find the set of vertices to materialize, which
minimizes the weighted recreation cost function and maxi-
mizes the estimated quality function under limited storage
size,B. For ease of representation, we instead try tominimize
the inverse of the estimated quality function. We formulate

the optimization problem as follows:

minimize(WC(GE ),
1

EQ(GE )
),

subject to:
∑
v ∈V

v .mat ×v .s ≤ B
(1)

Existing work proves that minimizing the recreation cost
alone is an NP-Hard problem [4]. While there are different
approximate strategies for solving multi-objective optimiza-
tion problems [6], they are time-consuming, which renders
them inappropriate to our setting, where new workloads
are constantly executed. As a result, existing solutions to
multi-objective optimization problems are not suitable for
artifact materializations of EG.

5.2 ML-Based Greedy Algorithm
We propose a greedy heuristic-based algorithm to solve the
optimization problem. Our approach is based on the utility
function method for solving multi-objective optimizations
[9], where we combine the weighted recreation cost and the
estimated quality. Our algorithm selects vertices with the
largest utility in a greedy fashion.

Algorithm 1: Artifacts-Materialization
Input: GE (V , E) experiment graph, B storage budget
Output:M set of vertices to materialize

1 S B 0; // size of the materialized artifacts

2 M B ∅; // materialized set

3 PQ B empty priority queue;
4 for v ← V do
5 if v .mat = 0 then
6 v .utility B U(v);
7 PQ .insert(v); // sorted by util ity

8 while PQ .not_empty() do
9 v B PQ .pop(); // vertex with max util ity

10 if S +v .s ≤ B then
11 M BM ∪v ;
12 S B S +v .s;

13 returnM;

Algorithm 1 shows the details of our method for select-
ing the vertices to materialize. For every non-materialized
vertex, we compute the utility value of the vertex (Lines 4-
7). Then, we start materializing the vertices, sorted by their
utilities, until the storage budget is exhausted (Lines 8-12).
The utility functionU(v) combines the potential, recreation
cost, and size of a vertex. We design the utility function in
such a way that materializing vertices with larger utility
values contributes more to minimizing the multi-objective
optimization equation (Equation 1). Before we defineU(v),
we need to define 3 functions: the recreation cost of a vertex



Cr (v), the cost-size ratio rcs (v), and the load cost of a vertex
Cl (v). The recreation cost of a vertex is:

Cr (v) =
∑

v ′∈Gv

v ′.t

where Gv ⊆ GE is the compute graph of v , i.e., the set of all
vertices and edges which one must execute to recreate the
vertex v . The compute graph of a vertex always starts at one
or more source vertices of EG and ends at the vertex itself.
The weighted cost-size ratio is:

rcs (v) =
v . f ×Cr (v)

v .s

which has the unit s
MB and indicates how much time do we

spend on computing 1 MB of an artifact. Lastly, Cl (v) is the
cost (in seconds) of loading the vertex v from EG. The Cl (v)
function depends on the size of the vertex and where EG
resides (i.e., in memory, on disk, or in a remote location). We
now define the utility function as the linear combination:

U(v) B

{
0, if Cl (v) ≥ Cr (v)

αp ′(v) + (1 − α)r ′cs (v), otherwise
(2)

, where p ′(v) and r ′cs (v) are normalized values of p(v) and
rcs (v) (i.e., for every vertex divide the value by the total
sum). We never materialize a vertex when Cl (v) ≥ Cr (v),
since recomputing such vertex is more efficient. Taking the
load cost into account enables us to adapt the materialization
algorithm to different system architecture types (i.e., single
node vs distributed) and storage unit types (i.e., memory or
disk). α (0 ≤ α ≤ 1) indicates the importance of potential.
For example, when α > 0.5, we assign more importance
to model quality than weighted cost-size. In collaborative
environments, where the goal is to build high-quality models
and data exploration is not the main objective, a larger α
encourages faster materialization of high-quality models.

Run-time and Complexity.We compute the recreation
cost and potential of the nodes incrementally using one pass
over the Experiment Graph. Thus, the complexity of the ma-
terialization algorithm is O(|V |) where |V | is the number
of vertices in EG. The size of EG increases as users execute
more workloads. This increases the execution cost of the ma-
terialization algorithm. However, we only need to compute
the utility for a subset of the vertices. First, we must compute
the utility of the vertices belonging to the new workload.
The addition of the new vertices affects the normalized cost
and potential of other vertices, thus requiring a recomputa-
tion. However, we only need to recompute the utility of the
materialized vertices and compare them with the utility of
the workload vertices. As a result, the complexity of each
run of the materialization algorithm is O(|W | + |M |), where
|W | is the number of vertices in the new workload DAG and
|M | is the number of the materialized vertices.

