Optimizing Machine Learning Workloads in
Collaborative Environments

Behrouz Derakhshan
DFKI GmbH
behrouz.derakhshan@dfki.de

Tilmann Rabl*

Hasso Plattner Institute
University of Potsdam
tilmann.rabl@hpi.de

ABSTRACT

Effective collaboration among data scientists results in high-
quality and efficient machine learning (ML) workloads. In
a collaborative environment, such as Kaggle or Google Co-
labratory, users typically re-execute or modify published
scripts to recreate or improve the result. This introduces
many redundant data processing and model training oper-
ations. Reusing the data generated by the redundant oper-
ations leads to the more efficient execution of future work-
loads. However, existing collaborative environments lack a
data management component for storing and reusing the
result of previously executed operations.

In this paper, we present a system to optimize the exe-
cution of ML workloads in collaborative environments by
reusing previously performed operations and their results.
We utilize a so-called Experiment Graph (EG) to store the
artifacts, i.e., raw and intermediate data or ML models, as
vertices and operations of ML workloads as edges. In the-
ory, the size of EG can become unnecessarily large, while
the storage budget might be limited. At the same time, for
some artifacts, the overall storage and retrieval cost might
outweigh the recomputation cost. To address this issue, we
propose two algorithms for materializing artifacts based on
their likelihood of future reuse. Given the materialized ar-
tifacts inside EG, we devise a linear-time reuse algorithm

“Work was partially done while author was at TU Berlin.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14 - June 19, 2020, Portland, Oregon, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6735-6/20/06. .. $15.00
https://doi.org/10.1145/3318464.3389715

Alireza Rezaei Mahdiraji
DFKI GmbH
alireza.rm@dfki.de

Ziawasch Abedjan
TU Berlin
abedjan@tu-berlin.de

Volker Markl
DFKI GmbH
TU Berlin
volker.markl@tu-berlin.de

to find the optimal execution plan for incoming ML work-
loads. Our reuse algorithm only incurs a negligible overhead
and scales for the high number of incoming ML workloads
in collaborative environments. Our experiments show that
we improve the run-time by one order of magnitude for re-
peated execution of the workloads and 50% for the execution
of modified workloads in collaborative environments.

ACM Reference Format:

Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan,
Tilmann Rabl, and Volker Markl. 2020. Optimizing Machine Learn-
ing Workloads in Collaborative Environments. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of
Data (SIGMOD’20), June 14-19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3318464.3389715

1 INTRODUCTION

Machine learning (ML) plays an essential role in industry
and academia. Developing effective ML applications requires
knowledge in statistics, big data, and ML systems as well as
domain expertise. Therefore, ML application development is
not an individual effort and requires collaborations among
different users. Recent efforts attempt to enable easy collab-
oration among users. Platforms such as AzureML [37] and
Kaggle [20] provide a collaborative environment where users
share their scripts and results using Jupyter notebooks [23].
Other platforms such as OpenML [41] and ModelDB [43] en-
able collaboration by storing ML pipelines, hyperparameters,
models, and evaluation results in experiment databases [40].

The collaborative platforms typically act as execution en-
gines for ML workloads, i.e., ML scripts. Some platforms also
store artifacts. Artifacts refer to raw or intermediate datasets
or ML models. By automatically exploiting the stored arti-
facts, the collaborative platforms improve the execution of fu-
ture workloads by skipping redundant operations. However,
the existing collaborative platforms lack automatic manage-
ment of the stored artifacts and require the users to manually
search through the artifacts and incorporate them into their
workloads. In the current collaborative environments, we

https://doi.org/10.1145/3318464.3389715
https://doi.org/10.1145/3318464.3389715

identify two challenges that prohibit the platforms from au-
tomatically utilizing the existing artifacts. First, the quantity
and size of the artifacts are large, which renders their storage
unfeasible. For example, we observe that three popular ML
scripts in a Kaggle competition generate up to 125 GB of
artifacts. Second, ML workloads have a complex structure;
thus, automatically finding artifacts for reuse is challenging.

