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ABSTRACT
The processing model of state-of-the-art stream processing en-
gines is designed to execute long-running queries one at a time.
However, with the advance of cloud technologies and multi-tenant
systems, multiple users share the same cloud for stream query
processing. This results in many ad-hoc stream queries sharing
common stream sources. Many of these queries include joins.

There are two main limitations that hinder performing ad-hoc
stream join processing. The first limitation is missed optimization
potential both in stream data processing and query optimization
layers. The second limitation is the lack of dynamicity in query
execution plans.

We present AJoin, a dynamic and incremental ad-hoc stream
join framework. AJoin consists of an optimization layer and a
stream data processing layer. The optimization layer periodically
reoptimizes the query execution plan, performing join reordering
and vertical and horizontal scaling at run-time without stopping
the execution. The data processing layer implements pipeline-
parallel join architecture. This layer enables incremental and
consistent query processing supporting all the actions triggered by
the optimizer. We implement AJoin on top of Apache Flink, an
open-source data processing framework. AJoin outperforms Flink
not only at ad-hoc multi-query workloads but also at single-query
workloads.
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1. INTRODUCTION
Stream processing engines (SPEs) process continuous queries

on real-time data, which are series of events over time. Examples
of such data are sensor events, user activity on a website, and
financial trades. There are several open-source streaming engines,
such as Apache Spark Streaming [4, 53], Apache Storm [48], and
Apache Flink [15], backed by big communities.

With the advance of cloud computing [20], such as the Software
as a Service model [51], multiple users share public or private
clouds for stream query processing. Many of these queries include
joins. Stream joins continuously combine rows from two or more
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Figure 1: Ad-hoc stream join queries. TiC and TiD show
creation and deletion times of ith query, respectively.

bounded streaming sources. In particular, executing multiple
ad-hoc queries on common streaming relations needs careful
consideration to avoid redundant computation and data copy.

Motivation. Stream join services are used in many com-
panies, e.g., Facebook [32]. Clients subscribed to such a service
create and delete stream join queries in an ad-hoc manner. In
order to execute the queries efficiently, a service owner needs to
periodically reoptimize the query execution plan (QEP).

Let V={vID, length, geo, lang, time} be a stream of videos
(videos displayed at a user wall), W={usrID, vID, duration,
geo, time} a video view stream of a user, C={usrID, comment,
length, photo, emojis, time} a stream of user comments, and
R={usrID, reaction, time} a steam of user reactions, such as like,
love, and angry. Figure 1 shows an example use-case scenario
for ad-hoc stream join queries. The machine learning module
initiates Q1 to feed the model with video preferences of users.
The module targets people living in Germany (σW.geo=GER) and
watching videos in English (σV.lang=ENG). The editorial team
initiates Q2 to discover web brigades or troll armies [10, 45].
The query detects users that comment (σC.length>5) on videos
published in US (σV.geo=US) just a few seconds after watching
them (σW.duration<10). The quality assurance team initiates Q3 to
analyze the users’ reactions to promoted videos. Specifically, the
team analyzes videos that are watched in Europe (σW.geo=EU), re-
ceive angry reactions (σR.reaction=angry), and at least one emoji
in comments (σC.emojis>0). We use the queries, shown in Figure
1, throughout the paper.

As we can see from the example above, these stream queries
are executed within a finite time duration. Depending on ad-hoc
query creation and deletion time and selection predicates, (W1V)
or (W1C) can be shared between Q1 and Q2 or between Q2
and Q3, respectively. Different sharing strategies can also require
reordering the join relations.

With many concurrent join queries, data copy, computation,
and resource usage will be a bottleneck. So, scan sharing for com-
mon data sources and object reuse are necessary. Also, the data
and query throughput can fluctuate at run-time. To support such
dynamic workloads, SPEs need to support scale out and in, and
scale up and down, and join reordering at run-time, without stop-



ping the execution. Note that the state-of-the-art streaming sys-
tems are optimized for maximizing the data throughput. However,
in a multi-user cloud environment it is also important to maximize
query throughput (frequency of created and deleted queries).

Sharing Limitations in Ad-hoc SPEs. Ad-hoc query shar-
ing has been studied both for batch and stream data processing
systems. Unlike ad-hoc batch query processing systems, in ad-
hoc SPEs query sharing happens between queries running on
fundamentally different subsets of the data sets, determined by
the creation and deletion times of each query. Below, we analyze
the main limitations of modern ad-hoc SPEs.
Missed optimization potential: To the best of our knowl-

edge, there is no ad-hoc SPE providing ad-hoc stream QEP
optimization. Modern ad-hoc SPEs embed rule-based query shar-
ing techniques, such as query indexing [17], in the data processing
layer [35]. However, appending a query index payload to each tuple
causes redundant memory and computation usage. As the number
of running queries increases, each tuple carries more payload.

Modern ad-hoc SPEs materialize intermediate join results
eagerly. Especially with low selectivity joins, the eager mate-
rialization results in high transfer costs of intermediate results
between subsequent operators.

Also, the join operator structure in modern SPEs performs
several costly computations, such as buffering stream tuples in a
window, triggering the processing of a window, computing match-
ing tuples, and creating a new set of tuples based on matching
tuples. With more queries and n-way (n≥ 3) joins, the join
operation will be a bottleneck in the QEP.
Dynamicity: Modern ad-hoc SPEs consider ad-hoc query pro-

cessing only with a static QEP and with queries with common
join predicates. In stream workloads with fluctuating data and
query throughput, this is inefficient.

AJoin. We propose AJoin, a scalable SPE that supports ad-hoc
equi-join query processing. AJoin also supports selection operators.
We overcome the limitations stated above by combining incremen-
tal and dynamic ad-hoc stream query processing in our solution:
Efficient distributed join architecture: Because the

join operator in modern SPEs is computationally expensive, AJoin
shares the workload of the join operator with a source and sink
operator. The join architecture is not only data-parallel but also
pipeline-parallel. Tuples are indexed in the source operator. The
join operator utilizes indexes for an efficient join operation. AJoin
incrementally computes multiple join queries. It performs a scan,
data, and computation sharing between multiple join queries with
different predicates. Our solution adopts late materialization for
intermediate join results. This technique enables the system to
compress the intermediate results and pass them to downstream
operators efficiently.

Dynamic query processing: AJoin supports dynamicity at
the optimization and data processing layer: dynamicity at the
optimization layer means that the optimization layer performs
regular reoptimization, such as join reordering and horizontal and
vertical scaling; dynamicity at the data processing layer means
that the layer is able to perform all the actions triggered by the
optimizer at run-time, without stopping the QEP.

Contributions and Paper Organization. The main con-
tributions of the paper are as follows: (1) We present the first
optimizer to process ad-hoc streaming queries in an incremental
manner; (2) We develop distributed pipeline-parallel stream join
architecture. This architecture also supports dynamicity (modify
QEP on-the-fly in a consistent way); (3) We perform an extensive
experimental evaluation with state-of-the-art streaming engines.

The rest of the paper is organized as follows. We present related
work in Section 2. Section 3 gives the system overview. Section 4
presents the AJoin optimizer. We provide implementation details
in Section 5 and run-time operations in Section 6. Experimental
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Figure 2: Comparison between AJoin and AStream

results are shown in Section 7. We conclude in Section 8.

2. RELATED WORK
Shared query processing. SharedDB is based on batch data

processing model and handles OLTP, OLAP, and mixed workloads
[22, 23]. Giceva et al. adopt SharedDB ideas and implement
shared query processing on multicores [25]. CJoin [12, 13] and
DataPath [6] focus on ad-hoc query processing in data warehouses.
Braun et al. propose a hybrid (OLTP and OLAP) computation
system, which integrates key-value-based event processing and
SQL-based analytical processing on the same distributed store [11].
BatchDB implements hybrid workloads sharing for interactive
applications [42]. SharedHive is a shared query processing solution
built on top of MapReduce framework [18]. The works mentioned
above are designed for batch data processing environments. Al-
though we also embrace some ideas from shared join operators, we
focus on stream data processing environments with ad-hoc queries.