5.3 Storage-Aware Materialization
Many feature engineering operations operate only on one
or a few columns of a dataset artifact; thus, the output arti-
fact may contain some of the columns of the input artifact.
Therefore, materializing both the input and output artifacts
may lead to many duplicated columns. To reduce the storage
cost, we implement a deduplication mechanism. We assign a
unique id to every column of the dataset artifacts. To com-
pute the unique id after the execution of an operation, we
first determine the columns which are affected by the opera-
tion. Then, we use a hash function that receives the operation
hash and id of the input column and outputs a new id. Our
approach for computing the unique id ensures the following.
First, after the execution of an operation, all the columns
which are not affected by the operation will carry the same
id. Second, two columns belonging to two different dataset
artifacts have the same unique id, if and only if, the same
operations have been applied to both columns.
We implement a storage manager that takes the dedu-

plication information into account. The storage manager
stores the column data using the column id as the key. Thus,
ensuring duplicated columns are not stored multiple times.

Greedy Meta-Algorithm. We propose a storage aware
materialization meta-algorithm that iteratively invokes Al-
gorithm 1 (Artifact-Materialization). While the budget is not
exhausted, we proceed as follows. First, we apply Algorithm
1 to find the set of vertices to materialize. Then, using the
deduplication strategy, we compress the materialized arti-
facts. We then compute the size of the compressed artifacts
and update the remaining budget. Using the updated budget,
we repeatedly invoke Algorithm 1, until no new vertices are
materialized or the updated budget is zero.

6 REUSE ANDWARMSTARTING
Our collaborative optimizer looks for opportunities to reuse
existing materialized artifacts of EG and warmstart model
training operations. Every artifact of the incoming workload
DAG either does not exist in EG, exists in EG but is unmate-
rialized, or is materialized. For the first two cases, the client
must execute the operations of the workload DAG to com-
pute the artifact. However, when the artifact is materialized,
we can choose to load or compute the artifact. Both loading
and computing an artifact incur costs. In this section, we
describe our linear-time reuse algorithm, which selects the
optimal subset of the materialized artifacts to reuse.

6.1 Reuse Algorithm
Preliminaries and Notations. We refer to the workload
DAG asGW . Every vertex,v ∈ GW , has a load cost (i.e.,Cl (v)
defined in Section 5). We also define Ci (v) as the computa-
tion cost (in seconds) of v given its input vertices (i.e., the



parents of the vertex v) in GW . If an artifact exist in GE but
is not materialized, then we set Cl (v) = ∞. For artifacts that
do not exist in GE , Cl (v) and Ci (v) are also set to ∞. Such
artifacts have never appeared in any previous workloads;
thus, Experiment Graph has no prior information about them.
Lastly, if an artifact is already computed insideGW , such as
the source artifacts or pre-computed artifacts in interactive
workloads, we set Ci (v) = 0, this is because the artifact is
already available in the client’s memory.

Linear-time Algorithm. Our reuse algorithm comprises
two parts: forward-pass and backward-pass. In forward-pass,
the algorithm selects the set of materialized vertices to load
from the Experiment Graph into the workload DAG. The
backward-pass prunes any unnecessary materialized vertices
before transferring the optimized DAG to the client.

Algorithm 2: Forward-pass
Input: GW workload DAG, GE experiment graph
Output: R set of vertices for reuse

1 for s ∈ sources(GW ) do
2 recreation_cost[s] B 0;
3 R B ∅;
4 for v ← topoloдical_order (GW ) do
5 if v computed in GW then
6 recreation_cost[v] B 0;
7 else
8 p_costs B

∑
p∈parents(v)

recreation_cost[p];

9 execution_cost B Ci (v) + p_costs;
10 if Cl (v) < execution_cost then
11 recreation_cost[v] B Cl (v);
12 R B R ∪v ;
13 else
14 recreation_cost[v] B execution_cost ;

15 return R;

Algorithm 2 shows the details of forward-pass. For ev-
ery vertex of GW , we define the recreation cost as the total
cost of computing the vertex from the sources. We store the
recreation costs of the vertices in the recreation_cost dictio-
nary. The client always loads the source artifacts completely.
Therefore, we set their recreation cost to 0 (Lines 1 and 2).
Then, we visit every vertex in their topological order. If the
client has already computed a vertex inside GW , then we set
its recreation cost to 0 (Lines 5 and 6). Otherwise, we com-
pute the execution cost of a vertex as the sum of the compute
cost of the vertex and the recreation cost of its parents (Lines
8 and 9). We then compare the load cost of the vertex with
the execution cost and set its recreation cost to the smaller
of the two (Lines 10-14). When the load cost is smaller, the
algorithm adds the vertex to the set of reuse vertices. Note

that unmaterialized vertices have a load cost of∞; therefore,
the algorithm never loads an unmaterialized vertex. After
forward-pass, we must prune the set of reuse vertices to
remove any artifact that is not part of the execution path.
A vertex v ∈ R is not part of the execution path if there
exists at least another vertex v ′ ∈ R in every outgoing path
starting at v . In backward-pass, we visit every vertex of GW
starting from the terminal vertices. For every vertex, if it
belongs to the reuse set, we add it to the final solution set
(Rp ) and stop traversing its parents. Otherwise, we continue
traversing the parents of the vertex.
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Figure 3: Reuse Algorithm Example. Each vertex has
the label ⟨Ci (v),Cl (v)⟩. T is the recreation cost.