We propose a solution for optimizing the execution of ML
workloads, which addresses these two challenges. Our solu-
tion stores the artifacts with a high likelihood of reappearing
in the future workloads. Furthermore, our solution organizes
the ML artifacts and offers a linear-time reuse algorithm.

We model an ML workload as a directed acyclic graph
(DAG), where vertices represent the artifacts and edges rep-
resent the operations in the workload. An artifact comprises
of two components: meta-data and content. Meta-data refers
to the column names of a dataframe, hyperparameters of a
model, and evaluation score of a model on a testing dataset.
Content refers to the actual data inside a dataframe or the
weight vector of an ML model. We refer to the union of all
the workload DAGs as the Experiment Graph (EG), which is
available to all the users in the collaborative environment.
The size of the artifact meta-data is small. Thus, EG stores
the meta-data of all the artifacts. The content of the artifacts
is typically large. Therefore, there are two scenarios where
storing the content of the artifacts in EG is not suitable, i.e.,
storage capacity is limited and recomputing an artifact is
faster than storing/retrieving the artifact. We propose two
novel algorithms for materializing the content of the arti-
facts given a storage budget. Our materialization algorithms
utilize several metrics such as the size, recreation cost, ac-
cess frequency, operation run-time, and the score of the ML
models to decide what artifacts to store. To the best of our
knowledge, this is the first work that considers the score of
ML models in the materialization decision.

To optimize the execution of the incoming ML work-
loads, we propose a linear-time reuse algorithm that decides
whether to retrieve or recompute an artifact. Our reuse al-
gorithm receives a workload DAG and generates an optimal
execution plan that minimizes the total execution cost, i.e.,
the sum of the retrieval and the computation costs. However,
for some ML model artifacts, due to the stochasticity of the
training operations and differences in hyperparameters, we
cannot reuse an existing model. Instead, we warmstart such
training operations with a model artifact from EG. Model
warmstarting increases the convergence rate resulting in
faster execution time of the model training operations.

In summary, we make the following contributions. (1) We
propose a system to optimize the execution of ML workloads
in collaborative environments. (2) We present Experiment
Graph, a collection of the artifacts and operations of the ML

workloads. (3) We propose novel algorithms for materializ-
ing the artifacts based on their likelihood of future reuse.
The algorithms consider run-time, size, and the score of ML
models. (4) We propose a linear-time reuse algorithm for
generating optimal execution plans for the ML workloads.

The rest of this paper is organized as follows. In Section
2, we provide some background information. We introduce
our collaborative workload optimizer in Section 3. In Sec-
tion 4, we discuss our data model and programming APIL
In Sections 5 and 6, we introduce the materialization and
reuse algorithms. In Section 7, we present our evaluations. In
Section 8, we discuss the related work. Finally, we conclude
this work in Section 9.

2 BACKGROUND AND USE CASE

In this section, we first present a typical collaborative envi-
ronment. Then, we discuss a motivating example.

Collaborative Environment for Data Science. A typi-
cal collaborative environment consists of a client and server.
Users write a script to fetch datasets from the server, analyze
the data, and train ML models. Then, the client executes the
script. Although the client can be a single machine, users
typically utilize Jupyter notebooks [23] to write and execute
their scripts in isolated containers [29] within the server it-
self [15, 20, 39]. Users can publish the results and the scripts
on the server. Isolated execution environments enable better
resource allocation for running scripts.

Motivating Example. Kaggle is a collaborative environ-
ment that enables users and organizations to publish datasets
and organize ML competitions. In every competition, the or-
ganizer defines a task. Users submit their solutions as ML
scripts. Kaggle utilizes docker containers, called kernels, to
execute user workloads.

For example, let’s consider the competition Home Credit
Default Risk'. The task is to train a classification model to
predict whether clients can repay their loans. There are a
total of 9 datasets, 8 for training and 1 for evaluation, with a
total size of 2.5 GB. The goal of the submitted workloads is
to train an ML model that maximizes the area under the ROC
curve, which measures how well a classifier works. Three
of the most popular submitted workloads are copied and
edited by different users more than 7000 times [24-26]. The
three workloads produce 100s of data artifacts and several
ML models with a total size of 125 GB. The execution time
of each workload is between 200 to 400 seconds.

