
Ghostwriter: a Distributed Message Broker on RDMA and NVM
Hendrik Makait

Hasso Plattner Institute
University of Potsdam

hendrik.makait@guest.hpi.de

Bonaventura Del Monte
Observe Inc.

ventura@observeinc.com

Tilmann Rabl
Hasso Plattner Institute
University of Potsdam
tilmann.rabl@hpi.de

ABSTRACT
Modern stream processing setups heavily rely on message bro-
kers such as Apache Kafka or Apache Pulsar. These systems act as
buffers and re-readable sources for downstream systems or applica-
tions. They are typically deployed on separate servers, requiring
extra resources, and achieve persistence through disk-based storage,
limiting achievable throughput. In this paper, we present Ghost-
writer, a message broker that utilizes remote direct memory access
(RDMA) and non-volatile memory (NVM) for highly efficient mes-
sage transfer and storage. Utilizing the hardware characteristics of
RDMA and NVM, we achieve data throughput that is only limited
by the underlying hardware, while reducing computation and dis-
aggregating storage and data transfer coordination. Ghostwriter
achieves performance improvements of up to an order of magnitude
in throughput and latency over state-of-the-art solutions.

VLDBWorkshop Reference Format:
Hendrik Makait, Bonaventura Del Monte, and Tilmann Rabl. Ghostwriter:
a Distributed Message Broker on RDMA and NVM. VLDB 2024 Work-
shop: Fifteenth International Workshop on Accelerating Analytics and Data
Management Systems Using Modern Processor and Storage Architectures
(ADMS 2024).

VLDBWorkshop Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/hpides/Ghostwriter/.

1 INTRODUCTION
Over the past years, the advancements in networking and storage
hardware technology enable novel designs for distributed data sys-
tems. Researchers have shown that distributed data systems such
as databases or stream processing systems (SPSs) benefit signifi-
cantly from fast networks, such as Infiniband (IB) networks, but
they require architectural changes to achieve this goal [4, 6, 22, 28].
Remote Direct Memory Access (RDMA) enables low-latency data
access [4, 10], making data locality less relevant from the network
side. This enables disaggregated architectures that decouple compu-
tation and storage while retaining high performance [4, 7]. Further-
more, Non-Volatile-Memory (NVM) has become publicly available
and provides a fast and byte-addressable alternative to secondary
storage. Several approaches exist that introduce NVM as part of the
storage hierarchy for databases or key-value stores [2, 8, 23, 24, 27].
Overall, efficiently using NVM and RDMA requires careful design

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

that reflects their beneficial access patterns, which differ signifi-
cantly from common Ethernet networks and main-memory.

In this paper, we fully utilize RDMA and NVM in distributed
message brokers (DMBs). DMBs, such as Apache Kafka, Apache
Pulsar, and RedPanda, are used in big data tool-chains as ingestion
and storage layer for data-streams. Data producing applications,
e.g., application loggers and Internet-of-Things sensors, send event
records to a DMB, which stores them and enables other application
to consume and process them at a later stage. Among possible data
consuming applications, SPSs consume data-streams stored in DMB
to perform further data-analytics tasks in real-time [21].

To enable SPS to provide accurate and timely results, DMB must
fulfill several requirements: First, they need to provide high through-
put and low end-to-end latency to avoid a data-transfer bottleneck.
Second, DMBs must store all messages for a time period and allow
consumers to re-read them if necessary. Re-reading event records
is important for SPSs as they must cope with failures and provide
exactly-once semantics. Third, no data record must get lost to en-
able accurate results on the data path among the data-producing
application, the DMB, and the SPS.