Figure 3 shows how our reuse algorithm operates on an
example workload DAG. There are 3 source vertices in the
workload DAG. The algorithm starts with forward-pass,
traversing the graph from the sources (Scenario 1○). For
materialized vertices with a smaller load cost than the exe-
cution cost (i.e., the sum of the compute cost and parent’s
recreation costs), the algorithm sets the recreation cost to
the load cost of the vertex (Scenario 2○). For example, for
the materialized vertex v3, the execution cost is 16 + 5 = 21,
which is larger than its load cost of 20 (same scenario applies
to vertex v1). For vertices that exist in EG but are unmateri-
alized, the algorithm chooses to compute them (Scenario 3○).
If a vertex is already computed inside the workload DAG,
then the algorithm sets its recreation cost to zero (Scenario
4○). For materialized vertices with a larger load cost than the
execution cost, the algorithm sets the recreation cost to the



execution cost (Scenario 5○). For example, for the material-
ized vertex v2, the execution cost is 10 + 5 + 1 = 16, which is
smaller than its load cost of 17. Once the traversal reaches
a node that does not exist in EG, the forward-pass stops
(Scenario 6○). At this stage, forward-pass has selected the
materialized verticesv1 andv3 for reuse. Then, the algorithm
starts backward-pass from the terminal vertex (Scenario 7○).
Once the backward-pass visits a materialized vertex, it stops
traversing its parents. The backward-pass removes any ma-
terialized vertices that it did not visit (Scenario 8○). For ex-
ample, since v3 is materialized, backward-pass stops visiting
its parents; thus, it removes v1 from the final solution.

Complexity. Both forward-pass and backward-pass tra-
verse the workload DAG once, resulting in a maximum of
2∗ |V | visits. Therefore, our reuse algorithm has a worst-case
complexity of O(|V |). A linear-time algorithm can scale to a
large number of workloads, which is typical in collaborative
environments such as Kaggle.

6.2 Warmstarting
Many model training operations include different hyperpa-
rameters, which impact the training process. Two training
operations on the same dataset with different hyperparame-
ters may result in completely different models. In such sce-
narios, we cannot reuse a materialized model in EG instead
of a model artifact in the workload DAG. However, we try to
warmstart the model training operations using the models
in EG to reduce the training time. In warmstarting, instead
of randomly initializing the parameters of a model before
training, we initialize the model parameters to a previously
trained model. Warmstarting has shown to decrease the total
training time in some scenarios [2]. Note that in some sce-
narios, warmstarting may result in a different trained model.
Therefore, we only warmstart a model training operation,
when users explicitly request it.

The process of warmstarting is as follows. Once we en-
counter a model in the workload DAG in forward-pass, we
look for warmstarting candidates in EG. A warmstarting
candidate is a model that is trained on the same artifact and
is of the same type as the model in the workload DAG. When
there are multiple candidates for warmstarting, we select
the model with the highest quality. Finally, we initialize the
model training operation with the selected model.

7 EVALUATION
In this section, we evaluate the performance of our collabora-
tive optimizer. We first describe the setup of the experiment.
Then, we show the end-to-end run-time improvement of our
optimizer. Finally, we investigate the effect of the individual
contributions, i.e., materialization and reuse algorithms, on
the run-time and storage cost.

7.1 Setup
We execute the experiments on a Linux Ubuntumachinewith
128 GB of RAM. We implement a prototype of our system in
python 2.7.12. We implement EG using NetworkX 2.2 [17].
We run every experiment 3 times and report the average.

Baseline and other System. We compare our system
with a naive baseline, i.e., executing all the workloads with-
out any optimization, and Helix [45]. Helix is a system for
optimizing ML workloads, where users iterate on workloads
by testing out small modifications until achieving the de-
sired solution. Helix utilizes materialization and reuse of the
intermediate artifacts to speed up the execution of ML work-
loads within a single session. Helix materializes an artifact
when its recreation cost is greater than twice its load cost
(Algorithm 2 of the Helix paper [45]). To find the optimal
reuse plan, Helix reduces the workload DAG into an instance
of the project selection problem (PSP) and solve it via the
Max-Flow algorithm [22]. In our implementation of Helix
reuse, we consulted the authors and followed Algorithm 1
of the Helix paper to transform the workload DAG into PSP.
Similar to Helix, we utilized the Edmonds-Karp Max-Flow
algorithm [7], which runs in polynomial time (O(|V |.|E |2)).