Kaggle does not store the artifacts, nor does it offer au-
tomatic reuse. Therefore, every time a user executes these
workloads (or a modified version of them), Kaggle runs them
from scratch. Our system, which stores the artifacts and
reuses them later, can save hundreds of hours of execution

Uhttps://www.kaggle.com/c/home-credit-default-risk/

Figure 1: Workload DAG constructed from the Listing
1. The highlighted node shows a terminal vertex.

time only for the three workloads in the motivating exam-
ple. In the next sections, we show how we selectively store
artifacts, given a storage budget, and how we quickly find
the relevant artifacts for reuse.

3 COLLABORATIVE ML WORKLOAD
OPTIMIZATIONS

In this section, we present our collaborative ML workload
optimization system. Figure 2 shows the architecture of our
system, which comprises of a client and server component.
The client parses the user workload into a DAG (Step 1) and
prunes the workload DAG (Step 2). The server receives the
workload DAG and utilizes our reuse algorithm to optimize
the DAG (Step 3) and returns it to the client. Finally, the client
executes the optimized DAG (Step 4) and prompts the server
to update the Experiment Graph and store the artifacts of
the workload DAG (Step 5). This architecture enables us to
integrate our system into the existing collaborative environ-
ments without requiring any changes to their workflow. The
client and server can run within a single cloud environment
where each client is an isolated container.

3.1 Client Components

ML Script and Parser. We design an extensible DSL, which
enables integration with Python data analysis and ML pack-
ages, such as Pandas [28] and scikit-learn [5]. After invoking
a script, the parser generates a DAG. Listing 1 shows an exam-
ple of a workload script. The workload processes a dataset of
ads description and trains a model to predict if an ad leads to
a purchase. Our system supports both long-running python
scripts and interactive Jupyter notebooks.

Workload DAG. In our DAG representation, vertices are
the artifacts, i.e., raw or preprocessed data and ML mod-
els, and edges are the operations. A workload DAG has one
or more source vertices representing the raw datasets. A
workload DAG also contains one or more terminal vertices.
Terminal vertices are the output of the workload. For exam-
ple, a terminal vertex is a trained ML model or aggregated
data for visualization. Requesting the result of a terminal
vertex triggers the optimization and execution of the work-
load DAG. Figure 1 shows the workload DAG constructed

| ML Script -
(1. Parser) @ o
. Workload DAG ! O tearn
[2. Local Pruner]
. Pruned DAG | e

> xperiment
(3. Optimizer Grgph
| Optimized DAG ! (5. Updater

T o

[4. Executor] g

Figure 2: Collaborative workload optimizer system

of the code in Listing 1. In the Figure, the terminal vertex is
the result of the print statement on Line 16 in Listing 1.

import wrapper_pandas as pd

from wrapper_sklearn import svm

from wrapper_sklearn.feature_selection import SelectKBest

from wrapper_sklearn.feature_extraction.text import CountVectorizer

train = pd.read_csv('train.csv') # [ad_desc,ts,u_id,price,y]
ad_desc = train['ad_desc']

vectorizer = CountVectorizer()

9 count_vectorized = vectorizer.fit_transform(ad_desc)

10 selector = SelectKBest(k=2)

11 t_subset = train[['ts','u_id','price']]

12 y = train['y']

13 top_features = selector.fit_transform(t_subset, y)

14 X = pd.concat([count_vectorized, top_features], axis = 1)
15 model = svm.SVC().fit(X, y)

16 print model # terminal vertex

0NN U AW =

Listing 1: Example script

Local Pruner. Once the user requests the result of a ter-
minal vertex, the client prunes the DAG before sending it
to the server. The pruner identifies edges that are not in the
path from source to terminal and edges with their endpoint
vertex already computed. The latter is very common in in-
teractive workloads since every cell invocation in Jupyter
notebooks computes some of the vertices. As a result, in the
future cell invocations, previously executed operations can
be skipped. Note that the pruner does not remove the edge
from the DAG and only marks them as inactive. For example,
in Figure 1, if t_subset is computed, the local pruner marks
the edge between train and t_subset as inactive. After the
pruning, the client sends the DAG to the server.