To meet these requirements, DMBs have been designed with
TPC/IP networks and HDD/SSD storage in mind. DMBs cache data
in local storage and coordinate the access of producing and consum-
ing applications to the storage, to avoid network traffic whenever
possible. Furthermore, DMBs persist data on secondary storage,
which induces significant overhead for small messages, as they re-
sult in small disk writes. Finally, messages are commonly stored in
an append-only fashion as they arrive at the broker. This makes par-
allel data transfer more complex, if a given message ordering must
be kept. These design choices allow current DMBs to be efficient
when scaling-out to handle large volumes of data [12]. However,
their single-node efficiency is limited, as they are not designed for
modern hardware. In this paper, we re-think DMB design to fully
exploit RDMA and NVM for stream processing workloads. To this
end, we re-design the access pattern to network and storage via
RDMA and NVM, as current state-of-the-art systems do not benefit
out-of-the-box from these modern technologies. As a result, we
propose efficient RDMA-based communication patterns to write to
disaggregated NVM-based storage.

We combine the above techniques in our prototype called Ghost-
writer : a DMB that leverages modern hardware for fast and CPU-
efficient data transfer while guaranteeing message delivery and
persistence. Ghostwriter combines high bandwidth and low latency
of RDMA data transfer with the byte-addressability and off-the-
shelf persistence of NVM. Compared to current state-of-the-art
DMB, Ghostwriter improves throughput and latency by one order
of magnitude.

In summary, we contribute the following: First, we propose
Ghostwriter, a DMB that leverages RDMA and NVM to provide

https://github.com/hpides/Ghostwriter/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

fast and efficient data transfer with guaranteed message delivery
and intra-partition message ordering for parallel message transfers.
Second, we demonstrate how optimizations that exploit the sequen-
tial access patterns of DMB workloads and the byte-address-ability
of RDMA can further reduce the coordination overhead. Finally,
we evaluate Ghostwriter, showing that it significantly outperforms
existing DMBs and can scale its performance on a single partition
close to the bandwidth limit of the underlying hardware.

2 BACKGROUND
In this section, we introduce persistent memory (NVM) and re-
mote direct memory access (RDMA). Furthermore, we discuss the
combination of the two solutions.

2.1 Persistent Memory
NVM devices bridge the gap between Dynamic Random Access
Memory (DRAM) and fast secondary storage, such as Solid Storage
Disk. They combine the persistence of secondary storage with
the byte-addressable data access of DRAM and offer near-DRAM
performance. Compared to DRAM, Optane DIMMs (Dual In-line
Memory Modules) offer higher density as well as larger capacity of
up to 512 GB, and a reduced cost/GB ratio by an order of magnitude.

NVM supports two operating modes: Memory Mode and App
Direct Mode. In Memory Mode, NVM increases the volatile memory
capacity at the expense of persistence. To hide NVM’s access latency,
it is combined with DRAM as a hardware-controlled, transparent
direct-mapped cache. In App Direct Mode, applications and the OS
explicitly choose between DRAM and NVM as separate memory
devices. NVM can be accessed as a raw character device (devdax), or
a block device (fsdax) that supports NVM-enabled file systems. Both
devices are mapped into the virtual address space of the application
process to allow byte-addressable access using mmap. Furthermore,
both modes enable interleaved or non-interleaved storage layouts.
Non-interleaved NVM may lead to poor utilization of DIMMs, if
data accesses are not explicitly spread [27]. Interleaved NVM enable
large sequential data accesses to occur on multiple NVM DIMMs.
They can be parallelized, which improves the hardware utilization
and achieves a higher combined throughput.

In Ghostwriter, we use NVM as a devdax character device in
App Direct Mode for direct control over persistence. Furthermore,
we opt for interleaved NVM for improved parallelism of sequential
data accesses.

2.2 Remote Direct Memory Access
Modern high-performance network technologies, such as Infini-
Band, provide RDMA, which enables applications to directly access
memory on a remote machine without the involvement of the op-
erating system on either machine.

