
Performance Analysis and Automatic Tuning of
Hash Aggregation on GPUs

Viktor Rosenfeld1 Sebastian Breß1,2 Steffen Zeuch1,2 Tilmann Rabl3,∗ Volker Markl1,2
1German Research Center for Artificial Intelligence 2Technische Universität Berlin 3Hasso Plattner Institute, University of Potsdam

ABSTRACT

Hash aggregation is an important data processing primitive which
can be significantly accelerated by modern graphics processors
(GPUs). Previous work derived heuristics for GPU-accelerated hash
aggregation from the study of a particular GPU. In this paper, we
examine the influence of different execution parameters on GPU-
accelerated hash aggregation on four NVIDIA and two AMD GPUs
based on six different microarchitectures. While we are able to
replicate some of the previous results, our main finding is that
optimal execution parameters are highly GPU-dependent. Most
importantly, execution parameters optimized for a specific GPU are
up to 21× slower on other GPUs. Given this hardware dependency,
we present an algorithm to optimize execution parameters at run-
time. On average, our algorithm converges on a result in less than
1% of the time required for a full evaluation of the search space. In
this time, it finds execution parameters that are at most 1% slower
than the optimum in 90% of our experiments. In the worst case, our
algorithm finds execution parameters that are at most 1.29× slower
than the optimum.
ACM Reference Format:

Viktor Rosenfeld, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker
Mark. 2019. Performance Analysis and Automatic Tuning of Hash Aggre-
gation on GPUs. In International Workshop on Data Management on New
Hardware (DaMoN’19), July 1, 2019, Amsterdam, Netherlands. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3329785.3329922

1 INTRODUCTION

Hash aggregation is an important data processing primitive. It
is commonly used to implement the final aggregation in OLAP
queries, to group the results of subqueries, or to eliminate dupli-
cates. The performance of parallelized hash aggregation is mainly
determined by the efficient use of processor caches [10] and by
the amount of contention caused when multiple threads access a
single hash table [3]. Both factors are directly related to the number
of groups. Consequently, multiple parallelization strategies have
been proposed that maximize cache efficiency and minimize the
effects of contention depending on the group cardinality [3, 8, 10,
19]. Furthermore, the performance of GPUs kernels is strongly in-
fluenced by the thread configuration, i.e., the number of work groups
∗Work conducted while the author was employed at Technische Universität Berlin.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DaMoN’19, July 1, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6801-8/19/07. . . $15.00
https://doi.org/10.1145/3329785.3329922

GTX 980

GTX 1080

Radeon R9

A10-7850K

Tesla K40m

Tesla V100

20
22
24
26
28
210

20 22 24 26 28 210

Work groups per CU

W
or
k
gr
ou

p
si
ze

(a) Thread configurations

16.9
1.5

7.2
2.7
3.4

20.8

Radeon R9 Fury
A10-7850K
Tesla V100

GeForce GTX 1080
GeForce GTX 980

Tesla K40m

0 5 10 15 20 25
Normalized runtime

(b) Performance penalty

Figure 1: The best thread configuration is GPU-dependent.

per compute unit (CU) and the number of work items per work group
(also called the work group size). We refer to the parallelization
strategy and the thread configuration as the execution parameters
of the hash aggregation operator.

Parallelized hash aggregation has been extensively evaluated
on multi-core CPUs [3, 10, 19]. However, to date there exists only
a single in-depth study of hash aggregation on GPUs: Karnagel
et al. [8] derived rule-based heuristics to choose optimal execution
parameters based on an analysis of a single NVIDIA Kepler GPU.

In this paper, we investigate the impact of the GPU hardware on
hash aggregation across different GPU vendors and models. To this
end, we evaluate the performance of three parallelization strategies
and the influence of different thread configurations on six GPUs
based on different microarchitectures. Specifically, we look at four
NVIDIA GPUs based on the Kepler, Maxwell, Pascal, and Volta
microarchitectures, as well as two AMD GPUs based on the 2nd
and 3rd generation Graphics Core Next (GCN) microarchitectures.
Our main finding is that the optimal execution parameters strongly
depend on the executing GPU. For example, in Figure 1a we show the
thread configuration of each GPU that yields the fastest runtime
when executing a simple sum aggregation over 224 groups. On
every GPU tested, a different thread configuration is the fastest. In
Figure 1b, we show the performance penalty when we run a thread
configuration that is optimized for a specific GPU on another GPU.
Executing a configuration optimized for another GPU is up to 21×
slower, even when both GPUs are produced by the same vendor.
In other words, our analysis shows that heuristics derived from the
study of a single GPU cannot be generalized to other GPUs.

Additionally, our analysis shows that thread configuration search
spaces are nearly convex, i.e., they have a single local minimum
if we account for runtime variation. We exploit this property to
devise an algorithm to find fast thread configurations during the
execution of the hash aggregation operator. To summarize, wemake
the following contributions:

(1) We perform an extensive experimental evaluation of hash
aggregation on six different NVIDIA and AMD GPUs. Our
analysis shows that optimal execution factors are highly

https://doi.org/10.1145/3329785.3329922
https://doi.org/10.1145/3329785.3329922

DaMoN’19, July 1, 2019, Amsterdam, Netherlands V. Rosenfeld, S. Breß, S. Zeuch, T. Rabl, and V. Markl

GPU-specific and that implementations optimized for a spe-
cific GPU are up to 21× slower on other GPUs.

(2) We devise an algorithm to choose fast GPU-specific imple-
mentations during the execution of a hash aggregation oper-
ator. Our algorithm reliably finds fast execution parameters
in a fraction of the time required for a full evaluation of the
search space.

The remainder of this paper is structured as follows. In Section 2,
we describe the implementation of a GPU-accelerated aggregation
operator. We evaluate the influence of execution parameters on
different GPUs in Section 3. In Section 4, we present an algorithm
to choose fast thread configurations dynamically at runtime. We
discuss related work in Section 5 and conclude in Section 6.

2 GPU-ACCELERATED HASH AGGREGATION

In this section, we describe the general implementation of a GPU-
accelerated hash aggregation operator and three parallelization
strategies that we examine in this paper.

2.1 Operator implementation

Our operator implementation is based on the scheme described by
Karnagel et al. [8] with a few modifications to adapt it to GPUs
by different manufacturers. We use the following SQL query as an
example to describe the implementation in detail:

SELECT g, sum((a − b)2) / count (*) FROM R GROUP BY g;

We chose this query because it contains arithmetic operations both
inside an aggregation function, i.e., sum((a − b)2), as well as outside
of the aggregation, i.e., it divides the result of sum by count.