Kaggle workloads. In the Kaggle workloads, we recreate
the use case in Section 2. We use eight workloads, which
generate 130 GB of artifacts. There are five real and three
custom workloads. Table 1 shows details of the workloads.
There are 9 source datasets with a total size of 2.5 GB. Unless
specified otherwise, we use storage-aware materialization
with a budget of 16 GB and α = 0.5. For Helix, we also set
the materialization budget to 16 GB.

OpenML workloads. In the OpenML workloads, we ex-
tracted 2000 runs of scikit-learn pipelines for Task 31 from
the OpenML platform [31]. The dataset is small, and the total
size of the artifacts after executing the 2000 runs is 1.5 GB.
We use the OpenML workloads to show the effects of the
model quality on materialization and model warmstarting on
run-time. Unless specified otherwise, we use storage-aware
materialization with a budget of 100 MB and α = 0.5.

7.2 End-to-end Optimization
In this experiment, we evaluate the impact of our optimizer
on the Kaggle workloads. In our motivating example, we
describe three workloads (Workloads 1-3 of Table 1), that are
copied and modified 7,000 times by different users. Therefore,
at the very least, users execute these workloads 7000 times.

Figure 4 shows the result of repeating the execution of each
workload twice. Before the first run, EG is empty. Therefore,
the default baseline (KG), Helix (HL), and our collaborative
optimizer (CO) must execute all the operations in the work-
loads. In Workload 1, the run-time of CO and HL is slightly
larger than KG in the first run. Workload 1 executes two



ID Description N S
1 A real Kaggle script. It includes several feature engineering operations before training logistic regression, random

forest, and gradient boosted tree models [26].
397 14.5

2 A real Kaggle script. It joins multiple datasets, preprocesses the datasets to generate features, and trains gradient
boosted tree models on the generated features [24].

406 25

3 A real Kaggle script. It is similar to Workload 2, with the resulting preprocessed datasets having more features [25]. 146 83.5

4 A real Kaggle script that modifies Workload 1 and trains a gradient boosted tree with a different set of hyperparameters
[32].

280 10

5 A real Kaggle script that modifies Workload 1 and performs random and grid search for gradient boosted tree model
using generated features of Workload 1 [36].

402 13.8

6 A custom script based on Workloads 2 and 4. It trains a gradient boosted tree on the generated features of Workload 2. 121 21
7 A custom script based on Workload 3 and 4. It trains a gradient boosted tree on the generated features of Workload 3. 145 83
8 A custom script that joins the features of Workloads 1 and 2. Then, similar to Workload 4, it trains a gradient boosted

tree on the joined dataset.
341 21.1

Table 1: Description of Kaggle workloads. N is number of the artifacts and S is the total size of the artifacts in GB.
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Figure 4: Repeated executions of Kaggle workloads

alignment operations. An alignment operation receives two
datasets, removes all the columns that do not appear in both
datasets, and returns the resulting two datasets. In CO, we
need to measure the precise compute-cost of every artifact.
This is not possible for operations that return multiple ar-
tifacts. Thus, we re-implemented the alignment operation,
which is less optimized than the baseline implementation. In
Workloads 2 and 3, CO and HL outperform KG even in the
first run. Both Workloads 2 and 3 contain many redundant
operations. The local pruning step of our optimizer identifies
the redundancies and only execute such operations once.
In the second run of the workloads, CO reduces the run-

time by an order of magnitude for Workloads 2 and 3. Work-
load 1 executes an external and compute-intensive visual-
ization command that computes a bivariate kernel density
estimate. Since our optimizer does not materialize such ex-
ternal information, it must re-execute the operation; thus,
resulting in a smaller run-time reduction.
HL has similar performance to CO in Workloads 1 and 2.

However, CO outperformsHL inWorkload 3. The total size of
the artifacts in Workloads 1 and 2 is small. As a result, a large
number of artifacts for both HL and CO are materialized. Our
reuse algorithm finds the same reuse plan as Helix, therefore,
the run-times for Workloads 1 and 2 are similar. However,
the size of the artifacts in Workload 3 is larger than the
budget (i.e., 83.5 GB). The materialization algorithm of HL
does not consider the benefit of materializing one artifact
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Figure 5: Execution of Kaggle workloads in sequence

over the others and starts materializing the artifacts from the
root node until the budget is exhausted. As a result, many
of the high-utility artifacts that appear towards the end of
the workloads are not materialized. The side-effect of the
materialization algorithm of HL is visible for Workload 3,
where only a handful of the initial artifacts are materialized.
Therefore, HL has to re-execute many of the operations at the
end of Workload 3, which results in an overhead of around
70 seconds when compared to CO.