The RDMA verbs API supports two different modes of data
transfer: channel and memory semantics. Channel semantics or
two-sided verbs enable traditional message-passing using SEND and
RECV verbs that function similar to socket-based communication.
While channel semantics avoid the overhead of TCP/IP-based com-
munication, they involve the remote CPU. Memory semantics or
one-sided verbs, e.g., READ and WRITE, allow an application to ac-
cess remote memory without involving the remote CPU. To expose

memory for remote access, the application must first register the
memory locations as a memory region (MR).

2.3 Combining NVM and RDMA
By combining RDMA with NVM, applications benefit from the
increased capacity of NVM as well as its persistence. To persist
remotely written data, it must be flushed from the RNIC and PCIe
caches into the DRAM domain. Due to the lack of a dedicated
persistence mechanism for RDMA, applications have two different
options depending on whether the remote machine offers direct
cache access (DCA). If DCA is enabled, the RNIC bypasses memory
and writes data directly to the CPU cache. Therefore, the remote
host must explicitly flush the data from the caches to NVM. Since
this requires active involvement of the remote CPU, this diminishes
the benefits of using one-sided RDMA verbs for data transfer. If
DCA is not available or disabled, the RNIC writes directly to NVM.
Thus, the application can force persistence by performing an RDMA
READ after one or several WRITES. The subsequent READ flushes
all prior WRITES from the remote host’s NIC and PCIe caches onto
NVM. While this avoids involvement of the remote CPU, previous
research has shown that the added latency reduces the performance
benefit of one-sided verbs compared to DRAM.

3 GHOSTWRITER
In this section, we give an overview of the system design and
architecture of Ghostwriter.

3.1 System Design and Architecture Overview
Ghostwriter is a DMB designed for NVM persistent storage and
RDMA acceleration. We follow the following design principles to
build Ghostwriter.
1) Decoupled architecture. Ghostwriter decouples the broker node
from storage nodes. As a result, Ghostwriter performsCPU-intensive
tasks on the broker or the producers/consumers clients to minimize
the CPU overhead for storage nodes.
2) Hardware Acceleration.Ghostwriter focuses on efficient hardware
utilization through RDMA-based data transfer and low-overhead
persistence enabled by NVM.
3) Delivery guarantees. Ghostwriter provides intra-partition mes-
sage ordering and persistence guarantees. It also allows the user to
trade them for increased performance.

Figure 1 gives an overview of its components. In general, our
architecture consists of four independent components:
1 Storage nodes provide one large region of NVM, that is split into
individual segments. These segments are used to store the data and
can be accessed remotely.
2 Broker nodes focus on allocating segments from the storage
nodes and coordinating access to them.
3 Producers publish data by sending metadata to the broker, which
provides them with a remote location in which to store the data.
The data can then be directly persisted in NVM using one-sided
RDMA verbs.
4 Consumers consume data written to storage by requesting its
remote location from the broker and using a one-sided RDMA read
to efficiently retrieve it.

2

Storage
...

N
V

M

1
Broker
TopX-PartY

2

Producer
3

Consumer
4

one-sided verbs

two-sided verbs

metadata transfer

payload transfer

Figure 1: Ghostwriter’s Architecture.

...Commit Log

Storage Node #1

N
V

M

Storage Node #2

N
V

M

Storage Node #M

N
V

M...

Data Region

Figure 2: The commit log generated by each partition is split
into segments that are stored across the data region.

Our architecture separates the responsibility for storage and
computation by introducing dedicated storage nodes and leaving
the broker node to handle the access and coordination for partitions.

4 COMPONENTS OF GHOSTWRITER
In this section, we present Ghostwriter’s components that allow for
data access: its storage nodes, brokers, producers, and consumers.

4.1 Storage Nodes
Ghostwriter stores each data partition as append-only log of mes-
sages, to enable sequential access and persist the messages.

To exploit the capabilities of modern IB networks and NVM as
well as to leverage the workload characteristics of DMBs, Ghost-
writer decouples computation from storage by using a segment-
based design. Through segment-based storage, storage nodes pro-
vide one large data region in which fixed-size chunks are allocated
by a broker to store produced messages. We illustrate this approach
in Figure 2.