Assumptions. We make the following assumptions. (1) The
group cardinality |д | is known so we can size a hash table in advance
and do not have to resize it during aggregation. Note that group
cardinalities for arbitrary column combinations can be estimated
with high accuracy and low overhead [4]. (2) The hash table fits into
GPU device memory. Current GPUs support up to 48 GB of device
memory [11] which allows for very large group cardinalities. (3) The
input table R is stored in main memory and does not necessarily
fit into GPU device memory. Integrated GPUs can access main
memory directly but dedicated GPUs require a data transfer of the
input over a system bus, such as PCI Express or NVLink.

Execution stages. We implement different stages of the hash
aggregation operator in three kernels. (1) The operator first allocates
sufficient memory on the GPU for the hash table and calls the
Initialize kernel. This kernel marks every hash bucket as empty
and stores an initial value for each aggregation function, e.g., zero
for sum and count. (2) The operator then processes the input in a
block-wise fashion and calls the Aggregate kernel for each block.
This kernel determines the hash bucket, performs computations
inside aggregation functions, e.g., (a − b)2 in our example, and
updates all aggregates. It also tracks the number of non-empty hash
buckets. In our implementation, we orchestrate the transfer of input
data explicitly, instead of relying on unified memory. This allows
us to measure the raw execution speed of the Aggregate kernel
which is useful if the input table already resides on the GPU. We
use a block size of 16 MB per column and overlap execution and
data transfer. (3) Once the input has been processed, the operator

allocates sufficient memory to store the final result based on the
count of non-empty hash buckets determined by the Aggregate
kernel. It then calls the Finalize kernel which iterates over the
hash table, performs the computations outside of the aggregation
functions, e.g., sum / count, and materializes the result. In order to
run the same code on AMD and NVIDIA GPUs, our kernels are
implemented in OpenCL [18].

Hash table parameters. We use multiply/shift [9] as the hash
function and linear probing as the hashing scheme. These hash
table parameters achieve the highest throughput in an aggregation
scenario, which consists only of insertions and successful lookups,
if the load factor is below 90% [16].

2.2 Parallelization strategies

The Aggregate kernel implements one of three parallelization
strategies which have been shown to yield high throughput on
GPUs [8]. The first two strategies are also commonly used on multi-
core CPUs [3, 19]. The third is specifically optimized to use fast
local memory found on GPUs [8].

Shared. In this strategy, every thread aggregates into a single,
shared hash table which is placed in global GPU memory. Con-
current updates to the same hash bucket are resolved with atomic
access primitives. For large group cardinalities and a uniform distri-
bution of group values, contention is negligible because the chance
of two threads accessing the same hash table bucket is small.

Independent. In this strategy, each thread aggregates into a
thread-private hash table, thereby eliminating contention entirely.
The private hash tables are placed in global GPU memory. Once a
block has been processed, the private tables are merged into a global
table. This strategy is feasible for very small group cardinalities.
In general, a GPU has to execute many threads, thereby creating
many hash table duplicates. However, all hash tables have to fit
into the L2 cache to minimize memory latency.

WorkGroupLocal. In this strategy, the threads of a work
group cooperatively aggregate into a hash table that is placed in fast
local memory. Concurrent accesses are resolved using atomic access
primitives. Once a block has been fully processed, the intermediate
result is merged into a table stored in global GPU memory. Note
that the local memory region is relatively small, typically between
32 and 96 kB. Therefore, we can use this strategy only for small to
medium group cardinalities.

3 EXPERIMENTAL EVALUATION

In this section, we examine how hardware differences influence the
performance of hash aggregation on GPUs. To this end, we perform
five experiments on six AMD and NVIDIA GPUs. (1) We evaluate
the influence of the parallelization strategy and (2) the thread con-
figuration on the performance of the Aggregate kernel. (3) We
evaluate the performance penalty when executing an Aggregate
kernel optimized for a specific GPU on other GPUs. (4) We analyze
the shape of the thread configuration search spaces, i.e., we test
if they have a single local minimum. (5) We analyze the degree of
runtime variation and the influence of outliers on different GPUs.

Performance Analysis and Automatic Tuning of Hash Aggregation on GPUs DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Local L2

PCIe 3.0

Local L2

PCIe 3.0

Local L2

PCIe 3.0

Local L2

NVLink 2.0

Local L2

Local L2

PCIe 3.0

GeForce GTX 1080 (Pascal) Tesla V100 (Volta) Radeon R9 Fury (GCN 3rd Gen.)

Tesla K40m (Kepler) GeForce GTX 980 (Maxwell) A10-7850K (GCN 2nd Gen.)

20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228

20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228
0.0

0.5

1.0

1.5

2.0

0

10

20

30

40

0

5

10

15

20

0

20

40

60

80

0

3

6

9

0

10

20

30

0

5

10

15

0

100

200

300

0

50

100

150

0

200

400

600

0

20

40

60

80

0

50

100

150

200

Number of groups

B
ill
io
n
tu
pl
es

pe
r
se
co
nd

G
B
/s

Parallelization strategy Shared Independent WorkGroupLocal

Figure 2: Throughput of parallelization strategies depending on group cardinality (different scales on y axis).

3.1 Experimental setup

In our evaluation, we focus on the effect of contention and cache
efficiency on hash aggregation performance. Therefore, we use
the following query with a single aggregate and no additional
computation:
SELECT g, sum(v) FROM R GROUP BY g;

We vary the group cardinality |д | by powers of two between 1 and
228. The other evaluation parameters are as follows.

Execution parameters. For each group cardinality, we execute
the three parallelization strategies described in Section 2.2. We vary
the number of work groups per compute unit in powers of two,
from 1 to 1024. Similarly, we vary the number of work items per
work group in powers of two, from 1 to the maximum work group
size, i.e., 256 on AMD GPUs and 1024 on NVIDIA GPUs. In total, we
evaluate up to 363 different combinations for each group cardinality.
Depending on the group cardinality, some combinations are not
possible because they exceed resource limitations.

GPUs. We run our experiments on the AMD A10-7850K (based
on the 2nd generation GCN microarchitecture), the Radeon R9 Fury
(GCN 3rd Gen.), the NVIDIA Tesla K40m (Kepler), the GeForce GTX
980 (Maxwell), the GeForce GTX 1080 (Pascal), and the Tesla V100
(Volta). The A10-7850K is integrated with the host CPU. The Tesla
V100 is connected over NVLink 2.0 and the others over PCIe 3.0. We
list the memory configuration and additional properties of these
GPUs in Table 2 in Appendix A.

Input data. The input consists of two 32-bit integer values in
columnar format. Each column is split into blocks of 16 MB. We
process 32 blocks, so that the total input size is 1 GB. However, our
analysis is fundamentally independent of the input size because we
execute the Aggregate kernel on individual blocks and overlap

kernel execution with data transfer. The group values are randomly
generated from a uniform distribution.