Executor. After the server optimizes a workload DAG,
the executor receives the optimized DAG to execute the
operations and returns the result to the user. The executor
runs the operations in the optimized DAG in their topological
order and returns the result to the user. After the executor
completes the execution of a workload DAG, it annotates the
DAG vertices with compute-time and sizes before sending it
to the updater for storage.

3.2 Server Components

Experiment Graph (EG). EG is the union of all the exe-
cuted workload DAGs, where vertices represent the artifacts
and edges represent the operations. Every vertex in EG has
the attributes frequency, size, and compute_time, represent-
ing the number of workloads an artifact appeared in, the
storage size, and the compute-time of the artifact, respec-
tively. Every vertex in EG carries the meta-data of the artifact
it represents. For datasets, the meta-data includes the name,
type, and size of the columns. For ML models, the meta-data
includes the name, type, hyperparameters, and the evalua-
tion score of the model. To save storage space, EG does not
contain the content, i.e., underlying data and model weights,
of all the artifacts. The updater component decides whether
to store the content of an artifact.

EG maintains a list of all the source vertices that it contains.
Furthermore, every edge in the graph stores the hash of the
operation it represents. Therefore, given a workload DAG,
EG quickly detects if it contains the artifacts of the workload
DAG by traversing the edges starting from the source.

Optimizer. The optimizer receives the workload DAG
from the client and queries EG for materialized artifacts.
Then, the optimizer utilizes our reuse algorithm to generate
an optimized DAG by retrieving the optimal subset of the
materialized vertices from EG. The optimized DAG guaran-
tees to incur the smallest cost, i.e., the transfer cost of the
materialized artifacts plus execution cost of the operations.

Updater. The updater receives the executed DAG from the
client. The vertices in the executed DAG contain the size and
compute-time of the artifacts they represent. The updater
performs the three following tasks. First, it stores any source
artifact, both the meta-data and the content, that is not in
EG. This is to ensure that EG contains every raw dataset.
Second, it updates EG to include all the vertices and edges
of the executed DAG. If EG already contains a vertex, the
updater increases its frequency. Lastly, by utilizing our novel
materialization algorithms, the updater stores the content of
a selected set of artifacts, i.e., the output of the materialization
algorithms. Note that EG contains the meta-data of all the
artifacts, including the unmaterialized artifacts.

3.3 Improved Motivating Example

By utilizing our collaborative workload optimizer, we can
improve the execution of the workloads in our motivating
example. We maintain an EG for the Home Credit Default
Risk competition. After users publish their workload scripts
on Kaggle, other users will read, re-run, or modify the scripts.
The updater component of our system stores the artifacts
with a high likelihood of reuse into EG. Our optimizer gen-
erates efficient workloads by querying EG for materialized
artifacts and transforming the workload DAG into a more

optimized DAG. We highlighted three workloads that were
copied and modified 7000 times. Optimizing these workloads
saves hundreds of hours of execution time, which reduces
the required resources and operation cost of Kaggle.

4 REPRESENTATION AND
PROGRAMMING INTERFACE

In this section, we first introduce our graph data model and
then present the APIs of our system.

4.1 Graph Data Model

We represent an ML workload as a directed acyclic graph
(DAG). Here, we describe the details of the DAG components
(nodes and edges), the construction process, and our ap-
proach for representing conditional and iterative programs.

Nodes. Nodes in the graph represent data. We support
three types of data: (1) Dataset, which has one or more
columns of data, analogous to dataframe objects [28], (2)
Aggregate, which contains a scalar or a collection, and (3)
Model, which represents a machine learning model.

Edges. An edge (v1, v2) represents the operation that gen-
erates node v; using node v as input. There are two types of
operations. (1) Data preprocessing operations, which include
data transformation and feature engineering operations that
generate either a Dataset (e.g., map, filter, or one-hot en-
coding) or an Aggregate (e.g., reduce). (2) Model training
operations, which generate a Model. A Model is used either
in other feature engineering operations, e.g., PCA model, or
to perform predictions on a test dataset.