Ghostwriter distributes and replicates segments across storage
nodes, using high-bandwidth and low-latency RDMA-capable net-
works. Furthermore, Ghostwriter uses NVM as persistent data stor-
age. To scale the system, users may add additional storage nodes,
which increases the number of free physical storage segments avail-
able for allocation. Storing data in distributed segments mitigates
the problems created by imbalanced partitions.

To make the log independent from the actual storage locations
of the individual segments, we differentiate between logical seg-
ments and their physical segments. A logical segment represents a
virtual section of the log, in which messages are stored and can be

addressed using their logical offset. Each logical segment contains
one or several physical segments, which correspond to physical
segments allocated on the storage nodes.

Storage nodes directly expose the persistent storage for remote
access as a memory region. As previous research has pointed out,
dynamically adjusting the size of the exposed memory region is
an expensive operation [4, 26]. Therefore, storage nodes do not
allocate additional segments on-demand, but they rely on a pool
of pre-allocated segments. Ghostwriter’s nodes perform remote,
durable writes to this persistent storage using RDMA.

Performing data transfer using one-sided RDMA verbs directly
to the exposed NVM does not engage the CPUs of storage nodes.
Thus, our storage nodes perform negligible work, resulting in the
separation of computation and storage. The primary tasks of the
storage nodes are to track the usage of their memory segments,
allocate new segments for brokers, and perform garbage collection.

As our storage nodes do not perform computation-intensive
work, we can co-locate them with other compute-heavy applica-
tions, such as the task executors of an SPE. By co-locating storage
segments with the task executors that consume the stored data,
we avoid additional network traffic for transferring the data to the
worker. Overall, our approach benefits from the increased through-
put and reduced latency of local memory access.

4.2 Broker
A broker in Ghostwriter handles all partition access requests issued
by producers and consumers. To this end, a broker allocates new
storage segments from storage nodes to which producers publish
their data, keeps track of existing segments as well as messages,
and coordinates requests by producers and consumers.

4.2.1 Stateless Design. Brokers in Ghostwriter are stateless as
Ghostwriter’s storage segments are designed to include all metadata
related to the state of the messages and segments, but the broker is
responsible for updating this state and keeping it consistent. Bro-
kers only need to coordinate the publish and consume requests by
producers and consumers. As a result, partition metadata handling
can be performed by any broker. Furthermore, recovering a broker
after failure or rebalancing the assigned partitions between brokers
requires to retrieve state from the segment metadata.

4.2.2 Metadata Storage. Even though the broker is stateless and
all data is persisted on the storage nodes, the broker caches the
metadata of the individual segments belonging to its assigned parti-
tions. Maintaining this information serves two purposes: First, the
broker needs to track its segments to be able to provide producers
and consumers with the storage locations they request. Second, by
caching all metadata on the segments locally, the broker avoids
unnecessary remote data lookups and the associated overhead and
latency when handling incoming requests [29].

To track the location of individual messages in the distributed
storage segments, the broker maintains an index for each partition.
Figure 3 illustrates the index structure, which is inspired by Apache
Kafka. This index structure consists of a list of metadata structures
for the individual logical segments belonging to the partition. The
list is sorted by the start offset of each segment, reconstructing the
order in which the segments were written. New segments may be

3

Log. Segment #1
Start Offset: 00000000000

⋮
Log. Segment #2

Start Offset: 01073217536
Physical Segments: [, … ,]

⋮

⋮

Log. Segment #N
Start Offset: 61173399552

⋮

Storage Node #M

N
V

M...
...

...

Storage Node #1

N
V

M...
...

⋮

Figure 3: The segment index allows quick lookup of logical
segments from logical offsets and maps them to their physi-
cal locations.

added to the list by appending them. Therefore, to find the logical
segment in which a given logical offset is stored, the broker can
use binary search to identify the segment with the largest start
offset less than or equal to the given logical offset. The metadata
stored for each logical segment consists of the data contained in the
segment header as well as the metadata of all physical segments
that are used to store the segment’s data. The metadata stored for
the physical segments in turn contain the storage node on which
the physical segment is stored as well as its offset in the memory
region of the storage node.