Figure 5 shows the cumulative run-time of executing the
Kaggle workloads consecutively. Workloads 4-8 operate on
the artifacts generated in Workloads 1-3; thus, instead of
recomputing those artifacts, CO reuses the artifacts. As a
result, the cumulative run-time of running the 8 workloads
decreases by 50%. HL also improves run-timewhen compared
to KG. However, HL only materializes the initial artifacts
of the workloads and has a smaller improvement over KG
when compared to CO.

This experiment shows that optimizing a single execution
of each workload improves the run-time. In a real collabo-
rative environment, there are hundreds of modified scripts
and possibly thousands of repeated execution of such scripts,
resulting in 1000s of hours of improvement in run-time.

7.3 Materialization
In this set of experiments, we investigate the impact of dif-
ferent materialization algorithms on storage and run-time.
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Figure 6: Real size of the materialized artifact

Effect of Materialization on Storage. In a real collab-
orative environment, deciding on a reasonable materializa-
tion budget requires knowledge of the expected size of the
artifacts, the number of users, and the rate of incoming
workloads. In this experiment, we show that even with a
small budget, our materialization algorithms, particularly
our storage-aware algorithm, store a large portion of the arti-
facts that reappear in future workloads. We hypothesize that
there is considerable overlap between columns of different
datasets in ML workloads. Therefore, the actual total size of
the artifacts that our storage-aware algorithm materializes
is larger than the specified budget.

We run the Kaggle workloads under different materializa-
tion budgets and strategies. Figures 6(a)-(d) show the real size
of the stored artifacts for the heuristics-based (HM), storage-
aware (SA), and Helix (HL) algorithms. To show the total size
of the materialized artifacts, we also implement a strategy
that materializes every artifact in EG (represented by ALL in
the figure). In HM, the maximum real size is always equal to
the budget. This is similar for HL since it does not perform
any compression or deduplication of the columns. However,
in SA, the real size of the stored artifacts reaches up to 8
times the budget. With a materialization budget of 8 GB and
16 GB, SA materializes nearly 50% and 80% of all the artifacts.
For budgets larger than 16 GB, SA materializes nearly all of
the artifacts. This indicates that there is considerable overlap
between the artifacts of ML workloads. By deduplicating the
artifacts, SA can materialize more artifacts.

Note that when a high-utility artifact has no overlap with
other artifacts, SA still prioritizes it over other artifacts. As
a result, it is likely that when materializing an artifact that
has no overlap with other artifacts, the total size of the ma-
terialized data decreases. Figure 6(a) shows such an example.
After executing Workload 2, SA materializes several artifacts
that overlap with each other. However, in Workload 3, SA
materializes a new artifact with a high utility, which repre-
sents a large dataset with many features (i.e., 1133 columns
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Figure 7: Total run-time and speedup (vs baseline)

and around 3 GB). Since the new artifact is large, SA removes
many of the existing artifacts. As a result, the total size of
the materialized artifacts decreases after Workload 3.

Effect ofMaterialization onRun-time. Figure 7(a) shows
the total run-time of different materialization algorithms and
budgets. ALL represents the scenario where all the artifacts
are materialized. Even with a materialization budget of 8 GB,
SA has comparable performance to ALL (i.e., a difference of
100 seconds in run-time). When the budget is larger than
8 GB, SA performs similarly to ALL. For small materializa-
tion budgets (≤ 16 GB), HM performs 50% worse than SA.
However, HM performs slightly better for larger materializa-
tion budgets. The difference between HM and SA is because
many of the artifacts are large, e.g., in Workload 3, some
artifacts are more than 3 GB. Most of these artifacts contain
overlapping columns and SA compresses them. However,
HM is unable to exploit this similarity and chooses not to
materialize any of the large artifacts. Recomputing these
artifacts is costly, which results in a larger run-time for HM.

HL does not prioritize the artifacts based on their cost or
potential. Thus, HL quickly exhausts the budget by material-
izing initial artifacts. The impact of such behavior is more
visible for smaller budgets (≤ 16GB), where HL performs
20% and 90% worse than HM and SA, respectively. For larger
budgets, HL has similar performance to HM, since a larger
fraction of all the artifacts is materialized.