Measurement. Wemeasure the time to process a block with the
Aggregate kernel using OpenCL profiling. We treat the input of
1 GB as a single sample consisting of 32 observations and compute
the mean runtime per block. Some GPUs exhibit a high degree
of runtime variation. Therefore, to verify our measurements, we
collect three samples consisting of 32 observations each. Unless
otherwise stated, we report the results of the first sample, which
indicates that there are no differences between the samples. We
only measure the Aggregate kernel because the Initialize and
Finalize kernels are fixed costs regardless of the input size.

3.2 Parallelization strategy

In a first experiment, we evaluate how the group cardinality influ-
ences the performance of the parallelization strategies on different
GPUs. Figure 2 shows the throughput of the fastest thread configu-
ration for each of the three parallelization strategies. The subplots
have different scales on the y axis because want to emphasize the
relative differences for each individual GPU (absolute differences
between GPUs are more than an order of magnitude). We report
the number of processed input tuples per second on the left y axis
of each subplot and the derived throughput in GB/s on the right.

As long as the hash table fits into local GPU memory, Work-
GroupLocal is the fastest parallelization strategy. The only excep-
tion is the Tesla K40m, where Independent is faster thanWork-
GroupLocal for small group cardinalities. This behavior is consis-
tent with results reported by Karnagel et al. [8] who also evaluated
a Kepler GPU. On this microarchitecture, atomic operations on local
memory are implemented using a lock/update/unlock pattern that

DaMoN’19, July 1, 2019, Amsterdam, Netherlands V. Rosenfeld, S. Breß, S. Zeuch, T. Rabl, and V. Markl

L2

L2

L2

L2

L2

L2

GeForce GTX 1080 (Pascal) Tesla V100 (Volta) Radeon R9 Fury (GCN 3rd Gen.)

Tesla K40m (Kepler) GeForce GTX 980 (Maxwell) A10-7850K (GCN 2nd Gen.)

20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228

20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228 20 24 28 212 216 220 224 228
20

24

28

212

216

20

24

28

212

216

20

24

28

212

216

20

24

28

212

216

20

24

28

212

216

20

24

28

212

216

Number of groups

O
pt
im

al
nu

m
be
r
of

th
re
ad

s
pe
r
co
m
pu

te
un

it

Parallelization strategy Shared Independent WorkGroupLocal

Figure 3: Optimal number of threads depending on group cardinality.

is slow when contention is high [12]. Starting with the Maxwell
microarchitecture, atomics on local memory are implemented with
native instructions. Consequently, WorkGroupLocal is at least
1.3× faster than Independent on other GPUs. When the hash table
does not fit into local GPU memory, Shared is the fastest paral-
lelization strategy. There is a steep drop in performance once the
size of the hash table exceeds the L2 cache of the GPU. This behavior
is consistent with reported results on CPUs [10].

The plots in Figure 2 show the raw performance of the Aggre-
gate kernel without data transfers. The A10-7850K can access main
memory directly, i.e., the plot shows the actual throughput of the
hash aggregation operator. On dedicated GPUs, performance is
limited by the data transfer bandwidth, indicated by the dashed
lines in Figure 2, as long as the hash table fits into the L2 cache.
However, for larger hash tables, the raw performance of the Ag-
gregate kernel drops below the data transfer rate. For these hash
tables, performance is limited by the global GPU memory latency.

To summarize, the fastest parallelization strategies are Work-
GroupLocalwhen the hash table fits into localmemory and Shared
otherwise. The only exception are GPUs which do not support fast
atomic operations on local memory, e.g., Kepler GPUs. On these, In-
dependent aggregation is faster thanWorkGroupLocal for small
hash tables. Moreover, the hash aggregation operator is limited by
the data transfer rate when the hash table fits into the L2 cache and
by the raw performance of the Aggregate kernel otherwise.

3.3 Thread configuration

Having determined the fastest parallelization strategy for each
group cardinality, we now evaluate which thread configurations
yield the best performance on different GPUs. For our analysis,

we multiply the number of work groups per compute unit and the
number of work items per work group of the fastest thread configu-
ration to determine the optimal number of threads per compute unit.
The scatter plots in Figure 3 show the optimal number of threads
of each parallelization strategy depending on the group cardinality,
i.e., the number of threads that yields the fastest performance of
the Aggregate kernel. We plot all three measured samples which
is why in some plots there are multiple values per group cardinality
and parallelization strategy. These multiple optimal thread configu-
rations are an indication that the runtime of the Aggregate kernel
has a high variation on some GPUs. We discuss the effects of this
variation in Section 3.5 and analyze it in detail in Section 3.6.

Every GPU exhibits a distinct profile in Figure 3 but we can iden-
tify three common patterns. (1) Independent aggregation shows
a downward trend on every GPU. For this strategy, each thread
requires a private copy of the hash table, straining GPU memory
resources as the group cardinality increases. (2) ForWorkGroup-
Local aggregation, the optimal number of threads are clustered
around GPU-specific values. The GeForce GTX 980 exhibits the least
variation with 2048 threads over the entire range of groups. On the
Tesla K40m, the fastest configurations also consist of 2048 threads
but there are two outliers. The GeForce GTX 1080 and the Tesla
V100 exhibit an inverted bowl-shaped pattern clustered around
32768 and 8192 threads, respectively. Finally, the two AMD GPUs
show a downward trend clustered around 65536 and 2048 threads.
(3) Shared aggregation exhibits the most variation. A common
pattern is a change at the boundary of the L2 cache. This pattern is
most pronounced on the GeForce GTX 980, the GTX 1080, and on
the Radeon R9 Fury. Note that different thread configurations can
yield the same number of threads. For example, on the GeForce GTX
980, the fastest thread configurations consist of 2048 threads but

Performance Analysis and Automatic Tuning of Hash Aggregation on GPUs DaMoN’19, July 1, 2019, Amsterdam, Netherlands

9.6
7.5

4.0
20.8

10.5

2.5
1.8

1.3
1.2

3.4

2.1
1.8

1.2

1.1
2.7

2.4
7.2

2.4
1.6

4.6

1.5

1.2
1.3
1.4

1.2

16.9
1.2
1.8
2.8
4.2

Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100 A10-7850K Radeon R9 Fury

0 10 20 0 1 2 3 4 0 1 2 3 0.0 2.5 5.0 7.5 0.0 0.5 1.0 1.5 2.0 0 5 10 15 20

Radeon R9 Fury
A10-7850K
Tesla V100

GeForce GTX 1080
GeForce GTX 980

Tesla K40m

Normalized runtime (different scales)

(a) Input data is already placed on the GPU.