To increase data throughput, MJoin proposes a multi-way join
operator that operates over more than two inputs [52]. While
the bucket data structure in AJoin also mimics the behavior
of multi-way joins, the join operator of AJoin supports binary
input streams. To increase data throughput, AJoin reoptimizes
the QEP periodically. FluxQuery is a centralized main-memory
execution engine based on the idea of continual circular clock
scans and adjusted for interactive query execution [19]. Similarly,
MQJoin supports efficient ad-hoc execution of main-memory
joins [41]. Hammad et al. propose streaming ad-hoc joins [26].
The solution adopts a centralized router, extended from Eddies
[7]. Also, the work adopts a selection pull-up approach, which
might result in high bookkeeping cost of resulting joined tuples
and intensive CPU and memory consumption. The above works
are designed for a single-node environment. However, AJoin is
designed for distributed environments. AJoin does not utilize
any centralized computing structure. Dynamicity and progressive
optimization, are more essential in distributed environments. Also,
AJoin exploits pipeline-parallelism. In a single-node environment,
however, task-fusion is more beneficial [55].

AJoin vs AStream. AJoin was inspired by AStream [35],
the first shared ad-hoc SPE. AStream adds an additional attribute
to each tuple that represents a bitset of potentially interested
queries in that tuple. This attribute is called query-set. For ex-
ample, a query-set 0011 means that the tuple matches selection
predicates of the third and fourth queries. AStream also adopts
changelogs that is a special data structure consisting of i) query
deletion and creations meta-data and ii) a changelog-set, a bitset
encoding the associated query deletions and creations. By uti-
lizing query-sets and changelog-sets, AStream ensures consistent
query creation and deletion.

Figure 2 shows an architectural comparison between AJoin
and AStream. AJoin inherits query-sets and changelogs from AS-
tream. Also, AJoin enhances the rule-based optimizer of AStream.
Instead of encoding all queries in a query-set, AJoin arranges
queries with similar selection predicates into the same groups.
This enables AJoin to lower the cost of sharing and the query-
set payload. AJoin features a cost-based query optimizer that
performs progressive query optimization periodically at run-time.
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AStream performs data and computation sharing aggressively,
which might lead to suboptimal QEP. AJoin, however, shares data
and computation if the sharing is beneficial. Similar to AStream,
AJoin supports selection and windowed join operators. However,
the selection operator executes on a group of queries (determined
at run-time), rather than a full set of queries. Also, AJoin utilizes
an efficient and pipeline-parallelized join architecture. Different
from AStream, AJoin supports sharing of any equi-join query.
AJoin features a dynamic data processing layer that is able to
perform QEP changes at run-time. To be able to perform the run-
time changes, AJoin inherits the non-atomic consistency protocol
from AStream and provides an atomic consistency protocol.

Adaptive query processing. Progressive query optimiza-
tion, POP, uses cardinality boundaries in which a selected plan
is optimal [43]. Our optimizer uses a similar idea, cost sharing,
but we target streaming scenarios. Li et al. propose adaptive
join ordering during query execution [39]. The solution adds an
extra operator, a local predicate on the driving table to exclude
the already processed rows if the driving table is changed. We
perform join reordering without extra operators.

Gedik et al. propose an elastic scaling framework for data
streams [21]. Cardellini et al. propose a similar idea on top of
Apache Storm [16]. Both works use state migration as a separate
phase to redistribute the state among nodes. AJoin, on the
other hand, features a smooth repartitioning scheme, without
stopping the topology. Heinze et al. propose an operator place-
ment technique for elastic stream processing [28, 29]. AJoin does
not perform operator placement optimization for all streaming
operators but only for join and selection operators (e.g., grouping
queries and executing them in specific operators).

Query optimization. Trummer et al. solve join ordering
problem via a mixed integer programming model [49]. Although
this approach is acceptable in a single query environment, with ad-
hoc queries we need an optimization framework that can optimize
incrementally. Unlike dynamic programming approaches [44, 46],
current numerical optimization frameworks lack this feature. The
IK/KBZ family of algorithms can construct the optimal join plan
in polynomial time [38, 31]. The iterative dynamic programming
approach combines benefits from both dynamic programming
and greedy algorithms [37]. To perform incremental query op-
timization, we adopt ideas from this technique and enhance them
for our scenario.

3. SYSTEM OVERVIEW AND EXAMPLE
In this section, we provide a high-level overview of AJoin. Fig-

ure 3 shows the architecture of AJoin. The remote client listens
to users requests, such as query creation or deletion requests. It
batches user requests in a query batch and sends this batch to
the optimizer. Apart from query batches, the optimizer period-
ically receives statistics from the data processing layer. It period-
ically reoptimizes the QEP based on statistics and received query
batches. As part of the reoptimization, the optimizer triggers ac-
tions, such as scale up and down, scale out and in, query pipelining,
and join reordering. Similarly, the data processing layer performs
all the actions at run-time, without stopping the QEP. AJoin sup-
ports equi-joins with event-time windows and selection operators.

Data Model. There are three main data structures in AJoin:
a stream tuple, a bucket, and a changelog. Source operators of

AJoin pull stream tuples from external sources. Then, the tuples
are transformed into the internal data structure of AJoin, which
is a bucket. Below, we discuss the data structures bucket and
changelog in detail.

A bucket is the main data structure throughout the QEP. It
contains a set of index entries and stream tuples corresponding
to the index entries. Each bucket includes a bucket ID. Stream
tuples in a bucket can be indexed w.r.t. different attributes.
Buckets are read-only. All AJoin operators, except for the source
operator, receive buckets from upstream operators and output
new read-only buckets. This way, the buckets can be easily shared
between multiple concurrent stream queries.

Figure 4a shows stream tuples generated from sources V, W, C,
and R and generated buckets from the respective stream sources.
The bucket generated from the stream source V is indexed w.r.t.
V.vID attribute because the downstream join operator uses the
predicate V.vID=W.vID. However, the bucket generated from
the stream source W is indexed w.r.t. two attributes: W.vID
and W.usrID. The reason is that i) Q1 and Q2 requires indexing
w.r.t. the attribute W.vID and ii) Q3 requires indexing w.r.t. the
attribute W.usrID. Unless stated otherwise, we assume that the
join ordering of Q2 is (V1V.vID=W.vIDW) 1W.usrID=C.usrIDC.

A changelog is a special marker dispatched from the op-
timizer. It contains metadata about QEP changes, such as
horizontal or vertical scaling, query deletion, and query creation.
A changelog propagates through the QEP. Operators receiving
the changelog update their execution accordingly.

Join Operation. In modern SPEs, such as Spark [4], Flink
[15], and Storm [48], the computation distribution of a join oper-
ation is rather skewed among different stream operators: source,
join, and sink operators. For example, the source operator is
responsible for pulling stream tuples from external stream sources.
The join operator buffers stream tuples in a window, finds match-
ing tuples, and builds resulting tuples by assembling the matching
tuples. The join operator also implements all the functionalities
of a windowing operator. The sink operator pushes the resulting
tuples to external output channels. Because most of the compu-
tation is performed in the join operator, it can easily become a
bottleneck. With more concurrent n-way join queries (n≥3), the
join operator is more likely to be a limiting factor.

To overcome this issue, we perform two main optimizations.
First, we perform pipeline parallelization sharing the load
of the join operator between the source and sink operators. The
source operator combines the input data acquired in the last
t time slots and builds a bucket. With this, we transmit the
windowing operation from the join operator to the source op-
erator. Also, buckets contain indexed tuples, which are used
at the downstream join operator to perform the join efficiently.
Afterwards, the partitioner distributes buckets based on a given
partitioning function. Then, the join operator performs a set
intersection between the index entries of input buckets. Note
that for all downstream operators of the source operator, the unit
of data is a bucket instead of a stream tuple. Finally, the sink
operator performs full materialization, i.e., it converts buckets
into stream tuples, and outputs join results.

Second, we perform late materialization of intermediate
join results. After computing the matching tuples (via inter-
secting index entries), the join operator avoids performing the
cross-product among them. Figure 4b shows the join operation
for Q1. Index entries from the two input buckets are joined
( 1 ). Then, tuples with the matched indexes are retained in the

resulting bucket ( 2 ). The late materialization technique can
also be used for n-way joins. For example, Figure 4e shows the
resulting bucket of Q3. The bucket keeps indexes of matched
tuples from stream sources W, C, and R.

All join predicates in Q3 use the same join attribute (usrID).