Multi-input Operations. To represent operations that
have multiple inputs (e.g., join), we use a special node type,
which we refer to as a Supernode. Supernodes do not contain
underlying data and only have incoming edges from the
input nodes. The outgoing edge from a supernode represents
the multi-input operations.

DAG Construction. The DAG construction starts with
a source vertex (or multiple source vertices) representing
the raw data. For every operation, the system computes a
hash based on the operation name and its parameters. In
interactive workloads (i.e., Jupyter Notebooks), the DAG can
continue to grow after an execution.

Conditional Control Flows. To enable support for con-
ditional control flows, we require the condition statement
of the iteration or if-statement to be computed before the
control flow begins. This is similar to how Spark RDDs [47]
handles conditional control flows.

4.2 Parser and API

We use Python as the language of the platform. This allows
seamless integration to third-party Python libraries.

Parser and Extensibility. Our platform provides two
levels of abstraction for writing ML workloads. The code
in Listing 1 (Section 3) shows the high-level abstraction,
which exposes an identical API to the pandas and scikit-
learn models. The parser translates the code to the lower
level abstraction, which directly operates on the nodes of
the graph and creates the DAG components.

In the lower level abstraction, every node has an add
method, which receives an operation. There are two types
of operations, i.e., DataOperation and TrainOperation. To
define new data preprocessing or model training operations,
users must extend the DataOperation or TrainOperation
classes. When defining new operations, users must indicate
the name, return type, and the parameters of the operation.
Users must also implement a run method, which contains
the main data processing or model training code.

Listing 2 shows an example of implementing a sampling
operation. Users extend the DataOperation class (Line 1) and
specify the name and return type (Line 3). An instance of the
operation with different parameters can then be created (Line
9). Inside the run, users have access to the underlying data
and can perform the actual data processing. The parser gener-
ates a DAG with the following components: (1) a node, which
represents data_node on Line 10, (2) an outgoing edge from
data_node representing the sample_op on Line 11, and (3)
another node representing sampled_data_node, the result
of the sampling operation. Once the optimizer returns the
optimized DAG, the code inside the run of the Sample class
is executed. The type of the underlying_data argument in
the run method (Line 5) depends on the type of the input
node of the operation. For example, in Listing 2, the user is
applying the sampling operation to the Dataset node loaded
from disk (Line 10); thus, the type of the underlying_datais
dataframe. For multi-input operations, the underlying_data
argument is an array of data objects, where each item rep-
resents one of the input nodes to the multi-input operation.
Lastly, since the sample operation must return a Dataset,
the parser encapsulates the result of the run method inside
a Dataset node. The process of extending a model training
operation is similar. However, users must specify whether
the training operation can be warmstarted or not.

Program Optimization. To find the optimal reuse plan,
our optimizer only requires information about the size of
the nodes and the execution cost of the operations. The
system captures the execution costs and size of the nodes
after executing a workload. As a result, when implementing
new operations, users do not need to concern themselves
with providing extra information for the optimizer.

Integration Limitations. Our APIs allow integration
with other feature engineering packages, such as Feature-
Tools [21], and ML frameworks, such as TensorFlow [1].
However, our optimizer is oblivious to the intermediate data

that are generated inside the third-party system. As a result,
our optimizer only offers materialization and reuse of the
final output of the integrated system.

class Sample(DataOperation):
def __init__(self, params):
Operation.__init__('sample', Types.Dataset, params)

1
2
3
4
5 def run(self, underlying_data):

6 return underlying_data.sample(n=self.params['n'],

7 random_state=self.params['r_state'])
8

9 sample_op = Sample(params={'n':1000, 'r_state':42})

10 data_node = Dataset.load('path')

11 sampled_data_node = data_node.add(sample_op)

Listing 2: Defining and using a new operation

5 ARTIFACT MATERIALIZATION

Depending on the number of executed workloads, the gen-
erated artifacts may require a large amount of storage space.
For example, the three workloads in our motivating example
generate up to 125 GB of artifacts. Moreover, depending on
the storage and retrieval costs of the artifacts from EG, it
may be less costly to recompute an artifact from scratch. In
this section, we introduce two algorithms for materializing
the artifacts with a high likelihood of future reuse while en-
suring the storage does not surpass the recomputation cost.
The first algorithm (Section 5.2) utilizes general metrics, i.e.,
size, access frequency, compute times, and storage cost of
the vertices, and an ML specific metric, i.e., the quality of
the ML models, to decide what artifacts to materialize. The
second algorithm (Section 5.3) extends the first algorithm
and considers any overlap between the artifacts, i.e., a data
column appearing in multiple artifacts.