1.7
1.5
1.8

2.2
1.1

1.3
1.5

1.3
1.1

1.4

1.4
1.6

1.2

1.1
1.7

1.3
1.4

1.1
1.1

1.5

1.5

1.2
1.3
1.4

1.2

1.6
1.1
1.0

2.8
2.8

Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100 A10-7850K Radeon R9 Fury

0 1 2 3 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0 1 2 3

Radeon R9 Fury
A10-7850K
Tesla V100

GeForce GTX 1080
GeForce GTX 980

Tesla K40m

Normalized runtime (different scales)

(b) Input data has to be transferred to the GPU.

Figure 4:Maximumruntimepenalty of Aggregatekernels optimized for specificGPUs (bars) executed on otherGPUs (boxes).

the actual configurations vary between 2×1024, 4×512, and 32×64
threads, i.e., 32 work groups per compute unit and 64 work items
per work group.

To summarize, the fastest thread configuration for each paral-
lelization strategy is dependent on the group cardinality and the
executing GPU. As we show in the next section, these hardware
differences have a significant influence on performance.

3.4 Aggregate kernel performance

In this experiment, we demonstrate the importance of optimizing
the thread configuration for every individual GPU. For each GPU
and group cardinality, we determine the performance penalty when
executing the thread configurations that are optimized for one of
the other five GPUs. To compare the runtimes across group cardinal-
ities, we normalize them relative to the fastest thread configuration
for each GPU. In Figure 4a, we show the maximum performance
penalty, over all group cardinalities, when the input data is already
placed in GPU memory. The subplots in each column represent
a GPU on which we execute the Aggregate kernel. The shaded
bars in each row represent thread configurations that are optimized
for a specific GPU. On the Tesla K40m or the Radeon R9 Fury, the
performance penalty is up to an order of magnitude. Even when we
account for the data transfer, it is up to 2.8×, as show in Figure 4b.

To summarize, even when input data is not cached on the GPU,
there is a large performance penalty when we execute a thread
configuration that is optimized for another GPU.

3.5 Thread configuration search spaces

In this experiment, we evaluate the properties of thread configu-
ration search spaces when we fix the group cardinality and the
parallelization strategy. As an example, we show in Figure 5 the

performance of different thread configurations for Shared aggre-
gation with 227 groups on the Tesla V100. The heatmap appears to
be convex at first glance, but there are multiple local minima, as
indicated by the bold values. Two of these local minima, at 1×128
and 1024×4 threads, are selected as the global minimum in different
samples, as indicated by Figure 3 in Section 3.3. The local minima
are surrounded by performance plateaus, i.e., regions where we
cannot reliably determine which thread configuration is the fastest.
We define that two thread configurations are part of a performance
plateau when one of their runtimes is contained within an interval
around the other. In Figure 5, we show in italics that the two local
minima at 1×128 and 1024×4 threads are part of a single perfor-
mance plateau. The extent of performance plateaus depend on the
size of the interval we allow around each runtime. In our analysis,

1.02

1.00

1.73

1.01

1.02

1.72

1.01

1.01

1.02

1.01

1.01

1.001.02

1.02

1.02

1.03

1.02

1.02

1.02

1
2
4
8
16
32
64
128
256
512
1024

1 2 4 8 16 32 64 128 256 512 1024
Work groups per compute unit

W
or
k
gr
ou

p
si
ze

Figure 5: Normalized runtime depending on thread configu-

ration. Darker colors are slower. Bold values indicate local

minima. Italics indicate a performance plateau.

DaMoN’19, July 1, 2019, Amsterdam, Netherlands V. Rosenfeld, S. Breß, S. Zeuch, T. Rabl, and V. Markl

No outliers discarded: 81%

First block discarded: 93%

71%

91%

67%

85%

65%

89%

63%
7 blocks discarded: 52%

Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100 A10-7850K Radeon R9 Fury

0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
0%

20%

40%

60%

80%

100%

Number of discarded outliers

N
um

be
r
of

ke
rn
el
s

Figure 6: Influence of outliers at the beginning of the measurement on the degree of variation of Aggregate kernels.

we set this interval to either a single standard deviation or 10% of
the absolute value, whichever is greater, in each direction. Given
this definition, only 2% out of 1143 tested search spaces have more
than one local minimum.

To summarize, individual thread configuration search spaces are
nearly convex, i.e., they typically have a single local minimum if we
account for runtime variation.

3.6 Aggregate kernel runtime variation

As we mentioned in the previous two sections, the runtime of the
Aggregate kernel exhibits a high degree of variation on some
GPUs. It is necessary to take this variation into account when
comparing the performance of different thread configurations, as
we did in Section 3.5. Thus, in this experiment, we analyze the
degree of variation of the Aggregate kernel runtimes on different
GPUs. In the following, we first quantify the degree of variation for
each GPU and then analyze the influence of outliers.

Degree of variation. To quantify the degree of variation, we
use the coefficient of variation, i.e., the ratio of the standard devia-
tion and the mean, of each sample. This relative metric captures the
fact that the degree of variation must be understood in the context
of the measured data. The same standard deviation may indicate
a low degree of variation for slow kernels and a high degree of
variation for fast kernels. In Figure 7, we summarize the coefficient

NVIDIA GPUs

0% 2% 4% 6% 8% 10% 12%

Tesla V100
GeForce GTX 1080
GeForce GTX 980

Tesla K40m

Coefficient of variation

AMD GPUs

0% 10% 20% 30% 40% 50% 60% 70%

Radeon R9 Fury

A10-7850K

Coefficient of variation

Figure 7: Degree of variation of Aggregatekernel runtimes

(different scales on x axis for NVIDIA and AMD GPUs).

of variation for every Aggregate kernel. Note that we use a dif-
ferent scale on the x axis for NVIDIA and AMD GPUs. For clarity,
we only show the variation of the fastest thread configuration for
each parallelization strategy and group cardinality. This filtering
biases the plot towards fast Aggregate kernels but it resembles the
plot which includes all thread configurations, except for outliers.
However, it is more important to consider the degree of variation
when comparing fast Aggregate kernels, as we are interested in
finding these. Our main observation is that NVIDIA GPUs exhibit
a low degree of runtime variation, with a median coefficient of
variation below 0.7%. In contrast, the Radeon R9 Fury exhibits a
substantial degree of runtime variation. On AMDGPUs, the outliers
of the measured kernel runtimes often exhibit a higher magnitude
than the outliers we encounter on NVIDIA GPUs. In addition, the
samples collected on the Radeon have significantly more outliers
than those collected on other GPUs.