(1,1,…)
Source W

(4,...)(4,…)
Source V
(7,…)(8,…)(8,…) (1,8,…)(3,8,…)(5,8,…)(5,4,…)(8,4,…) (1,…)(5,…)

Source C
(1,…)(8,…)(5,…) (1,…)(5,…)

Source R
(5,…)(1,…)(5,…)

[ (4,…)(4,…) ]4
[ (8,…)(8,…) ]8
[ (7,…) ]7

1 [ (1,1,…)(1,8,…) ]
3 [ (3,8,…) ]
5 [ (5,8,…)(5,4,…) ]
8 [ (8,4,…) ]

Indexed w.r.t. W.usrIDIndexed w.r.t. V.vID
1 [ (1,1,…) ]
4 [ (5,4,…)(8,4,…) ]
8 [ (1,8,…) 

Indexed w.r.t. W.vID

(3,8,…) (5,8,…) ] 
[ (1,…)(1,…) ]1
[ (5,…)(5,…) ]5
[ (8,…)8

Indexed w.r.t. C.usrID

(8,…)(8,…)

(8,…)(8,…) ]

[ (1,…) (1,…) ]1
[ (5,…)5

Indexed w.r.t. R.usrID

(5,…)(5,…) ]

(1,…)

(1,…)

(a) Tuples (after applying filter) from stream sources V, W, C, and R (top row) and constructed buckets from the
respective sources (bottom row)

[ (4,…)(4,…) ]4

[ (8,…)(8,…) ]8

Indexed w.r.t. V.vID

{4,8,7} ∩ {1,4,8} = {4,8} 1
2

[ (5,4,…)(8,4,…) ]
V
W

[ (1,8,…) (3,8,…) (5,8,…) ] 
V
W

V ⋈ W 

(b) V1V.vID=W.vIDW,
result of Q1 and inter-
mediate result for Q2
(IR1)

C

Reindex IR1 (V ⋈ W) w.r.t. W.usrID1

4
[ (5,4,…)5

[ (8,4,…) ]8

(5,8,…) ] 

[ (1,8,…) ] 

[ (3,8,…) ]

1

3

[ (4,…)(4,…) ]
8 [ (8,…)(8,…) ]

[                         ]

[              ] 

[              ] 

[              ] 

Indexed w.r.t. W.usrID

No change at 
indexing(V.vID)

2 {1,3,5,8} ∩ {1,5,8} = {1,5,8} 

3 Join with C

W
V
W
V

W
V

W
V

4

[ (5,4,…)5

[ (8,4,…) ]8

(5,8,…) ] 

[ (1,8,…) ] 1

[ (4,…)(4,…) ]
8 [ (8,…)(8,…) ][                         ]

[              ] 

[              ] 

Indexed w.r.t. W.usrID

No change at 
indexing(V.vID)

W
V

W
V

W
V

[ (1,…)(1,…) ]C

[ (5,…)(5,…) ] C

[ (8,…)(8,…)(8,…) ]

(c) Result of Q2

1 [ (1,1,…)(1,8,…) ]

5 [ (5,8,…)(5,4,…) ]

8 [ (8,4,…) ]

Indexed w.r.t. W.usr

{1,3,5,8} ∩ {1,5,8} = {1,5,8} 1

[ (1,…)(1,…) ]

[ (5,…)(5,…) ]

[ (8,…)(8,…)(8,…) ]

W
C
W
C
W
C

2 W ⋈ C

(d) W1W.usrID=C.usrIDC,
intermediate result
for Q3 (IR2)

1 [ (1,1,…)(1,8,…) ]

5 [ (5,8,…)(5,4,…) ]

Indexed w.r.t. W.usrID

[ (1,…)(1,…) ]

[ (5,…)(5,…) ]

W
C

W
C

{1,5,8} ∩ {1,5} = {1,5} 1

R

[ (5,…)(5,…)(5,…) ] R

[ (1,…) (1,…) ](1,…)

2 IR2 ⋈ R

(e) Result of Q3

Figure 4: Executing Q1, Q2, and Q3 in AJoin between time T4C and T1D. For simplicity, the attributes that are
not used by the queries are indicated as ’...’.

Changelog In Check for 
common sources

Reuse common sources 
eagerly and deploy stream 
source operators for others

Monitor 
statistics

        Check for 
join reordering

Monitor 
statistics

Vertical 
scaling 

required?

Horizontal 
scaling 

required?
2 3 41

Figure 5: Optimization process

In this case, the late materialization can be easily leveraged with
built-in indexes (Figures 4d and 4e). However, if join attributes are
different (e.g. in Q2), then repartitioning is required after the first
join. AJoin benefits from late materialization also in this scenario.
To compute Q3, AJoin computes the result of the upstream join op-
erator (Figure 4b). Then, the resulting bucket (V1V.vID=W.vIDW)

is reindexed w.r.t. W.usrID (Figure 4c, 1 ). Note that reindexing
is related to the tuples belonging to W because only these tuples
contain attribute usrID. Instead of materializing the intermediate
result fully and iterating through it (V1V.vID=W.vIDW) and rein-
dexing, AJoin avoids full materialization and only iterates over
the tuples belonging to W: (1) every tuple tp∈W is reindexed
w.r.t. W.usrID; (2) a list of its matched tuples from V is retrieved
(get list with index ID=tp.vID); (3) the pointer of the resulting
list is appended to tp. When tp is eliminated in the downstream
join operator, all its matched tuples from V are also automatically
eliminated. For example, tuples with usrID=3 in Figure 4c 1 ,
are eliminated when joining with C (Figure 4d). In this case, the
pointers are also eliminated without iterating through them.

4. OPTIMIZER
In this section, we discuss the query optimization process in

AJoin. Figure 5 shows the optimization phases of AJoin. After a
changelog ingestion, the optimizer eagerly shares the newly created
query with the running queries ( 1 ). For example, Q2 is deployed
at time T2C (Figure 1). Then, the optimizer searches common sub-
queries among running queries (Q1 in this case), without consider-
ing the selection predicate and the cost. In this case, the optimizer
deploys Q2 as (V1W)1C to reuse the existing stream sources and
the join operator. In the following phases, the optimizer performs
a cost based analysis and reoptimizes the QEP, when necessary.
If the optimizer cannot find common subqueries, it will check
for common sources to benefit from scan sharing. The optimizer
restarts the optimization process, if a new changelog has arrived.
Below, we explain each phase of the optimization separately and
describe when the optimizer decides to trigger each of them.

Query Grouping. Consider Q4 and Q5 in Figure 7a. These
queries do not share data because of their selection predicates.
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Figure 6: Cost of shared and separate join execution for
Q4 and Q5. Q.S means the stream S of the query Q.

Figure 6 shows an example scenario for performing shared (Q4
and Q5 together) and separate join (Q4 and Q5 separately).
Previous solutions, such as AStream [35], share data and compu-
tation aggressively. However, this might lead to suboptimal QEP.
For example, in Figure 6, the cost of shared query execution is
higher than executing queries separately. The reason is that both
Q4.V, Q5.V and Q4.W, Q5.W do not share enough data tuples to
benefit from shared execution. Throughout the paper, we denote
the stream source S of query Q as Q.S and stream partition pi
of query Q as Q.pi.

To avoid the drawback of aggressive sharing, we arrange queries
in groups. Queries that are likely to filter (or not filter) a given
set of stream tuples are arranged in one query group. For ex-
ample, after successful grouping, Q4 and Q5 in Figure 6 would
reside in different groups. Let t1, t2, t3, and t4 be tuples with
query-sets (100100), (101100), (100100), and (100000), re-
spectively, and Q1-Q6 be queries with selection operators. Q1 and
Q4 share 3 tuples (t1, t2, t3) out of 4. Also, Q2, Q3, Q5,
and Q6 do not share 3 tuples (t1, t3, t4) out of 4. Finding
the optimal query groups is an NP-Hard problem, as it can be
reduced to the euclidean sum-of-squares clustering problem [2].
Crd is a function that calculates the cardinality of possibly

intersecting sets. We use set union operation to calculate the
cardinality. For example, for 3 sets (A, B, C) Crd function is
shown in Equation 1. Equation 2 shows the cost function. bi1
and bi2 are boolean variables showing if indexing is required
on stream S1 and S2, respectively. AJoin performs indexing
when stream S is the leaf node of the QEP (source operator) or



when repartitioning is performed. bm is also a boolean variable
indicating if full materialization is required. AJoin performs full
materialization only at the sink operator.