In Figure 7(b), we plot the cumulative speedup (vs the KG
baseline) of different materialization algorithms and budgets.
We plot the speedup of SA and HL with budgets of 8 GB and
16 GB (SA-8, SA-16, HL-8, and HL-16 in the figure) as the rest
of the algorithms and budgets show similar behavior. ALL
achieves a speedup of 2 after executing all the workloads. SA
has a comparable speedup with ALL reaching speedups of
1.77 and 1.97 with budgets of 8 GB and 16 GB, respectively.
Since HL only materializes the initial artifacts, it only pro-
vides a small speedup over the KG baseline. After executing
all the workloads, HL reaches speedups of 1.11 and 1.18 with
budgets of 8 GB and 16 GB. For larger budgets (i.e., 32 GB and
64 GB), HL reaches a maximum speedup of 1.31. Whereas,
SA has a speedup of 2.0, similar to ALL.

Effect of Model Quality on Materialization. In many
collaborative ML use cases, users tend to utilize existing high-
quality models. In our materialization algorithm, we consider



model quality when materializing an artifact. In this exper-
iment, we show the impact of materializing high-quality
models on run-time and show that our materialization algo-
rithm quickly detects high-quality models.
We design a model-benchmarking scenario, where users

compare the score of their models with the score of the best
performing model in the collaborative environment. Such a
scenario is common in collaborative environments, where
users constantly attempt to improve the best current model.
We use the OpenML workloads for the model-benchmarking
scenario. The implementation of the scenario is as follows.
First, we execute the OpenML workloads one by one and
keep track of the workload with the best performing model,
which we refer to as the gold standard workload. Then, we
compare every new workload with the gold standard.
Figure 8(a) shows the cumulative run-time of the model-

benchmarking scenario using our collaborative optimizer
(CO) with default configuration (i.e., storage-aware material-
izer with budget 100 MB and α = 0.5) against the OpenML
baseline (OML). For every new workload, OML has to re-run
the gold standard workload. When CO encounters a gold
standard workload, the materialization algorithm assigns a
higher potential value to the artifacts of the workload. As a
result, such artifacts have higher materialization likelihood.
In the subsequent workloads, CO reuses the materialized
artifacts of the gold standard from EG instead of re-running
them, resulting in 5 times improvement in the run-time over
OML. Re-executing the gold standard workload results in
an overhead of 2000 seconds, which contributes to the large
run-time of OML. In comparison, reusing the artifacts of the
gold standard has an overhead of 65 seconds for CO.
We also investigate the impact of α , which controls the

importance of model quality in our materialization, on the
run-time of the model-benchmarking scenario. If α is close
to 1, the materializer aggressively stores high-quality models.
If α is close to 0, the materializer prioritizes the recreation
time and size over quality. The materialization budget for
the OpenML workloads is 100 MB. However, the models in
OpenML are typically small (less than 100 KB). Therefore,
regardless of the α value, the materializer stores the majority
of the artifacts, which makes it difficult to accurately study
the effect of the α value. Therefore, in this experiment, we
set the budget to one artifact (i.e., the materializer is only
allowed to store one artifact). An ideal materializer always
selects the gold standard model. This highlights the impact
of α on materialization more clear.
We run the model-benchmarking scenario and vary the

value of α from 0 to 1. When α is 1, the materializer always
materializes the gold standard model, as it only considers
model quality. Therefore, α = 1 incurs the smallest cumula-
tive run-time in the model-benchmarking scenario.
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Figure 8: Effect of quality-based materialization

In Figure 8(b), we report the difference in cumulative run-
time between α = 1 and other values of α (i.e., y-axis corre-
sponds to the delta in cumulative run-time when compared
to α = 1). In the scenario, we repeatedly execute the gold
standard; thus, the faster we materialize the gold standard
model, the smaller the cumulative run-time would become.
Once we materialize the gold standard model, the delta in
cumulative run-time reaches a plateau. This is because the
overhead of reusing the gold standard is negligible; thus,
cumulative run-time becomes similar to when α = 1. In
workload 14, we encounter a gold standard that remains the
best model until nearly the end of the experiment. Smaller
α values (α ≤ 0.25) materialize this model after more than
100 executions. As a result, their delta in run-time reaches a
plateau later than large α values (α ≥ 0.5). The long delay
in the materialization of the gold standard contributes to the
higher cumulative run-time for smaller values of α .

The default value of α in our system is 0.5. This value pro-
vides a good balance betweenworkloads that have the goal of
training high-quality models (e.g., the model-benchmarking
scenario) and workloads that are more exploratory in nature.
When we have prior knowledge of the nature of the work-
loads, then we can set α accordingly. We recommend α > 0.5
for workloads with the goal of training high-quality models
and α < 0.5 for workloads with exploratory data analysis.

7.4 Reuse
In this experiment, we compare our linear time reuse algo-
rithm (LN) with Helix (HL) and two other baselines (ALL_M
andALL_C). ALL_M reuses everymaterialized artifact. ALL_C
recomputes every artifact (i.e., no reuse).