Influence of outliers. The outliers of the measured execution
runtimes are not uniformly distributed. Instead, they are typically
clustered at the beginning of each sample. This behavior is demon-
strated in Figure 6. The figure shows the number of Aggregate
kernels for which the coefficient of variation, when it is computed
over a rolling window of three blocks, drops below a threshold value
when we discard outliers in the beginning of the measurement. For
this analysis, we choose 1.05% as the threshold. This value corre-
sponds to the 99th percentile of the minimal coefficient of variation
computed over any consecutive window of three blocks for every
tested Aggregate kernel. We observe three key points. (1) For a
majority of kernels on NVIDIA GPUs and on the AMD A10-7850K,
there are no significant outliers in the beginning of our measure-
ments. Concretely, after processing the first window of three blocks,
the coefficient of variation is smaller than the threshold for at least
63% of the Aggregate kernels. (2) If necessary, discarding just
a single outlier substantially reduces the degree of variation on
NVIDIA GPUs, as indicated by the steeply rising curves. (3) On
AMD GPUs, the influence of outliers is more pronounced, as in-
dicated by the slowly rising curves. Especially on the Radeon R9
Fury, even after we discard the first seven blocks as outliers, the
coefficient of variation is smaller than the threshold for only 52%
of the Aggregate kernels.

To summarize, NVIDIA GPUs exhibit a low degree of variation,
which can be further reduced by discarding a single outlier in the
beginning of the measurement. In contrast, AMD GPUs, especially
the Radeon R9 Fury, exhibit a high degree of variation.

Performance Analysis and Automatic Tuning of Hash Aggregation on GPUs DaMoN’19, July 1, 2019, Amsterdam, Netherlands

3.7 Key insights

From our experiments we derive five key insights. (1) Independent
aggregation is not competitive on newer GPUs that implement fast
atomics on local memory. Instead, WorkGroupLocal should be
used whenever the hash table fits into local memory. (2) The fastest
thread configuration is highly GPU-specific. A thread configura-
tion optimized for a specific GPU is up to 21× slower on other
GPUs when input data is already placed in GPU memory, and up
to 2.8× slower when the input has to be transferred to the GPU.
Taken together, these two findings show that previously formulated
heuristics, which are derived from the study of a specific NVIDIA
Kepler GPU [8], are not generalizable to other GPUs. (3) We also
show that when the hash table does not fit into the L2 cache of
the GPU, the performance of the Aggregate kernel is bounded by
global GPU memory latency and not by the data transfer. (4) Our
analysis shows that thread configuration search spaces restricted to
a specific parallelization strategy and group cardinality are nearly
convex if we account for runtime variation, i.e., they typically have
a single local minimum. (5) NVIDIA GPUs generally have a lower
degree of variation than AMD GPUs.

4 DYNAMIC SELECTION OF EXECUTION

PARAMETERS

In this section, we describe our optimization algorithm to find fast
Aggregate kernels at runtime. It is based on the performance
analysis of the previous section and exploits the nearly convex
nature of the thread configuration search space. First, we provide
an overview of our algorithm and describe in detail how it handles
performance plateaus and measurement outliers. Afterwards, we
evaluate our algorithm on our six test GPUs. We conclude with a
discussion on how to integrate it with query execution in database
management systems.

4.1 Algorithm overview

Given a group cardinality and a parallelization strategy, our al-
gorithm explores the thread configuration search space to find a
fast configuration. Instead of evaluating all of the up to 121 thread
configurations, it starts from an initial thread configuration and
follows the gradient to a local minimum. During the descent, the
algorithm treats performance plateaus as a special case. If the run-
times of two configurations are similar, it explores the search space
from both thread configurations, effectively forking the path taken
through the search space. Algorithm 1 shows the pseudocode of our
algorithm. In the following, we describe its key aspects in detail.

Notation and definitions. We use ci to represent a thread con-
figuration and the notation t(ci) to express its runtime. We de-
fine the runtimes of ci and c j as similar if one of them is within
the interval determined a similarity coefficient s around the other:
t(ci) ∼s t(c j) ⇐⇒ (1 − s)t(ci) ≤ t(c j) ≤ (1 + s)t(ci).

Inputs, initial steps, and main optimization loop. The in-
puts of Algorithm 1 are an initial thread configuration c0, a similarity
coefficient s , and a pruning factor p. The similarity coefficient is used
by our algorithm to identify two runtimes as part of a performance
plateau. In contrast, the pruning factor is used to exclude parts
of the search space when exploring multiple branches from per-
formance plateaus. During execution, our algorithm maintains a

Input :An initial thread configuration c0; a similarity coefficient s ;
a prune factor p > 1.

1 t (c0) ← ProcessBlocksWith(c0)
2 cf ← c0
3 Q ← {c0 }
4 while Q , ∅ do

5 ci ← Peek(Q)
6 if t (ci) > p × t (cf) then
7 Pop(Q) ▷ Prune slow reference configurations.
8 else

9 N ← UntestedNeigborhoodOf(ci)
10 if N , ∅ then

11 c j = Pop(N) ▷ Evaluate neighbor of current . . .
12 t (ci) ← ProcessBlocksWith(c j) . . . configuration.
13 if t (ci) ∼s t (c j) then ▷ Keep record of . . .
14 Push(Q, c j) . . . performance plateaus.
15 else if t (c j) < t (ci) then ▷ Follow gradient . . .
16 ReplaceFirst(Q, c j) . . . in search space.
17 end

18 if t (c j) < t (cf) then
19 cf ← c j ▷ Update fastest configuration.
20 end

21 else

22 Pop(Q) ▷ Backtrack from local minimum.
23 end

24 end

25 end

Algorithm 1: Dynamic selection of thread configurations.

FIFO queue Q containing reference positions ci from which it ex-
plores parts of the search space. It also tracks the fastest thread
configuration cf it has encountered so far. The algorithm starts
by executing the initial thread configuration c0 on a number of
blocks to determine its runtime (line 1). It then sets c0 as the fastest
thread configuration encountered so far and initializes the reference
queue Q with c0 (lines 2–3). The algorithm then enters the main
optimization loop which continues as long as there are reference
positions in the queue (line 4). In each loop iteration, the algorithm
first compares the execution time of the reference configuration ci
at the top of the queue to the fastest known thread configuration cf .
If ci is slower than indicated by the pruning factor p, it is removed
from the queue and pruned (lines 5–7). Otherwise, the algorithm
selects a neighbor c j of the current thread configuration ci and
evaluates its runtime on a number of blocks (lines 9–12).