Figure 7a shows our approach to calculate query groups. First,
we compare the cost of sharing stream sources between two
queries and executing them separately. If the cost of the former
is less than the latter, we put the two queries into the same query
group. Once we find query groups consisting of two queries, we
eagerly check other queries, which are not part of any group, to
include into the group. The only condition (to be accepted to
the group) is that the cost of executing the new query and the
queries inside the group in a shared manner must be less than
executing them separately (e.g., Figure 6). Query grouping is
performed periodically during the query execution. When join
reordering is triggered, it utilizes recent query groups.

|A|+|B|+|C|-|A∩B|-|B∩C|-|A∩C|+|A∩B∩C| (1)

COST(S11S2)=bi1∗Crd(S1)

Indexing S1

+bi2∗Crd(S2)

Indexing S2

+

Min(DistKeyS1,DistKeyS2)

Index set intersection

+bm∗Crd(S11S2)

Full materialization

(2)

Join Reordering. After discovering query groups, the opti-
mizer performs iterative QEP optimization. We enhance an itera-
tive dynamic programming technique [37] and adapt it to ad-hoc
stream query workloads. Our approach combines dynamic pro-
gramming with iterative heuristics. In each iteration, the optimizer
i) calculates the shared cost of subqueries and ii) selects a subplan
based on the cost. The shared cost is the cardinality of a particular
subquery divided by the number of QEPs, sharing the subquery.

Figure 7b shows an example scenario for iterative QEP opti-
mization. Assume that Q4-Q6, which are shown in Figure 7a, are
also added to the existing queries (Q1-Q3). In the first iteration,
the optimizer calculates the shared cost of 2-way joins. For exam-
ple, Q1.V1W can be shared between Q1 and Q2 because Q1 and
Q2 are in the same group (Figure 7a). Also, the cost of Q1.V1W
differs when exploiting all sharing opportunities (MaxShared)
and executing it separately (MinShared). After the first iteration,
the optimizer selects subplans with minimum costs. Then, the
optimizer substitutes the selected subqueries with T1 and T2.
If the cost is shared with other QEPs (e.g., Q1.V1W is shared
between Q1 and Q2), then the optimizer assigns the shared cost
to all other related queries.

The second iteration is similar to the first one. Note that
T11Q2.C cannot be shared with Q6 because Q6.V1W and
Q2.V1W reside in different query groups. So, the optimizer prunes
this possibility. Also, Q3.W1C is no longer shared with Q2 be-
cause in the first iteration the optimizer assigned (V1W)1C to Q2.

Computing the optimal QEP for multiple queries is an NP-Hard
problem [24, 31]. For ad-hoc queries, this is particularly challeng-
ing, since queries are created and deleted in an ad-hoc manner.
The optimizer must therefore support incremental computation.
Assume that Q4 in Figure 7 is deleted, and Q7= σsp1(W)1σsp2(C)
is created, where sp1 and sp2 are selection predicates. At compile-
time, the optimizer shares Q7 aggressively (without considering
the selection predicates) with existing queries. In this case, the
optimizer shares Q7 with Q3.W1C. After collecting statistics, the
optimizer tries to locate Q7 in one of W1C groups (e.g., Figure
7a). If including Q7 is not beneficial to any query group (shared
execution is more costly than executing queries in the group and
the added query separately), the optimizer creates a new group
for Q7. Assume that Q7 is placed in W1C.G2 (Figure 7a). In
this case, only the execution of Q4 and Q6 might be affected.
In other words, the optimizer does not need to recompute the
whole plan, but part of the QEP. Also, the optimizer does not
recompute query groups from scratch but reuses existing ones.

Resulting query groups

e.g., V⋈W.G1 ={Q1.V⋈W, Q2.V⋈W}
V⋈W.G2 ={Q4.V⋈W, Q6.V⋈W}
V⋈W.G3 ={Q5.V⋈W}

W⋈C.G1 ={Q2.W⋈C, Q3.W⋈C}
W⋈C.G2 ={Q6.W⋈C}

COST(Crd(Q1.V, Q2.V) ⋈ Crd(Q1.W, Q2.W))
COST(Crd(Q1.V, Q4.V) ⋈ Crd(Q1.W, Q4.W))
COST(Crd(Q1.V, Q6.V) ⋈ Crd(Q1.W, Q6.W))

…

…

 COST(Crd(Q1.V,Q2.V,Q4.V) ⋈

COST(Crd(Q1.V,Q2.V,Q4.V,Q5.V,Q6.V) ⋈

 COST(Q1.V ⋈ Q1.W)  + COST(Q2.V ⋈ Q2.W)
 COST(Q1.V ⋈ Q1.W)  + COST(Q4.V ⋈ Q4.W)
 COST(Q1.V ⋈ Q1.W)  + COST(Q6.V ⋈ Q6.W)

…

…
 COST(Q1.V ⋈ Q1.W)+ COST(Q2.V ⋈ Q2.W)+

 COST(Q4.V ⋈ Q4.W)

 COST(Q1.V ⋈ Q1.W) + COST(Q2.V ⋈ Q2.W)+
 COST(Q4.V ⋈ Q4.W)+ COST(Q5.V ⋈ Q5.W)+ 

COST(Q6.V ⋈ Q6.W)

e.g.,  COST(Crd(Q1.V, Q2.V) ⋈ Crd(Q1.W, Q2.W))  has minimum cost. 

<
<
>

Include Q1.V⋈W and Q2.V⋈W into the same group 

<

<

Crd(Q1.W,Q2.W,Q4.W))

Crd(Q1.W,Q2.W,Q4.W,Q5.V,Q6.V))

Shared cost Unshared cost

Q4=σ V.lang=FRE(V) ⋈ σ W.geo=CAN(W)             
Q5=σ V.lang=ENG(V) ⋈ σ W.geo=GER(W)             
Q6=σ V.geo=FRA(V) ⋈ σ W.geo!=EU(W) ⋈ σ C.photo!=null(C)
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Figure 7: Optimization example. The optimization
is performed between time T3C and T1D. Assume
that Q4-Q6 (Figure 7a) are also being executed at
the time of optimization. In the figure, Crd refers to
the cardinality function, and COST refers to the cost
function in Equation 2.

The cost of incremental computation is high and may result in
an suboptimal plan. Therefore, we use a threshold when to trigger
a full optimization. If the number of created and deleted queries
exceeds 50% of all queries in the system, the optimizer computes
a new plan (including the query groups) holistically instead of
incrementally. We have determined this threshold experimentally,
as it gives a good compromise between dynamicity and optimiza-
tion cost. Computing the threshold in a deterministic way, on
the other hand, is out of the scope of this paper. The decision
to reorder joins ( 2 in Figure 5) is triggered by the cost-based
optimizer using techniques explained above.

There are two main requirements behind our cost computation.
The first requirement is that the cost function should include the
computation semantics of our pipeline-parallelized join operator.
As we can see from Equation 2, COST consists of the cost of the



source operator (indexing S1 and S2), the cost of join operator
(index set intersection), and the cost of sink operator (full materi-
alization). The second requirement is that the cost computation
should include sharing information. We achieve this requirement
by dividing COST by the number of shared queries (Figure 7b,
MaxShared). We select this cost computation semantics because
it complies with our requirements, and it is simple.

Vertical and Horizontal Scaling. AJoin uses consistent
hashing for assigning tuples to partitions. The partitioning
function PF maps each tuple with key k to a circular hash
space of key-groups: PF(k)=(Hash(k) mod |P|), where |P| is
the number of parallel partitions. At compile-time, partitions are
distributed evenly among nodes.

The optimizer performs vertical scaling ( 3 in Figure 5), if the
latency of tuples residing in specific partitions is high, and there
are resources available on nodes, in which overloaded partitions are
located. The optimizer checks for scaling up first, because scaling
up is less costly than scaling out. Note that when scaling up, the
partitioning function and the partition range assigned to each
node remains the same. Instead, the number of threads operating
on specific partitions are increased. When new operators are
deployed, and existing operators exhibit low resource-utilization,
the optimizer decides to scale down the existing operators.

The optimizer checks for horizontal scaling ( 4 in Figure 5)
when new and potentially non-shared queries are created. Also,
the optimizer decides to scale out if CPU or memory is a bottleneck.
When the optimizer detects a latency skew, and there are no
available resources to scale up, it triggers scaling out. In this case,
the optimizer distributes the partition range, which is overloaded,
among new nodes added to the cluster. Therefore, at runtime, the
partition range might not be distributed evenly among all nodes.

5. IMPLEMENTATION DETAILS
Bucketing. Bucketing is performed in the source operator.

The source operator is the first operator in the AJoin QEP. Each
index entry inside a bucket points to a list of tuples with the
common key. If there are multiple indexes, pointers are used to
reference stream tuples. The main intuition is that buckets are
read-only; so, sharing the stream tuples between multiple concur-
rent queries (with different indexes) is safe. Each source operator
instance assigns a unique ID to the generated bucket; however,
bucket IDs are not unique between different partitions. The bucket
ID is an integer indicating the generation time of the bucket.