Figures 9(a) and (b) show the run-time of the Kaggle work-
loads with different materialization algorithms. ALL_C, in-
dependent of the materialization algorithm, finishes the ex-
ecution of the workloads in around 2000 seconds. For the
heuristics-based materialization, all four reuse algorithms
have similar performance until Workload 6. This is because
Workload 3 has large artifacts and the heuristics-based ma-
terialization exhausts its budget by materializing them. Fur-
thermore, Workloads 4, 5, and 6 are modified versions of
Workloads 1 and 2 (Table 1). As a result, there are not many
reuse opportunities until Workload 7, which is a modified
version of Workload 3.
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Figure 9: Run-time and overhead of reuse methods

The storage-aware materialization (Figure 9(b)) has better
budget utilization and materializes some of the artifacts of
the Workloads 1 and 2. ALL_M, LN, and HL reuse these
artifacts in Workloads 4, 5, and 6; thus, improving the run-
time fromWorkload 4. To better show the impact of the reuse
algorithms, we plot the cumulative speedup of LN, HL, and
ALL_M over ALL_C for the storage-aware materialization in
Figure 9(c). Since the first three workloads do not share many
similar artifacts, the speedup is 1. However, after the third
workload, all the reuse algorithms have speedups of larger
than 1. After executing all workloads, LN and HL reach a
speedup of around 2.1 with LN slightly outperforming HL.
For both materialization strategies, ALL_M has a similar

performance to LN and HL until Workload 6. Many of the
artifacts of Workload 7 incur larger load costs than compute
costs. As a result, LN and HL recompute these artifacts and
result in a smaller cumulative run-time than ALL_M, i.e.,
around 200-300 seconds. In this experiment, since EG is in-
side the memory of the machine, load times are generally
low. LN and HL outperform ALL_M with a larger margin in
scenarios where EG is on disk.

Reuse Overhead. The polynomial-time reuse algorithm
of Helix generates the same plan as our linear-time reuse.
For the Kaggle workloads, since the number and the size
of workloads are relatively small, we only observe a small
difference of 5 seconds in the reuse overhead.
To show the impact of our linear-time reuse algorithm,

we perform an experiment with 10,000 synthetic workloads.
We design the synthetic workloads to have similar charac-
teristics to the real workloads in Table 1. We consider the
following 5 attributes of the real workload DAGs: (1) indegree
distribution (i.e., join and concat operators), (2) outdegree
distribution, (3) ratio of the materialized nodes, (4) distribu-
tion of the compute costs, and (5) distribution of the load
costs. A node with outdegree more than 1 represents a sce-
nario were the node is input to different operations (e.g.,
training different ML models on one dataset node). To gen-
erate the workloads, we first randomly select the number of
nodes inside the workload DAG from the [500, 2000] interval,
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Figure 10: Warmstarting of OpenML workloads

which represents many of the Kaggle workloads. Then, for
every node, we sample its attributes from the distributions
of attributes of the real workloads.

Figure 9(d) shows the cumulative overhead of LN and HL
on 10,000 generatedworkloads. The overhead of LN increases
linearly and after the 10,000s workloads, LN incurs a total
overhead of 80 seconds. In comparison, HL has an overhead
of 3500 seconds, 40 times more than LN. In a real collabo-
rative environment, where hundreds of users are executing
workloads, a large reuse overhead leads to slower response
time and may cause a bottleneck during the optimization.

7.5 Warmstarting
In this experiment, we evaluate the effect of our warmstart-
ing method. Figure 10 shows the effect of warmstarting on
run-time and accuracy for the OpenML workloads. In Figure
10(a), we observe that the cumulative run-time of the baseline
(OML) and our optimizer without warmstarting (CO-W) are
similar. In the OpenML workloads, because of the small size
of the datasets, the run-time of the data transformations is
only a fewmilliseconds. As a result, CO-W only improves the
average run-time by 5 milliseconds when compared to OML.
The model training operations are the main contributors
to the total run-time. Warmstarting the training operations
has a large impact on run-time. As a result, warmstarting
(CO+W) improves the total run-time by a factor of 3.

In Figure 10(b), we show the cumulative difference be-
tween the accuracy (∆ Accuracy) of the workloads with and
without warmstarting. For example, for a hundredworkloads,
if warmstarting improves the accuracy of each workload
by 0.02, then the cumulative ∆ accuracy is 2.0. The figure
shows that warmstarting can also lead to an improvement
in model accuracy. This is mainly due to the configuration
of the OpenML workloads. Apart from the convergence cri-
teria (i.e., model parameters do not change), most of the
workloads in OpenML have termination criteria as well. For
example, in the logistic regression model, users set the maxi-
mum number of iterations. In such cases, warmstarting can
improve model accuracy since training starts from a point
closer to the convergence. As a result, warmstarting finds
a better solution when reaching the maximum number of
iterations. For the OpenML workloads, warmstarting leads
to an average ∆ accuracy of 0.014.