Handling performance plateaus. When comparing the run-
times of two thread configurations ci and c j , the algorithm dis-
tinguishes three results of the comparison to handle performance
plateaus. (1) If ci and c j have similar runtimes with regard to the
similarity range s , i.e., if they are part of a performance plateau, both
are added to the top of the queue (lines 13–14). In subsequent loop
iterations, the algorithm follows the gradient in the search space
from ci and c j independently, until one or both of the branches
are pruned. (2) Otherwise, if c j is strictly faster than ci , then ci is
replaced with c j in the queue (lines 15–16). (3) Otherwise, if c j is
strictly slower than ci , the algorithm tries out a different untested
neighbor c ′j of ci in the next loop iteration. If there are no more
neighbors of ci , the algorithm has reached a local minimum. It

DaMoN’19, July 1, 2019, Amsterdam, Netherlands V. Rosenfeld, S. Breß, S. Zeuch, T. Rabl, and V. Markl

removes ci from the queue and backtracks to a previously encoun-
tered c ′i inside a performance plateau (line 22). Note that by setting
the similarity coefficient s to 0, the algorithm ignores performance
plateaus and strictly follows the gradient in the search space.

Handling measurement outliers. When measuring the run-
time of a thread configuration, the algorithm has to satisfy two
conflicting requirements. On the one hand, we want to reduce the
influence of slow thread configurations. On the other hand, we
want to reduce the influence of any outliers in the beginning of the
measurement. To this end, the algorithm executes a thread configu-
ration on three blocks. It then determines the degree of variation
and compares it to a threshold value vmax . If the variation is be-
low the threshold, the algorithm returns the mean runtime as the
measurement. Otherwise, the algorithm discards the first measured
value and executes the thread configuration on another block. The
algorithm continues until the variation drops below the threshold
or it has processed bmax blocks. This process is encapsulated by
the function ProcessBlocksWith(ci) in Algorithm 1. Instead of
computing the coefficient of variation, as we do in Section 3.6, we
compute the range between the minimal and maximal measured
values and divide it by the mean. This approach significantly re-
duces overhead by eliminating a costly square root operation that
is part of computing the standard deviation. We set vmax = 0.019,
which corresponds to the 99th percentile of the normalized range
coefficient computed over windows of three blocks.

Initial thread configurations. The number of loop iteration
of our algorithm, and therefore its runtime, depends on the initial
thread configuration c0. Based on our analysis in Section 3, we
choose an initial configuration that minimizes algorithm runtime.
To this end, we determine the thread configurations with the lowest
normalized runtimes averaged over all GPUs and group cardinali-
ties. Specifically, we use 1×512 threads for Shared, 1×256 threads
for Independent, and 4×512 threads for WorkGroupLocal ag-
gregation. Note that AMD GPUs only support 256 work items per
work group, so we adjust the initial configurations accordingly.

Optimizing multiple parallelization strategies. To support
multiple initial thread configurations c ′0, the algorithm evaluates
and adds them to the queue of reference positions before entering
the optimization loop. This approach allows us to probe the thread
configuration search space from multiple positions and to optimize
multiple parallelization strategies simultaneously.

Support for other operators. Our algorithm can optimize any
operator that satisfies the following two requirements in addition to
a block-wise processing model. (1) The thread configuration search
space has to be (nearly) convex, since the algorithm exploits this
property to efficiently search it. (2) The algorithm must be able
to change the implementation of the operator for each processed
block without loosing the progress made by processing previous
blocks. For example, hash aggregation satisfies the second require-
ment because every parallelization strategy merges the results of
processing a block into a single, globally shared aggregation table.
This shared hash table encapsulates the global state of the aggre-
gation. Many important database operations satisfy the second
requirement, e.g., any operator that materializes its output, such as
selections and partitioned joins [2, 5, 15, 17]. Note that some opera-
tor implementations may use local state that is incompatible with
other implementations, as long as it can be discarded once the block

Table 1: Tested hyper parameters.

Parameters Description

s = 0 Ignore performance plateaus
s = 0.06, p = 1.07 Detect performance plateaus
vmax = 0.019 Variation threshold to discard outliers
bmax = 10 Max. number of blocks for measurements

is processed. For example, in our analysis, the number of private
hash table copies used by Independent and WorkGroupLocal
aggregation differs. We can also process blocks with different hash
functions, hashing schemes, and load factors.

4.2 Algorithm evaluation

To evaluate our algorithm, we examine the influence of the two
hyper parameters we introduced to manage performance plateaus,
i.e., the similarity range s and the pruning factor p.

Experimental setup. We evaluate our algorithmwith a variety
of different hyper parameters. For brevity, we report the results
of two scenarios. (1) In the strict runtime comparison scenario, the
algorithm ignores performance plateaus. This scenario serves as our
baseline. (2) In the detection of performance plateaus scenario, we
use a similarity coefficient s = 0.06 to detect performance plateaus
and a pruning factor p = 1.07 to remove slow thread configurations
during the search. Increasing these values further does not result in
an improvement of the runtime of the found thread configuration.
The other hyper parameters are listed in Table 1. To speed up the
evaluation of multiple hyper parameters, we inject the execution
runtimes measured in Section 3 into our algorithm.

Metrics. We evaluate four metrics. (1) The quality of the found
thread configuration cf is its normalized runtime relative to the
fastest thread configuration in the search space for a particular
group cardinality. (2) The cost expended for optimization is the dif-
ference between the cumulative normalized runtime until the algo-
rithm converges to a thread configuration and the number of pro-
cessed blocks. This metrics indicates how many additional blocks
the system could have processed if it had known the fastest thread
configuration a priori. (3) The algorithm overhead is the time spent
by the optimization algorithm to make its decision as a fraction of
the total processing time of a block. (4) The optimization effort is
the runtime of the algorithm until it converges to cf as a fraction
of the time required for a full evaluation of the search space. In the
following, we present the results of our evaluation according to
these metrics.

(1) Quality of found configuration. Figure 8 shows the run-
time of the found Aggregate kernel relative to the fastest con-
figuration per group cardinality. By simply following the gradient
of the thread configuration search space, the algorithm finds the
fastest configuration in 36% of our experiments, even if it ignores
performance plateaus. When treating thread configurations with
similar runtimes as performance plateaus, the algorithm finds the
fastest configuration in 62% of our experiments. In fact, in 90% of
the time, the found configuration is at most 1% slower than the
fastest. The worst-case performance of the found configuration
improves from a factor of 1.39× to 1.29×.

Performance Analysis and Automatic Tuning of Hash Aggregation on GPUs DaMoN’19, July 1, 2019, Amsterdam, Netherlands

Strict runtime comparison (s = 0) Detection of performance plateaus (s = 0.06,p = 1.07)

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40

Radeon R9 Fury
A10-7850K
Tesla V100

GeForce GTX 1080
GeForce GTX 980

Tesla K40m

Normalized runtime

Figure 8: Quality of found configuration.