Join. Let Lin and Lout be lists inside a join operator storing
buckets from inner and outer stream sources, respectively. When
the join operator receives buckets, bin from the inner and bout
from the outer stream source, it i) joins all the buckets inside
Lout with bin, all the buckets inside Lin with bout, and combines
the two results in one output bucket, ii) emits the output bucket,
and iii) removes unnecessary buckets from Lin and Lout.

The join operator handles join queries with different join pred-
icates and window constraints. The operator receives query
changelogs from upstream operators and updates its query meta-
data. Figure 8 shows an example scenario for incremental ad-hoc
join query computation. At time T1 Q1 is initiated. At time T2
the join operator receives the query changelog indicating the cre-
ation of Q2. Also, first buckets from both streams are joined and
emitted. Since the joined buckets are no longer needed, they are
deleted. Q1 and Q2 have the same join predicates but different win-
dow length. Therefore, 313 is shared between Q1 and Q2, but 21
3 and 312 are associated with only Q2. Since buckets support mul-
tiple indexes, the join operator can share join queries with different
join predicates. The rest of the example follows a similar pattern.

The join operation between two buckets is performed as follows.
Firstly, queries with similar stream sources and join predicates
are grouped. We perform scan sharing for the queries in the same
group. The join operation is a set intersection of indexes, as we
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Figure 8: Ad-hoc join example. The join operation is
performed between T1C and T2D.
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Figure 9: Example partitioning of the bucket described
in Figure 4e

use a grace join [36] for streaming scenarios. AJoin supports
out-of-order stream tuples if they reside within the same bucket.

Partitioning. The partitioner is an operator that partitions
buckets among downstream operator instances. This operator
accepts and outputs buckets. Given an input bucket, the par-
titioner traverses over existing indexes of the bucket. It maps
each index entry and corresponding stream tuples to one output
bucket. In this way, the partitioner traverses only indexes instead
of all stream tuples.

The partitioning strategy of AJoin with multiple queries is
similar to one with a single query. If queries have the same join
predicate, the partitioner avoids copying data completely. That is,
each index entry and its corresponding tuples are mapped to only
one downstream operator instance. If queries possess different join
predicates, AJoin is able to avoid data copy partially. For example,
in Figure 9 the input bucket is partitioned into two downstream op-
erator instances. Note that tuples that are partitioned to the same
node w.r.t. both partitioning attributes (e.g. (1,1,. . . ),(8,4,. . . ))
are serialized and deserialized only once, without data copy.

Materialization. The sink operator performs full material-
ization. Basically, it traverses all indexes in a bucket, performs
the cross-product of tuples with the same key, constructs new
tuples, and pushes them to output channels.

Exactly-Once Semantics. AJoin guarantees exact-once se-
mantics, meaning every stream tuple is only processed once, even
under failures. AJoin inherits built-in exactly-once semantics of
Apache Flink [14]. Whether the unit of data is a stream tuple or a
bucket, under the hood the fault tolerance semantics is the same.

Optimizer. We implement the AJoin optimizer as part of the
Flink’s optimizer. Flink v1.7.2 lacks a run-time optimizer. There-
fore, the AJoin optimizer can be easily integrated into Flink’s opti-
mizer. We also integrate the AJoin optimizer with Flink’s compile-
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time optimization. The compile-time optimization process consists
of three main phases. In the first phase, AJoin performs logical
query optimization. Then, Flink’s optimizer receives the resulting
plan, applies internal optimizations, and generates the physical
QEP. Afterwards, the AJoin optimizer analyzes the resulting phys-
ical QEP. For n-way join queries, the AJoin optimizer inspects if
each node contains at least one operator instance of all join oper-
ators in the query. For example, the physical QEP of (A1B)1C
should contain at least one instance of the upstream (A1B) and
the downstream join operators ((...)1C) in each node. Also, the
optimizer checks if all join operator instances are evenly distributed
among the cluster nodes. It is acceptable if some nodes have free
(idle) task slots. The free task slots provide flexibility for scaling
up during the run-time. If there are join operators that share the
same join partitioning attribute, the optimizer schedules them in
the same task slot and notifies Flink to share the task slot between
the two join operator instances. For example, in a query like
(A1A.a=B.bB)1B.b=C.cC, the instances of the upstream join oper-
ator (A1A.a=B.bB) share the same task slot with the instances of
the downstream join operator ((...)1B.b=C.cC). The reason is to en-
sure the data locality, as the resulting stream of the upstream join
operator is already partitioned w.r.t. attribute B.b. The optimizer
performs the necessary changes in the physical QEP generated by
Flink (second phase) to perform the optimizations listed above.

6. RUN-TIME QEP CHANGES
It is widely acknowledged that streaming workloads are unpre-

dictable [8]. Supporting ad-hoc queries for streaming scenarios
leads to more dynamic workloads. Therefore, AJoin supports
several run-time operations updating the QEP on-the-fly.

Consistency Protocols. AJoin features two consistency pro-
tocols: atomic and non-atomic. The atomic protocol is a three-
phase protocol. Figure 10 shows an example scenario for this proto-
col. In the first phase, the job manager requests bID, the current
bucket ID, and ts, the current time in the task manager, from all
task managers. In the second phase, the job manager proposes the
task managers to ingest the changelog after the bucket with bID=6.
If the job manager receives ack from all task managers, it sends a
confirmation message to the task managers to ingest the changelog.
In the non-atomic protocol, on the other hand, the job manager
sends the changelog without any coordination with task managers.

Vertical Scaling. AJoin features two buffering queues be-
tween operators: a broadcast queue and a unicast queue.
Let S be a set of subscribers to a queue. In the broadcast queue,
the head element of the queue is removed if all subscribers in S

pull the element. Any subscriber si∈S can pull elements up to the
last element inside the queue. Afterwards, the subscriber thread
is put to sleep mode and awakened once a new element is pushed
into the broadcast queue. In a unicast queue, on the other hand,
the head element of the queue is removed if one subscriber pulls it.
The consequent subscriber pulls the next element in the queue.

The join operation is distributive over union (A1(B∪C)= A1B
∪ A1C). We use this feature and the two queues to scale up and
down efficiently. Each join operator subscribes to two upstream
queues: one broadcast and one unicast queue. When a new join
operator is initiated in the same worker node (scale up), it also
subscribes to the same input channels. For example, in Figure 11,
there are two queues. If we increase the number of join instances,
then both instances would get the same buckets from the broadcast
queue but different buckets from the unicast queue. As a result,
the same bucket is joined with different buckets in parallel.

We use the non-atomic protocol for the vertical scaling. Let S1
and S2 be the two joined streams(S11S2) and P={p1,p2,...,pn}
be parallel partitions in which the join operation is performed.
Vertical scaling in AJoin is performed on a partition of a stream
(i.e., a vertical scaling affects only one partition). So, we show
that the scaled partition produces correct results. Assume that
k new task managers are created at partition pi, which output
join results to p1i , p2i , ..., pki . Since p1i

⋃
p2i ,...

⋃
pki = S1.pi1S2.pi

(distributivity over union), the result of vertical scaling is correct.
Since there is no synchronization among partitions, and since
each vertically scaled partition is guaranteed to produce correct
results, vertical scaling is performed in an asynchronous manner.

Horizontal Scaling. AJoin scales horizontally in two cases:
when a new query is created (or deleted), and when an existing set
of queries needs to scale out (or scale in). We refer to the first case
as query pipelining. We assume that created or deleted queries
share a subquery with running queries. Otherwise, the scaling
is straightforward - adding new resources and starting a new job.

Query pipelining consists of three main steps. Let the existing
query topology be E and the pipelined query topology be P. In
the first step, the job manager sends a changelog to the task
managers of E. Upon receiving the changelog, the task managers
switch sink operators of E to the pause state and ack to the
job manager. In the second step, the job manager arranges the
input and output channels of the operators deployed inside the
task managers, such that the input channels of P are piped to
the output channels of E. In the third step, the job manager
resumes the paused operators. If the changelog contains deleted
queries, the deletion of the queries is performed similarly. The job
manager pauses upstream operators of deleted stream topologies.
Then, the job manager pipelines a sink operator to the paused
operators. Lastly, the job manager resumes the paused operators.

Query pipelining is performed via the non-atomic protocol.
Thus, all the partitions of the pipelined query are not guaranteed
to start (or stop) processing at the same time. However, modern
SPEs [54], [48], [15] also connect to data sources, such as Apache
Kafka [1], in an asynchronous manner. Also, when a stream query
in the modern SPEs is stopped, there is no guarantee that all
sink operators stop at the same time.