8 RELATEDWORK
Our system lies at the intersection of 3 categories of existing
work. The first category consists of data science platforms
that enable collaboration between users. The second category
is data management and provenance systems that capture
the relationship between data artifacts. The last category
contains ML and database systems that optimize workloads
through materialization and reuse.

Collaborative Data Science Platforms. Cloud-based
systems, such AzureML [37], Google’s AI platform [14], Kag-
gle [20], and Google Colaboratory [15] provide the necessary
tools for users to write ML workloads in Jupyter notebooks.
Furthermore, users can publish and share their notebooks
with others, which could result in higher quality workloads.
However, none of these systems manage the generated ML
artifacts and do not utilize them to optimize the execution
of the workloads. Our system manages the ML artifacts and
offers reuse and warmstarting methods to decrease the exe-
cution time of the future workloads.
OpenML [41], ModelDB [43], and MLflow [46] are plat-

forms that store ML artifacts, such as models and intermedi-
ate datasets, in a database [33, 40]. These platforms provide
APIs for users to query the details of the ML artifacts. Con-
trary to our systems, none of these platforms offer automatic
materialization and reuse of the ML artifacts.

Data Management and Provenance. DataHub [3, 4],
Context [13], Ground [18], ProvDB [30], Aurum [10], and
JuNEAU [19] are data management and provenance systems
that efficiently store fine-grained lineage information about
the data artifacts and operations. We design our Experiment
Graph by utilizing the approaches discussed in these sys-
tems. Specifically, we follow DataHub’s graph representation.
However, contrary to these systems, we utilize the stored
information to optimize the execution of the workloads. Our
materialization algorithm extends the materialization ap-
proach of Bhattacherjee et al. [4] to tailor it to ML workloads
by considering the quality of the model artifacts.

Materialization andReuse inMLandDatabases.View
selection is a long-studied problem in databases, which con-
cerns itself with finding an appropriate set of views to mate-
rialize to speed up the execution of queries [27]. Several ML
systems utilize such techniques to optimize the execution
of workloads. Helix [44, 45], DeepDive [48], Columbus [49],
KeystoneML [35], and Mistique [42] are ML systems which
optimize workloads by materializing intermediate data for
reuse. These systems have three fundamental differences
with our system. First, the workload DAGs are typically small
as these systems work with small ML pipelines. Therefore,
these systems do not need to tackle the problem of searching
for reuse opportunities in a large graph. Helix is the only
system that offers a polynomial-time reuse algorithm, which

has a higher overhead when compared to our linear-time
reuse algorithm. Second, the materialization decisions in
these systems only utilize run-time and size and do not take
into account the model quality. Third, our system operates in
a collaborative and multi-tenant environment. Whereas, the
scope of optimization in these systems, except for Mistique,
is limited to a single session. However, Mistique is a model
diagnosis tool, which enables users to query intermediate
artifacts from an artifact store efficiently. Whereas, we focus
on generating optimal execution plans for future workloads
by reusing the artifacts in EG. Nectar [16] and ReStore [8] of-
fer materialization and reuse of intermediate data generated
in DryadLINQ [11] and MapReduce jobs. However, Both of
these systems only support simple data processing pipelines
and do not offer any optimizations for ML workloads.

9 CONCLUSIONS
We present a system for optimizing machine learning work-
loads in collaborative environments. We propose a graph
representation of the artifacts of ML workloads, which we
refer to as the Experiment Graph. Using EG, we offer ma-
terialization and reuse algorithms. We propose two materi-
alization algorithms. The heuristics-based algorithm stores
artifacts of the graph based on their likelihood of reappear-
ing in future workloads. The storage-aware algorithm takes
deduplication information of the artifacts into account when
materializing them. Given the set of materialized artifacts,
for a new workload, our reuse algorithm finds the optimal
execution plan in linear time.
We show that our collaborative optimizer improves the

execution time of ML workloads by more than one order of
magnitude for repeated executions and by 50% for modified
workloads. We also show that our storage-aware materializa-
tion can store up to 8 times more artifacts than the heuristics-
based materialization algorithm. Our reuse algorithm finds
the optimal execution plan in linear-time and outperforms
the state-of-the-art polynomial-time reuse algorithm.

Futurework. EG contains valuable information about the
meta-data and hyperparameters of the feature engineering
and model training operations. In future work, we plan to uti-
lize this information to automatically construct ML pipelines
and tune hyperparameters [12, 34, 38]; thus, fully or partially
automating the process of designing ML pipelines.
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