Strict runtime comparison (s = 0) Detection of performance plateaus (s = 0.06,p = 1.07)

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

Radeon R9 Fury
A10-7850K
Tesla V100

GeForce GTX 1080
GeForce GTX 980

Tesla K40m

Number of blocks

Figure 9: Cost expended for optimization.

Radeon R9 Fury
A10-7850K
Tesla V100

GeForce GTX 1080
GeForce GTX 980

Tesla K40m

0% 5% 10% 15% 20% 25%
Fraction of block processing time

Figure 10: Algorithm overhead during query execution.

(2) Cost expended for optimization. Figure 9 shows how
many additional blocks the database could have processed in the
time our algorithm converges to a thread configuration, if it had
known the fastest configuration from the beginning. This cost in-
creases as the algorithm treats configurations with similar runtimes
as performance plateaus and processes additional blocks to reduce
the influence of outliers. However, this work is not wasted as the al-
gorithm still makes progress towards the result.When the algorithm
detects performance plateaus, the median cost is between 33 and
54 blocks, which in our setup corresponds to 1.06 GB and 1.73 GB of
data, respectively. The median cost on the Radeon R9 Fury, which
exhibits a high degree of runtime variation, is 172 blocks.

(3) Algorithm overhead during query execution. Figure 10
shows the amount of overhead created by the handling of perfor-
mance plateaus and the detection of outliers. The median overhead
per GPU is between 0.3% and 7.6%. The overhead is generally larger
for faster GPUs, e.g., the Tesla V100, and for faster kernels, e.g.,
WorkGroupLocal aggregation.

(4) Comparison to full evaluation. Figure 11 shows the time
our algorithm requires to converge to a fast variant as a fraction of
the time required for a full evaluation of the search space. On every
GPU, the median runtime is below 1.05% of a full evaluation. There
are a few outliers when the algorithm requires more than 20%. In
these cases, the thread configuration search space contains many

Radeon R9 Fury
A10-7850K
Tesla V100

GeForce GTX 1080
GeForce GTX 980

Tesla K40m

0% 5% 10% 15% 20% 25% 30% 35% 40%
Fraction of full evaluation of search space

Figure 11: Optimization effort compared to full evaluation.

configurations with similar runtimes which form large performance
plateaus. However, since these configurations are only marginally
slower than the fastest, they do not add significant overhead to
query execution.

4.3 Summary of key results and discussion

From our evaluation, we derive three key results. (1) By following
the gradient in the thread configuration search space, our algorithm
finds fast execution parameters for the Aggregate kernel in 36%
of our experiments. (2) Treating thread configurations with similar
runtimes as performance plateaus improves the success rate to
62%. The worst-case runtime of the found thread configuration
improves from a factor of 1.39× to 1.29× compared to the fastest.
(3) The runtime of the algorithm is highest on GPUs that exhibit a
large degree of runtime variation but is still less than 1% of a full
evaluation of the search space on average.

Our algorithm is designed to optimize execution parameters dur-
ing query execution. However, fast execution parameters depend
not only on the GPU, as we have shown in Section 3, but also on
query and data characteristics [3, 8, 19]. Performing the dynamic
selection for every query adds significant overhead, as Figure 9
indicates. Alternatively, if the query workload is known a priori,
our algorithm can determine the fastest execution workload per
query and store these values. As Figure 11 shows, our algorithm

DaMoN’19, July 1, 2019, Amsterdam, Netherlands V. Rosenfeld, S. Breß, S. Zeuch, T. Rabl, and V. Markl

greatly reduces the evaluation time compared to a full evaluation
of the search space. To support arbitrary queries, our algorithm
can determine fast execution parameters for a representable set of
benchmark queries. These queries would contain various combi-
nations of aggregation functions and execute over data sets with
different data characteristics. Based on the execution parameters
determined for these queries, we can build a model to predict the
fastest set of execution parameters for any query on a specific GPU.
Our algorithm can then fine-tune these predicted thread configura-
tions during query execution.

5 RELATEDWORK

In this section, we discuss related work that we have not yet de-
scribed. We group related work by topics.

Data processing on GPUs. As GPUs have become more preva-
lent, they have been used as query processors in dedicated database
research prototypes, e.g., GDB [6], Ocelot [7], GPUDB [20], Co-
GaDB [1], GPL [13], and Voodoo [14].

Operator tuning during query execution. Rosenfeld et al.
propose a genetic algorithm to find optimal execution parameters,
including the thread configuration, for different operators on het-
erogeneous processors [17]. They make no assumptions about the
search space, whereas we exploit its convex shape.

Micro adaptivity [15] uses a multi-armed bandit strategy to select
operator variants to adapt to changes in data characteristics. In
contrast to our work, the search space contains only a small number
of implementations that are known to perform well.

Zeuch et al. employ a cost model based on performance coun-
ters to optimize the predicate order during query execution [21].
Conversely, our algorithm makes decisions based on runtime.

Hawk [2] is a hardware-adaptive query compiler for heteroge-
neous processors. It performs a separate tuning step to optimize
operator implementations based on a representative query work-
load. In contrast to our work, Hawk performs a simple structured
experiment and makes no assumptions about the search space.

6 CONCLUSION

Hash aggregation is an important data processing primitive which
can be significantly accelerated by modern GPUs. In this paper, we
demonstrate that the optimal implementation of a GPU-accelerated
hash aggregation operator strongly depends on the executing GPU
and that findings presented in previous work are not generalizable.
To address this hardware dependency, we propose an optimization
algorithm to find GPU-adapted operator implementations.

We extensively evaluate the influence of two execution parame-
ters, the parallelization strategy and the thread configuration, on
GPU-accelerated hash aggregation. Based on a study of six AMD
and NVIDIA GPUs, our analysis yields five major findings.

(1) Heuristics derived in previous work [8] are not applicable to
newer GPUs which implement fast atomics on local memory.

(2) The optimal thread configuration is highly dependent on
the executing GPU. A thread configuration optimized for a
specific GPU is up to 21× slower than the optimum when
it is executed on another GPU if the input is already placed
in GPU memory. It is up to 2.8× slower if data has to be
transferred to the GPU.

(3) The runtime of hash aggregation is limited by raw aggre-
gation kernel performance, and not the data transfer rate,
when the hash table exceeds the L2 cache of the GPU.

(4) NVIDIA GPUs exhibit a low degree of runtime variation
whereas AMD GPUs exhibit a higher degree of variation.

(5) The thread configuration search space for a specific paral-
lelization strategy and group cardinality is nearly convex, i.e.,
it has a single local minimum when we account for runtime
variation.