Scaling out and in can be generalized to changing the par-
titioning function and computation resources. We explain the
partitioning strategy in Section 4. Assume that AJoin scales out
by N new nodes, and each node is assigned to execute P′ partitions.
Then, the new partitioning function becomes PF′(k)=(Hash(k)
mod (|P|+|P′*N|)). Also, each new node is assigned a partition
range. The partition range is determined via further splitting the
overloaded partitions. For example, if a partition with hashed key
range [0,10] is overloaded, and one new partition is initiated in the
new node, then the hashed key ranges of the two partitions become
[0,5] and (5,10]. The similar approach applies for scaling in.
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The change of the partitioning function is completed in three
steps. Assume that the partitioning function of a join operator is
modified. There are multiple queries using the join operator with
different window configurations. In the first step, the job manager
retrieves the biggest window size, say BW. In the second step, the
job manager sends a partition-change changelog via the atomic
protocol. Once the partitioner receives this marker, it starts
double partitioning, meaning partitioned buckets contain data
both w.r.t the old and new partitioning function. The partitioner
performs double-partitioning at most BW time, then partitions
only w.r.t. the recent partitioning function. In the third step,
new task managers are launched (scale out) or stopped (scale in).

Figure 12b shows an example scenario for a partitioning function
change. First buckets from the stream A and B have single parti-
tioning info. At time T2 the partition-change changelog arrives at
the join operator. So, the tuples arriving before T2 no longer have
the new or latest partitioning schema. At time T3, the second and
first buckets are joined w.r.t. the old partitioned data. At time T4,
the third and second buckets are joined w.r.t. the new partitioned
data; however, the third and first buckets are joined w.r.t. the
old partitioned data. Starting from T4, the partitioner stops
double-partitioning and switches to the new partitioning function.

We use the atomic protocol when changing the partitioning func-
tion. Changing the partitioning function possibly affects all parti-
tions. In order to guarantee the correctness of results, there are two
main requirements: i) all partition operators must change the par-
titioning function at the same time and ii) downstream operators
must ensure the consistency between the data partitioned w.r.t.
new and old partitioning functions. To achieve the first require-
ment, we use the atomic 3-phase protocol. To achieve the second
requirement, we use a custom join strategy in which we avoid to
join old-partitioned and new-partitioned data. Instead, we perform
double-partitioning and ensure that any joined two tuples are parti-
tioned w.r.t. the same partitioning function. We apply the similar
technique, mentioned above, when query groups are changed.

Join reordering. Suppose at time T1D, the optimizer triggers
to change the QEP of Q2 from (V1VvID=W.vIDW)
1W.usrID=C.usrIDC to V1VvID=W.vID(W1W.usrID=C.usrIDC). Fi-
gure 12a shows the main idea behind reordering joins. At time T1,
the job manager pushes the changelog marker via the non-atomic
protocol. The marker passes through the partitioner at time
T2. The marker informs the partitioner to partition based on
W.usrID, instead of W.vID. At time T3, the changelog marker
arrives at the first join operator. Having received the changelog,
the join operator emits the join result, if any, and acks to the
job manager. The job manager then i) pauses the join operator
and ii) unsubscribes it from stream V. At time T4, the marker

//QEP = (S1 1 S2) 1 S3 WINDOW=[WS, WE]

//Assume are windows of S1, S2, and S3, respectively

IR1 = (S1[WS,T1] 1 S2[WS,T1]) 1 S3[WS,T2],
//REORDER S1 with S3 with their window states
//QEP = (S3 1 S2) 1 S1 WINDOW=[WS, WE]

IR2 = S3[WS,T2]1S2[T1,WE]
⋃

S3[T2,WE]1S2[WS,WE],
+

IR3 = S3[WS,T2]1S2[WS,T1],
R = IR2 1 S1[WS,WE]

⋃
IR3 1 S1[T1,WE]

⋃
IR1

= S1[WS, WE] 1 S2[WS, WE] 1 S3[WS, WE]

+ + +

Figure 13: Formal definition of join reordering. The
black, blue, and red boxes represent the windows of
S1, S2, and S3. Filled boxes mean that the respective
portion of the boxes are joined.

arrives at the second join operator. Similarly, the second join
operator emits the join result, if any. It informs the job manager
about the successful emission of results. The job manager pauses
the operator and unsubscribes it from input channels. Afterward,
the second join operator switches its state with the upstream join
operator. Finally, the job manager subscribes both join operators
to modified input channels and resumes computation.

We use the non-atomic protocol for join reordering. Join reorder-
ing is performed in all partitions, independently. Assume that S1,
S2, and S3 are streams, W denotes window length, WS and WE
are window start and end timestamps, and T1 and T2 are times-
tamps in which the changelog arrives to the first and to the second
window. Figure 13 shows the formal definition of the join reorder-
ing. When the changelog arrives at the first join operator, the
intermediate join result (IR1 in Figure 13) is computed and emit-
ted. At this point, AJoin switches the window states of S1 and S3.
Then, unjoined parts of S3 and S2 are joined (IR2 in Figure 13). Al-
though IR3 is included in IR1, IR3 is joined with S1[T1,WE] in the
final phase; therefore, the result is not a duplication. Finally, AJoin
combines all intermediate results to the final output (R in Figure
13), which is correct and does not include any duplicated data.

7. EXPERIMENTS
Experimental design. Our benchmark framework consists

of a distributed driver and four systems under test (SUT): AJoin,
AStream, Spark Streaming v2.4.4, and Apache Flink v1.7.2. The
driver maintains two queues: one for stream tuples and one
for user requests (query creation or deletion). The tuple queue



receives data from tuple generators inside the driver. The driver
generates tuples at maximum sustainable throughput [34]. A SUT
pulls records from the data queue with the highest throughput
it can process. So, the longer the tuple stays in the queue, the
higher its event-time latency. The working principle of the user
request queue is similar to the tuple queue.

If a SUT exhibits backpressure, it automatically reduces the pull
rate. Contrary to data tuples, user requests are periodically pushed
to the client module of the SUT. The SUT acks to the driver,
after receiving the user request. If the ack timeout is exceeded
or every subsequent ack duration keeps increasing, then the SUT
cannot sustain the given query throughput. Similarly, if there is
an infinite backpressure, then the SUT cannot sustain the given
workload. In these cases, the driver terminates the experiment
and tests the SUT again with a lower query and data throughput.

Metrics. Query deployment latency is the duration be-
tween a query create or delete request and the actual query create
or delete time at a SUT. Overall data throughput is the sum
of data throughputs of all running queries. Query similarity is
the similarity between the generated query and the pattern query.

Data generation. Equation 3 shows the calculation of the
query similarity. To evaluate the similarity between a query Q
(e.g. A1A.a=B.aB) and the pattern query PQ (e.g. A1A.a=B.bB),
we i) find the number of the common sources (ComS) between Q
and PQ (A and B), ii) find the number of the common sources
with common join attributes (ComSJA) between Q and PQ (only
A.a), and iii) divide the multiplication of the two (2*1) with
square of all sources (AllS) in PQ (22).

Similarity(ComS,ComSJA,AllS)=
ComS * ComSJA

(AllS)2
(3)

To generate query Q with n% similarity with PQ, we ap-
ply the following approach. Assume that n is 75% and PQ is
A1A.a=B.b1B1B.b2=C.cC.

(Step 1.) We randomly select ComS, which is between 1 and
AllS (e.g., ComS=2).

(Step 2.) Given ComS=2 and AllS=3, we calculate ComSJA
from Equation 3. If a stream is a source stream, it is partitioned
by the join attribute of the downstream join operator. If a stream
is an intermediate result, two join operators affect the sharing
possibility of this stream: the upstream join operators (how the
stream was partitioned) and the downstream join operator (how
the stream will be partitioned). Therefore, each stream can be
affected by maximum of two partitioning attributes. If ComSJA
number of join attributes cannot be used with ComS number of
sources (e.g., 1 stream source can be affected by maximum of 2 join
attributes), then we increase ComS by one and repeat this step.
(Step 3.) We select ComS number of random stream sources

from PQ, such that these stream sources are joined with each
other with a join predicate and not via cross-product (e.g., A×C
is not acceptable). Similarly, we select random ComSJA number
of join attributes from the selected sources.

Figure 14 shows a query template for join query generation. For
each stream source, we add a selection predicate. After filtering,
we join stream sources based on randomly selected join attributes.
All attributes of the data tuples can be used as a join attribute.
The window length of the generated query is either 1, 2, or 3
seconds. We perform window duration, selection predicate, and
join predicate assignment in a uniform manner.