Notations. We use the following notations in this sec-
tion. Graph Gg = (V,E) is the Experiment Graph, where
V represents the set of artifacts and E represents the set of
operations. We use the terms artifact and vertex interchange-
ably. Each vertex v € V has the attributes (f, ¢, s, mat). f,
t, and s refer to the frequency, computation time, and size
while mat = 1 indicates v is materialized and 0 otherwise.
We also define the set of all ML models in Gg as:

M(Gg) = {v € V | v is an ML model}
and the set of all reachable ML models from vertex v as:
M(v) = {m € M(Gg) | there is path from v to m}

Assumptions. We assume there exists an evaluation
function that assigns a score to ML models. This is a rea-
sonable assumption as the success of any ML application
is measured through an evaluation function. For instance,
our motivating example uses the area under the ROC curve
for scoring the submitted workloads. In EG, any vertex that
represents an ML model artifact contains an extra attribute,
q (0 < g < 1), representing the quality of the model.

5.1 Materialization Problem Formulation

Existing work proposes algorithms for the efficient storage of
dataset versions and their storage and recomputation trade-
off [4]. The goal of the existing algorithms is to materialize
the artifacts that result in a small recomputation cost while
ensuring the total size of the materialized artifacts does not
exceed the storage capacity. However, two reasons render the
existing algorithms inapplicable to our artifact materializa-
tion problem. First, existing approaches do not consider the
performance of ML workloads, i.e., the quality of ML models
when materializing artifacts. Second, existing solutions do
not apply to collaborative environments, where the rate of
incoming workloads is high. Here, we formulate the problem
of artifact materialization as a multi-objective optimization
problem. The goal of artifact materialization is to materi-
alize a subset of the artifacts that minimizes the weighted
recomputation cost while maximizing the estimated quality.

Weighted Recreation Cost Function (WC). The first
function computes the weighted recreation cost of all the
vertices in the graph:

WC(Gg) = Z(l —v.mat) X v.f Xo.t

veV

Intuitively, the weighted recreation cost computes the total
execution time required to recompute the vertices while
considering their frequencies. Materialized artifacts incur a
cost of zero. Unmaterialized artifacts incur a cost equal to
their computation time multiplied by their frequencies.

Estimated Quality Function (EQ). EQ computes the es-
timated quality of all the materialized vertices in the graph.
To compute EQ, we first define the potential of a vertex:

0, if M(v) =0
otherwise

p(v) =

max m.q,
meM(v)

Intuitively, the potential of a vertex is equal to the quality of
the best reachable model from the vertex. Note that vertices
that are not connected to any model have a potential of 0.
Now, we define the estimated quality function as:

EQ(Gg) = Z v.mat X p(v)

veV

Multi-Objective Optimization. Given the two functions,
we would like to find the set of vertices to materialize, which
minimizes the weighted recreation cost function and maxi-
mizes the estimated quality function under limited storage
size, B. For ease of representation, we instead try to minimize
the inverse of the estimated quality function. We formulate

the optimization problem as follows:

1
EQ(GE)
subject to: Z v.mat Xv.s < B

veV

minimize(WC(Gg),),

(1)

Existing work proves that minimizing the recreation cost
alone is an NP-Hard problem [4]. While there are different
approximate strategies for solving multi-objective optimiza-
tion problems [6], they are time-consuming, which renders
them inappropriate to our setting, where new workloads
are constantly executed. As a result, existing solutions to
multi-objective optimization problems are not suitable for
artifact materializations of EG.

5.2 ML-Based Greedy Algorithm

We propose a greedy heuristic-based algorithm to solve the
optimization problem. Our approach is based on the utility
function method for solving multi-objective optimizations
[9], where we combine the weighted recreation cost and the
estimated quality. Our algorithm selects vertices with the
largest utility in a greedy fashion.