Based on these findings, we propose an algorithm to find fast
operator implementations dynamically at runtime. It exploits the
convexity of the search space to reduce the search time to a fraction
of the time required for a full evaluation. By treating thread con-
figurations with similar runtimes as performance plateaus, if finds
fast implementations in 90% of our experiments. Depending on the
GPU, the worst case performance of the found implementation is
up to 1.29× slower than the optimum. Our algorithm is not limited
to hash aggregation. It can be used for any operator which allows
us to change the actual implementation during query execution
while still making progress, as long as the thread configuration
search space is convex.

A GPU PROPERTIES

In Table 2, we list the memory configuration and additional proper-
ties of the six GPUs evaluated in this paper.

ACKNOWLEDGMENTS

This work was funded by the EU project E2Data (780245), the DFG
Priority Program Scalable Data Management for Future Hardware
(MA4662-5), and the German Ministry for Education and Research
as BBDC II (01IS18025A).

Table 2: GPU properties.

AMD AMD NVIDIA NVIDIA NVIDIA NVIDIA
A10-7850K R9 Fury Tesla K40m GeForce GTX 980 GeForce GTX 1080 Tesla V100

Microarchitecture GCN 2nd Gen. GCN 3rd Gen. Kepler Maxwell Pascal Volta
Integration on die PCIe 3.0 PCIe 3.0 PCIe 3.0 PCIe 3.0 NVLink 2.0
Compute units 8 56 15 16 20 80
Global memory 1.5 GB 4 GB 11.2 GB 3.9 GB 7.9 GB 15.8 GB
Local memory 32 kB 32 kB 48 kB 96 kB 96 kB 96 kB
L2 cache 512 kB 2 MB 1.5 MB 2 MB 2 MB 6 MB

Performance Analysis and Automatic Tuning of Hash Aggregation on GPUs DaMoN’19, July 1, 2019, Amsterdam, Netherlands

REFERENCES

[1] S. Breß, H. Funke, and J. Teubner. “Robust Query Processing
in Co-Processor-accelerated Databases”. In: SIGMOD. 2016,
pp. 1891–1906.

[2] S. Breß et al. “Generating custom code for efficient query
execution on heterogeneous processors”. In: VLDBJ 27.6
(Dec. 2018), pp. 797–822.

[3] J. Cieslewicz and K. A. Ross. “Adaptive Aggregation on Chip
Multiprocessors”. In: VLDB. 2007, pp. 339–350.

[4] M. J. Freitag and T. Neumann. “Every Row Counts: Combin-
ing Sketches and Sampling for Accurate Group-By Result
Estimates”. In: CIDR. 2019.

[5] H. Funke et al. “Pipelined Query Processing in Coprocessor
Environments”. In: SIGMOD. 2018, pp. 1603–1618.

[6] B. He et al. “Relational Query Coprocessing on Graphics
Processors”. In: TODS 34.4 (2009), 21:1–21:39.

[7] M. Heimel et al. “Hardware-Oblivious Parallelism for In-
Memory Column-Stores”. In: PVLDB 6.9 (2013), pp. 709–720.

[8] T. Karnagel, R.Mueller, andG.M. Lohman. “Optimizing GPU-
accelerated Group-By and Aggregation”. In: ADMS@VLDB.
2015, pp. 13–24.

[9] D. E. Knuth. The Art of Computer Programming: Sorting and
Searching. 2nd ed. Vol. 3. 1998.

[10] I. Müller et al. “Cache-Efficient Aggregation: Hashing Is
Sorting”. In: SIGMOD. 2015, pp. 1123–1136.

[11] NVIDIA. Quadro RTX 8000 Data Sheet. https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/
quadro- product- literature/quadro- rtx- 8000- us- nvidia-
946977-r1-web.pdf (visited on: 2019/03/26). 2019.

[12] NVIDIA. Tuning CUDA Applications for Maxwell. https://
docs.nvidia.com/cuda/maxwell-tuning-guide/ (visited on:
2019/03/26). 2017.

[13] J. Paul, J. He, and B. He. “GPL: A GPU-based Pipelined Query
Processing Engine”. In: SIGMOD. 2016, pp. 1935–1950.

[14] H. Pirk et al. “Voodoo - a Vector Algebra for Portable Data-
base Performance on Modern Hardware”. In: PVLDB 9.14
(Oct. 2016), pp. 1707–1718.

[15] B. Răducanu, P. Boncz, and M. Zukowski. “Micro Adaptivity
in Vectorwise”. In: SIGMOD. 2013, pp. 1231–1242.

[16] S. Richter, V. Alvarez, and J. Dittrich. “A Seven-dimensional
Analysis of Hashing Methods and Its Implications on Query
Processing”. In: PVLDB 9.3 (Nov. 2015), pp. 96–107.

[17] V. Rosenfeld et al. “The Operator Variant Selection Problem
onHeterogeneous Hardware”. In:ADMS@VLDB. 2015, pp. 1–
12.

[18] J. E. Stone, D. Gohara, and G. Shi. “OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems”.
In: Computing in Science & Engineering 12.3 (2010), pp. 66–73.

[19] Y. Ye, K. A. Ross, and N. Vesdapunt. “Scalable Aggregation
on Multicore Processors”. In: DaMoN. 2011, pp. 1–9.

[20] Y. Yuan, R. Lee, and X. Zhang. “The Yin and Yang of Process-
ing Data Warehousing Queries on GPU Devices”. In: PVLDB
6.10 (Aug. 2013), pp. 817–828.

[21] S. Zeuch, H. Pirk, and J.-C. Freytag. “Non-invasive Progres-
sive Optimization for In-memory Databases”. In: PVLDB 9.14
(Oct. 2016), pp. 1659–1670.

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/quadro-product-literature/quadro-rtx-8000-us-nvidia-946977-r1-web.pdf
https://docs.nvidia.com/cuda/maxwell-tuning-guide/
https://docs.nvidia.com/cuda/maxwell-tuning-guide/

	Abstract
	1 Introduction
	2 GPU-accelerated hash aggregation
	2.1 Operator implementation
	2.2 Parallelization strategies

	3 Experimental evaluation
	3.1 Experimental setup
	3.2 Parallelization strategy
	3.3 Thread configuration
	3.4 Aggregate kernel performance
	3.5 Thread configuration search spaces
	3.6 Aggregate kernel runtime variation
	3.7 Key insights

	4 Dynamic selection of execution parameters
	4.1 Algorithm overview
	4.2 Algorithm evaluation
	4.3 Summary of key results and discussion

	5 Related work
	6 Conclusion
	A GPU Properties
	Acknowledgments