Each data tuple features 6 attributes. Each attribute of a
tuple is generated as a random uniform variable between 0 and
ATR MAX. We set different seed value for data generation per
each stream source. We use Java Random class for uniform data
generation. Throughout our experiments, we set ATR MAX to
be 500. The data generation speed for all stream sources is equal.

SELECT *
FROM S1,S2,...,Sn WINDOW=[1|2|3|] sec
WHERE S1.[JA1] = S2.[JA2] AND S2.[JA3] = S3.[JA4] ... AND

Sn-1.[JAj−1] = Sn.[JAj] AND
S1.[SA1][=|>|<|>=|<=] [FV1] AND S2.[SA2] [=|>|<|>=|<=] [FV2]
... AND Sn.[SAn] [=|>|<|>=|<=] [FVn]

Figure 14: Query template used in our experiments.
Sn[i] means ith attribute of stream n. JAi (join at-
tribute) and SAi (selection attribute) (0 ≤ JAi,SAi<|6|)
are random variables (e.g., Sn[SAi] is SAi

th attribute of
stream Sn). FVi (filtering value) is a randomly assigned
value used to filter streams.
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Figure 15: Overall data throughput of AJoin, AStream,
Spark, and Flink with 1, 5, 20, 100, and 500 parallel
queries on 4- and 8-node cluster configurations. qp at
the legend means query parallelism.

Workload. The first workload scenario (SC1) is applicable
when a user activity is higher on specific time periods. Also,
in this workload scenario, users execute long-running queries.
The second workload scenario (SC2) is relevant for fluctuating
workloads. Modern SPEs cannot execute ad-hoc stream queries.
Therefore, there is no industrial workload for ad-hoc stream query
processing. Therefore, we use the workload used in AStream
[35], which is similar to cloud workloads [9, 3, 50, 47, 40, 30].
Nevertheless, the design of AJoin is generic and not specific to
the workloads explained above.

Setup. We conduct experiments in 4- and 8-node cluster
configurations. Each node features 16-core Intel Xeon CPU (E5620
2.40GHz) and 48 GB main memory. We configure the batch
interval of queries (in the client module) to be 1 second and ack
timeout is 15 seconds, as these configurations are the most suitable
for our workloads. The latency threshold for scaling up and out
is 5 seconds. The threshold is derived from the latency-aware
elastic scaling strategy for SPEs [27]. We measure the sustainable
performance of the SUTs [34, 33] to detect if the latency spike
is due to backpressure or unsustainable workload. If the latency
value is higher than a given threshold because the system cannot
sustain the workload, then AJoin scales up or out. Each created
query in AJoin features this threshold value. For simplicity, we
set the same threshold value for all queries. However, the overall
methodology remains the same with different threshold values for
each query. Because of the space constraints, we will include the
related experimental results in the technical report of this paper.

7.1 Scalability
Figure 15 shows the impact of scalability on the performance of

the SUTs. All the queries are submitted to the SUTs at compile-
time. The queries are 2-way joins and have 50% query similarity.
For this experiment, we remove selection predicates from input
queries to measure the performance of pure join operation. We
can observe that the performance of all SUTs increases with
more resources. Also, with more parallel queries, the overall data
throughput of AJoin increases dramatically. The reason is that
sharing opportunities increase with more parallel queries.

The throughput of AStream is significantly lower than AJoin.
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Figure 16: Buffer space used for tuples and indexes
inside a 1-second bucket

The reason is that AStream performs scan, data, and computation
sharing if the input queries have common join predicate. Queries
with different join predicates are deployed as separate stream jobs.
The computation sharing in AStream is not always beneficial
(e.g., Figure 6). Because AJoin supports cost-based optimization,
in addition to rule-based optimization, it groups queries in query
groups and shares the data and computation if the sharing is ben-
eficial. AStream supports static QEP. Each query eagerly utilizes
all available resources. Also, AStream utilizes nested-loop joins.

We execute Spark with hash join implementation with the
Catalyst optimizer [5]. With multiple queries, submitted at
compile-time, the optimizer shares common subqueries, such as
joins with the same join predicate. The sharing is possible because
there is no selection predicate. For queries with selection pred-
icates, Spark cannot share the computation and data. For joins
with different join predicates, Spark deploys a new QEP. Also,
Spark does not utilize late materialization. The hashing phase
in Spark is blocking. It uses blocking stage-oriented architecture.

AJoin performs better than AStream, Spark, and Flink even
with single query setups. The reason is the join implementation of
AJoin. AJoin uses not only data parallelism (like AStream, Spark,
and Flink) but also pipeline parallelism for the join operation.
The join operator in AStream, Spark, and Flink remains idle
and buffers input tuples until the window is triggered. AStream
and Flink perform nested-loop join after the window is triggered.
AJoin performs windowing in the source operator. While the tu-
ples are buffered, they are indexed on-the-fly. Therefore the load of
join operator is lower in AJoin, as it performs the set-intersection
operation. After the join is performed, AStream, Spark, and Flink
create many new data objects. These new objects cause extensive
heap memory usage. AJoin reuses existing objects, keeps them
un-joined (late materialization), and performs full materialization
at the sink operator. Because the data tuples are indexed, AJoin
avoids to iterate all the data elements while joining them, but
only indexes. Also, at the partitioning phase, AJoin iterates over
indexes to partition a set of tuples with the same index at once,
rather than iterating over each data tuple. Different from Flink,
AJoin performs incremental join computation. Quantifying the
impact of each component (e.g., indexing, grace join usage, late
materialization, object reuse, task-parallelism, etc) stated above,
is nontrivial because these components function as an atomic
unit. If we detach one component (e.g., indexing), then the whole
join implementation would fail to execute. However, there is a
significant improvement in throughput from 0.1 M t/s in Flink
to 2.04 M t/s in AJoin.

Figure 16 shows the space used to buffer tuples and indexes in
AJoin. With more queries, AJoin buffers more tuples and indexes.
However, AJoin shares tuples among different queries and avoids
new object creation and copy. The buffer size increases more for
indexes than for tuples. The reason is that each tuple might be
reused by different indexes. In this figure, the key space is between
0 and 500. When we increase the key space in the orders of millions,
the index buffer space also increases significantly. Although this
increase did not cause significant overhead in our setup (48GB
memory per node), with low-memory setups and with very large
key space, index usage causes significant overhead for AJoin.

AJoin AStream Spark Flink

Figure 17: The effect of the number of distinct keys
in stream sources and the selectivity of selection
operators on the performance of AJoin, AStream,
Spark, and Flink. Values on the x-axis show the
selectivity of selection operators.

Figure 17 shows the effect of distinct keys and the selectivity
of selection predicates on the performance of the SUTs. Given
that the data throughput is constant, with less distinct keys
Flink and AStream output more tuples as a result of the cross
product. This leads to an increase in data, computation, copy,
serialization, and deserialization cost. With more distinct keys
the performance of AJoin decreases, because AJoin cannot benefit
from the late materialization. At the same time, the performance
of Flink and AStream increases, because it performs fewer cross
products and data copy. As the number of distinct keys increases,
the throughput of Spark first increases then decreases slowly.
The reason is that Spark utilizes hash join. With more keys,
maintaining the hash table in memory becomes costly.

As the selectivity of the selection operator increases, the perfor-
mance of all SUTs decreases. The decrease is steep in Flink and
AStream. The reason is that the performance of the low-selective
selection operator dominates the overall throughput. When the
selectivity increases, data copy and inefficient join implementation
become the bottleneck for the whole QEP.

The effect of the selectivity on Spark is more stable than other
systems. In other words, as the selection operator filters more
tuples, the overall performance of Spark does not exhibit an
abrupt increase. Although Spark utilizes a hash join implemen-
tation, it adopts a stage-oriented mini-batch processing model.
For example, hashing and filtering are separate stages of the job,
which operate on the whole RDD. The subsequent stage cannot be
started if all the parent stages are not finished. AJoin, AStream,
and Flink, however, perform a tuple-at-a-time processing model.
Therefore, the throughput performance of these systems is mainly
dominated by the performance of filtering operators, especially
with low-selectivity selection operators. Also, Spark’s hash join
implementation includes a blocking phase (hashing). Flink and
AStream, on the other hand, perform a nested-loop join, which
performs better with less data (after the filtering phase).