Algorithm 1: Artifacts-Materialization

Input: Gg(V, E) experiment graph, 8B storage budget
Output: M set of vertices to materialize
1S :=0;
2 M =0;
3 PQ := empty priority queue;
4 forv « V do
5 if v.mat = 0 then
6 v.utility == U(v);
7 L PQ.insert(v);

// size of the materialized artifacts
// materialized set

// sorted by utility

8 wilile PQ.not_empty() do
o | ©v:=PQ.pop();

10 if S+ v.s < B then
11 L M= MUu;

// vertex with max utility

12 S=5+0v.s;

13 return M;

Algorithm 1 shows the details of our method for select-
ing the vertices to materialize. For every non-materialized
vertex, we compute the utility value of the vertex (Lines 4-
7). Then, we start materializing the vertices, sorted by their
utilities, until the storage budget is exhausted (Lines 8-12).
The utility function U (v) combines the potential, recreation
cost, and size of a vertex. We design the utility function in
such a way that materializing vertices with larger utility
values contributes more to minimizing the multi-objective
optimization equation (Equation 1). Before we define U(v),
we need to define 3 functions: the recreation cost of a vertex

C,(v), the cost-size ratio r.s(v), and the load cost of a vertex
Cj(v). The recreation cost of a vertex is:

Cr(v) = Z vt

v’ €G,,
where G, C Gg is the compute graph of v, i.e., the set of all
vertices and edges which one must execute to recreate the
vertex v. The compute graph of a vertex always starts at one
or more source vertices of EG and ends at the vertex itself.
The weighted cost-size ratio is:

v.f X Cr(v)

V.S

res(v) =

which has the unit 5= and indicates how much time do we
spend on computing 1 MB of an artifact. Lastly, C;(v) is the
cost (in seconds) of loading the vertex v from EG. The C;(v)
function depends on the size of the vertex and where EG
resides (i.e., in memory, on disk, or in a remote location). We

now define the utility function as the linear combination:

Uv) = {O, , , 1fC1(v).2 Cr(v) @)
ap’(v) + (1 — a)r/(v), otherwise
, where p’(v) and r/ (v) are normalized values of p(v) and
res(v) (i.e., for every vertex divide the value by the total
sum). We never materialize a vertex when C;(v) > C,(v),
since recomputing such vertex is more efficient. Taking the
load cost into account enables us to adapt the materialization
algorithm to different system architecture types (i.e., single
node vs distributed) and storage unit types (i.e., memory or
disk). @ (0 < @ < 1) indicates the importance of potential.
For example, when o > 0.5, we assign more importance
to model quality than weighted cost-size. In collaborative
environments, where the goal is to build high-quality models
and data exploration is not the main objective, a larger «
encourages faster materialization of high-quality models.
Run-time and Complexity. We compute the recreation
cost and potential of the nodes incrementally using one pass
over the Experiment Graph. Thus, the complexity of the ma-
terialization algorithm is O(|V|) where |V| is the number
of vertices in EG. The size of EG increases as users execute
more workloads. This increases the execution cost of the ma-
terialization algorithm. However, we only need to compute
the utility for a subset of the vertices. First, we must compute
the utility of the vertices belonging to the new workload.
The addition of the new vertices affects the normalized cost
and potential of other vertices, thus requiring a recomputa-
tion. However, we only need to recompute the utility of the
materialized vertices and compare them with the utility of
the workload vertices. As a result, the complexity of each
run of the materialization algorithm is O(|W| + |M|), where
|W| is the number of vertices in the new workload DAG and
|M| is the number of the materialized vertices.

5.3 Storage-Aware Materialization

Many feature engineering operations operate only on one
or a few columns of a dataset artifact; thus, the output arti-
fact may contain some of the columns of the input artifact.
Therefore, materializing both the input and output artifacts
may lead to many duplicated columns. To reduce the storage
cost, we implement a deduplication mechanism. We assign a
unique id to every column of the dataset artifacts. To com-
pute the unique id after the execution of an