4.3 Producer and Consumer
In this section, we provide a description of the producer and con-
sumer in Ghostwriter. The producer is the component used by a
data-generating service to publish its messages to the DMB and
make them accessible for consumers. In Ghostwriter, a message
contains flat data structures, i.e., no pointer is stored. The consumer
component enables data consuming applications such as SPEs to
consume messages from Ghostwriter.

To keep the broker stateless, Ghostwriter uses pull-based con-
sumers as inspired by Apache Kafka [13]. Compared to a traditional
publish/subscribe model, pull-based consumers remove the over-
head and state management for tracking consumers from the broker.
This allows the developer to dynamically add and remove con-
sumers without the involvement of the broker. As a consequence,
the consumer needs to keep the state itself to ensure that it reads all
messages in a partition. As consuming application reads partitions
sequentially, the consumer tracks its current offset in the partition
to ensure that it consumes all messages. It then uses this offset to
retrieve the next message. By using purely NVM-based storage,
data are not moved and thus locations do not change.

Ghostwriter provides two different protocols for the producer,
each consisting of a staging, a storing, and a commit stage. In the
staging stage, the producers acquire storing locations for messages.
In the storing stage, messages are written to the location, and in
the commit stage, the metadata is updated to indicate successful
transmission. The exclusive protocol assumes exclusive access to
the storage location and thus does not have to synchronize with
other producers. An optimized version caches staging information

and thus can skip the first stage on subsequent messages. The con-
current protocol maintains offsets between different producers and
synchronizes access using atomic compare and swap operations. As
an optimization, similar to the exclusive protocol, multiple mes-
sages can be written to the same offset as long as space permits.

5 EVALUATION
In this section, we evaluate Ghostwriter’s performance through a se-
ries of microbenchmarks. In our experiments, we use the following
hardware and software configurations:

Hardware Configuration.We run our experiments on a cluster
with two types of nodes: PMEM nodes are equipped with two 18-
core (36 threads), 2.60 Ghz Intel Xeon Gold 6240L CPUs, 192 GiB
of DRAM, and 3072 GiB of PMEM via twelve 256 GiB Intel Optane
Persistent Memory DIMMs. Compute nodes are equipped with two
64-core (128 threads), 2.25 Ghz AMD EPYC 7742 CPUs, and 512
GiB RAM. All nodes are connected via a Mellanox ConnectX-6 NIC
running in HDR100 mode (100 Gbit/s) on PMEM nodes and in HDR
(200 Gbit/s) mode on compute nodes.

Software Configuration. In our evaluation, we use Ghostwriter
and Apache Kafka 2.5.0 as Systems under Test (SUTs). We imple-
ment our prototype of Ghostwriter in C++ compiled with GCC
9.4 on Ubuntu 20.04 and uses UCX for networking. The code is
open-source and available on Github1.

5.1 System Configuration
To evaluate the efficiency of the system designs, each experiment
runs a single producer and a single consumer on an individual
Compute node each. For Ghostwriter, we run a single storage node
on a PMEM node and a single broker on a Compute node. For
Apache Kafka, we run a single broker node on a PMEM node storing
its data on a PMEM fsdax device for persistent storage.We configure
Apache Kafka to use IPoIB for networking. We use a single topic
and a single partition. To evaluate the impact of different message
sizes, we disable the batching of multiple records through the SUT.