7.2 Dynamicity
Latency. In this section, we create and delete queries in an

ad-hoc manner. Figure 18a shows the event-time latency of
stream tuples for SC1. Since Flink cannot sustain ad-hoc query
workloads, we show its event-time with a single query. During
our experiments, we select the selectivity of selection operators to
be approximately 0.5. Although event-time latency of Flink is
comparable with AJoin, the data throughput is significantly less
than AJoin (Figure 15). The error bars in the figure denote the
maximum and minimum latency of tuples during the experiment.
In SPEs the latency of tuples might fluctuate due to backpressure,
buffer size, garbage collection, etc. [34]. Therefore, we measure
the average latency of the tuples.

The event-time latency increases with 3-, 4-, and 5-way join
queries. The reason is that a streaming tuple traverses through
more operators in the QEP. As the query throughput increases,
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so does the gap between latency boundaries. The reason is that
AJoin performs run-time optimizations, which result in high
latencies for some tuples. However, these high latencies can be
regarded as outliers, because of much lower average latency.

The overall picture for event-time latency is similar for SC2.
The only difference is that the average latency is lower and latency
fluctuations are wider than SC1. The reason is that in SC2, the av-
erage number of running queries are less than SC1, which results in
lower average event-time latency. The query throughput is higher
in SC2, which results in more fluctuations in event-time latency.

Figure 18b shows the deployment latency for SC1 in AJoin.
The experiment is executed in a 4-node cluster. The query sim-
ilarity again is set to 50%. The query deployment latency for
1qs 20qp (create one query per second until there are 20 parallel
queries) is higher than 10qs 100qp with 2-way joins. The reason
is that query batch time is one second, meaning user requests
submitted in the last second are batched and sent to the SUT.
However, with 3- and 4-way joins, the overhead of on-the-fly QEP
changes also contributes to query deployment latency.

Breakdown. Figure 19 shows a breakdown of the overhead
by the AJoin components. We initialize AJoin with a 2-node
cluster configuration and enable it to utilize up to 25 nodes. The
overhead is based on the event-time latency of stream tuples.
In this experiment, we ingest a special tuple to the QEP every
second. Every component shown in Figure 19 logs its latency
contribution to the tuple.

Note that the overhead of source, join, and materialization
components are similar. This leads to a higher data throughput

in the QEP. As the query throughput increases, the proportional
overhead of horizontal scaling increases. The reason is that the
optimizer eagerly shares the biggest subquery of a created query
and eagerly deploys the remaining part of the query. Although the
3-phase protocol avoids stopping the QEP, it also has an impact on
the overall latency. With 3-way and 4-way joins, the cost of query
pipelining and join reordering also increase. With more join oper-
ators in a query, subquery sharing opportunities are high. So, the
optimizer frequently pipelines the part of the newly created query
to the existing query. Also, we can see that materialization is one
of the major components causing latency. The reason is that tuples
have to be fully materialized, copied, serialized, and sent to differ-
ent physical output channels. We notice that similar overhead of
source, join, and materialization leads to a higher data throughput
(e.g., the throughput of 2-way is higher than others). The reason
is that when n (n-way join) increases, new stream sources, join
operators, and sink operators are deployed. Therefore, the overall
overhead for these operators remains stable. The overhead of the
optimizer also increases as n (n-way join) gets higher and as query
throughput increases. The reason is that the sharing opportunities
increase with more queries and with 3- and more n-way joins.

Throughput. Figure 20 shows the effect of n-way joins, query
groups, and query similarity to the performance of the SUTs. We
show the performance improvement of AJoin when submitting
queries at compile-time above the dashed lines in the figure. As n
increases in n-way joins, the throughput of AJoin drops (Figure
20a). The performance drop is sharp from 2-way join to 3-way
join. The reason is that 3- and more n-way joins benefit from
the late materialization more. Also, the performance difference
between ad-hoc and compile-time query processing increases as
the query throughput and n increase.

Figure 20b shows the throughput of AStream, Spark, and Flink
with n-way join queries. Because of the efficient join implemen-
tation, Spark performs better than other SUTs with single query
execution. The performance of Flink and AStream decreases with
more join operators. In some 4- and 5-way join experiments, Flink
and AStream were stuck and remained unresponsive. The reason
is that each join operator creates new objects in memory, which
leads to intensive, CPU, network usage and garbage collection
stalls. While Spark also performs data copy, its Catalyst optimizer
efficiently utilizes on-heap and off-heap memory to reduce the
effect of data copy on the performance.

Figure 20c shows the effect of the number of query groups on the
performance of AJoin. With more query groups the throughput
of AJoin decreases. However, the decreasing speed slows down
gradually. Although there are less sharing opportunities with more
query groups, updating the QEP becomes cheaper (as a result
of incremental computation). The incremental computation also
leads to a decrease in the overhead of executing queries ad-hoc.

Figure 20d shows the effect of query similarity on the perfor-
mance of the SUTs. Both AStream and AJoin perform better
with more similar queries. However, the performance increase is
higher in AJoin. AStream lacks all the run-time optimization tech-
niques AJoin features. As a result, AStream shares queries only
with the same structure (e.g., 2-way joins can be shared only with
2-way joins) and the same join predicates. The effect of executing
queries in an ad-hoc manner decreases as the query similarity
increases. The overall picture in SC2 is similar with SC1.

Impact of each component. Figure 21 shows the impact
of AJoin’s optimization components on the performance. In
this experiment, we disable one optimization component (e.g.,
join reordering) and measure the performance drop. When the
number of join operations in a query increases, the impact of join
reordering and query pipelining also increase. Also, with more
query throughput, the optimizer shares input queries aggressively.
Therefore, the impact of the query pipelining increases with higher
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query throughput. As the number of query groups increases, the
impact of the join reordering optimization decreases because of
the drop in sharing opportunities. This also leads to the exten-
sive use of scaling out and in. When all queries are dissimilar,
the join reordering and query pipelining have zero impact on
overall execution. With more similar queries, the effect of other
components, especially the join reordering component, increases.

The overall picture is similar in SC2. The most noticeable
difference is that the impact of scaling out and in is less, and the
impact of join reordering is more. The execution time and the
query throughput in SC1 are higher than SC2. In SC2, queries
are not only created but also deleted with lower throughput. This
leads to a higher impact on join reordering.

Cost of sharing. Figure 22a shows the performance of AS-
tream and AJoin with four input streams: 5%, 25%, 50%, and
75% shared. For example, 50% shared data source means that
tuples are shared among 50% of all queries. We omit experiments
with 0% shared data source, as in this scenario all the data tuples
are filtered and no join operation is performed. We perform this
experiment with a workload suitable for AStream (i.e., all join
queries have the same join predicate and the same number of join
operators) and disable the dynamicity property (except query
grouping) of AJoin. This setup enables us to measure the cost
of sharing and query-set payload of AStream and AJoin. As
the proportion of shared data decreases, the performance gap
between AStream and AJoin increases. The reason is that AJoin
performs query grouping that leads to an improved performance
(Figure 6). The impact of the query grouping is more evident
when the proportion of shared data is small.

Impact of the latency threshold value. Figure 22b shows
the throughput of AJoin with different latency threshold values.
The latency threshold value, which is 5 seconds in our experiments,
needs to be configured carefully. When it is too low (3 seconds in
Figure 22b), we experience an overhead for frequent optimizations.
When it is too high (24 seconds in Figure 22b), there is a loss
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Figure 22: Cost of data sharing and the impact of the
latency threshold value with 3-way join queries

in optimization potential.

8. CONCLUSION
In this paper we present AJoin, an ad-hoc stream join processing

engine. We develop AJoin based on two main concepts: (1) Effi-
cient distributed join architecture: AJoin features pipeline-parallel
join architecture. This architecture utilizes late materialization,
which significantly reduces the amount of intermediate results
between subsequent join operators; (2) Dynamic query processing:
AJoin features an optimizer, which reoptimizes ad-hoc stream
queries periodically at run-time, without stopping the QEP. Also,
the data processing layer supports dynamicity, such as vertical
and horizontal scaling and join reordering;

We benchmark AJoin, AStream, Spark, and Flink. When all
the queries are submitted at compile-time, AJoin outperforms
Flink by orders of magnitude. With single query workloads,
AJoin also outperforms AStream, Spark, and Flink. With more
join operators in a query (3-, 4-, 5−way joins) the performance
gap between AJoin and the other systems even increases. With
ad-hoc stream query workloads, Flink and Spark cannot sustain
the workload, and AStream’s performance is less than AJoin’s.
In the future, we envision to further distribute concepts of AJoin
into an Internet of Things data processing system that we are
currently developing at TU Berlin
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