5.2 Microbenchmarks
In these experiments, we compare the performance of Apache Kafka
and Ghostwriter through various micro-benchmarks. To this end,
we first evaluate the throughput and latency that can be achieved
using our hardware to establish an upper bound. Next, we evaluate
throughput and latency of producers and consumers of Ghostwriter
and Apache Kafka. Unless stated otherwise, each experiment mea-
sures the performance of the SUT on a total of 80 GB of data. To
establish connections before the experiment and warm up caches as
well as the JVM, we precede the measurement phase by a warmup
phase, in which we transfer an additional 10% (or 8 GB) of data. We
split the total amount of data into fixed-size messages, where the
size may vary between runs depending on the experiment.

5.2.1 Baseline RDMA performance. In the first experiment, we
discuss the data transfer performance of UCX - the underlying
framework we use to build Ghostwriter - to establish a limit for the
performance Ghostwriter can achieve. We use the ucx_perftest
to measure the throughput, message rate and latency of performing

1https://github.com/hpides/ghostwriter

4

https://github.com/hpides/ghostwriter

several communication routines offered by the UCP API, namely
PUT (RDMA WRITE), GET (RDMA READ) as well as STREAM-
based SEND/RECV. The experiments are performed using a single
thread on the sender and receiver which synchronously executed
the routines.To collect the measurements, we execute each routine
1M times with a preceding warmup of 10K executions for messages
with sizes from 21 B to 223 B. We show the results in Figure 4.

In Figure 4a and Figure 4b, we study the throughput and message
rate of the different routines. Moreover Figure 4c shows the latency
of the routines. All transfer strategies show similar shapes and
scale almost linearly in throughput until they start to saturate the
underlying bandwidth limit. The latency increases slowly before
reaching the size of the maximum transport unit of IB at 8 KiB
as it does not fully utilize a single network packet and therefore
experiences large overhead. With larger message sizes the latency
increases linearly for PUT and GET. For message sizes of at most
32 KiB, we reach latencies below 10 𝜇𝑠 for all operations, as well as
latencies below 100 𝜇𝑠 for messages of at most 1 MiB for PUT and
GET. Contrary to our expectations, the performance of STREAM
degrades for messages of at least 1 MiB, showing a decrease in
throughput and a super-linear increase in latency. Since we only use
two-sided verbs for small metadata transfers, we do not investigate
this issue further. Moreover, with 2 𝜇𝑠 , the latency of GET is double
the latency of the other routines (1 𝜇𝑠) for small message sizes.
This is explained by the fact that READ operations perform a full
network round trip, first sending the request to the remote node
then receiving the data into the local buffer, whereas the other
operations only perform a half round trip, moving data from the
local to the remote node. As the message size grows, the time to
transfer the data dominates the round trip time.

In summary, UCX can saturate the bandwidth limit of the under-
lying IB network with synchronous communication using a single
thread for sufficiently large messages. These findings are in line
with previous research [16, 19].

5.2.2 Baseline NVM performance. We refer to the work of Benson
et al. [3] for the NVM performance, as their experiments are con-
ducted on the same hardware as we ran out microbenchmarks. In
particular, our testbed resembles their Apache-128 server, which
achieves up to 13 GB/s throughput for persistent writes and up to
40 GB/s throughput for persistent reads [3].

5.3 System Evaluation
In this section, we investigate the performance Ghostwriter can
achieve. We execute the experiment for Apache Kafka and four
protocol variants of Ghostwriter: the naïve implementation of the
exclusive protocol (Excl.), its optimized version that caches segment
metadata to avoid staging (Excl. Opt.) as well as the naïve implemen-
tation of the concurrent protocol (Conc.) and its optimized version
staging ten messages at once (Conc. Opt.). To provide a upper limit
for the performance, we include the results for the one-sided RDMA
operations obtained in the previous Section. (PUT/GET). In the re-
mainder of this Section, we first discuss the results for Ghostwriter
and Kafka producers followed by the results for their consumers.

5.3.1 Producer Performance. In Figure 5a and 5b, we see that Ghost-
writer outperforms Apache Kafka by least one order of magnitude

depending on the transferred message size. While Kafka is not able
to utilize the bandwidth offered by the IB network, Ghostwriter
achieves a maximum throughput of around 10 GB/s with both vari-
ants of the exclusive protocol. The exclusive protocol scales with
the increasing message sizes until 1 MiB, where it reaches almost
10 GB/s in throughput. At that point, the measured throughput
becomes unstable as shown by the increasing standard deviation
(illustrated as the shaded area) and the average drops. When com-
paring the naïve and the optimized implementation of the exclusive
protocol, we see that the optimized version has a higher throughput
for all message sizes up to 1 MiB. This is explained by the reduced
control flow of the optimized variant. As we can see in Figure 5b,
this effect diminishes with increasing message sizes, as the ratio
between time spent on control and data flow shrinks. Comparing
the performance against the upper limit provided by UCP’s PUT
operation, we see that even the optimized version of the exclusive
protocol incurs significant overhead regardless of message sizes
and is only able to reach 90% of the throughput enabled by UCP
for large messages around 1 MiB. This is explained by the syn-
chronous implementation of our protocol, in which the individual
steps are not interleaved or parallelized and thus no data trans-
fer is performed during the stage and commit steps. This effect
is particularly large for small message sizes, where the overhead
represents a larger percentage of the overall time spent publishing
a message. When focusing on the concurrent protocol, we see that
its variants approach a limit of 7.2 GB/s, which is 40% below the
available bandwidth limit.

In summary, the maximum available throughput of Ghostwriter
outperforms Apache Kafka by at least an order of magnitude. How-
ever, neither the exclusive nor the concurrent protocol show ex-
pected behavior for large message sizes with the former becoming
unstable or the latter approaching an implicit lower limit.

5.3.2 Consumer Performance. Analogous to the maximum avail-
able throughput achieved by a single producer for the different
variations of the publishing protocol, we analyze the throughput
achieved by a single consumer for the consuming protocol variants.
Figures 5c and 5d shows the experiment results for the different
message sizes. Overall, we see both Ghostwriter as well as Apache
Kafka scale with increasing message sizes. Apache Kafka is not able
to utilize the provided bandwidth, yet it reaches a throughput of
2 GB/s, which is an order of magnitude higher than its maximum
publishing throughput. For Ghostwriter, all protocol versions scale
with the increasing message sizes, reaching a throughput of more
than 11 GB/s. Comparing the exclusive and the concurrent protocol,
the optimized concurrent protocol reaches the same performance
for small message sizes as the naïve implementation of the exclusive
protocol. This can be partially explained with the reduced control
flow of the optimized concurrent protocol being offset by the in-
creased data flow. Yet, we would expect both of these effects to
diminish over time, resulting in all variants approaching the limit
of the underlying network’s bandwidth. While the naïve and the
optimized version of both protocols converge to the same limit,
the exclusive protocol reaches a higher limit than the concurrent
one. This is partially explained by the slightly increased amount of
data retrieved by the concurrent protocol, but may also be affected
by other hardware-specific access characteristics. Given the small

5

2B 32B 512B 8KiB 128KiB 2MiB
Message Size

100

101

102

103

104

Th
ro

ug
hp

ut
 (M

B/
s)

GET
PUT
STREAM
IB Bandwidth

(a) Throughput (MB/s)

2B 32B 512B 8KiB 128KiB 2MiB
Message Size

103

104

105

106

M
es

sa
ge

 R
at

e
(m

es
sa

ge
s/

s)

GET
PUT
STREAM

(b) Message Rate (messages/s)

2B 32B 512B 8KiB 128KiB 2MiB
Message Size

100

101

102

103

La
te

nc
y

(
s)

GET
PUT
STREAM

(c) Latency (𝜇𝑠)

Figure 4: Performance of UCX communication routines.

8KiB 32KiB 128KiB 512KiB 2MiB 8MiB
Message Size

0

2500

5000

7500

10000

Th
ro

ug
hp

ut
 (M

B/
s)

Kafka
Excl.
Excl. Opt.
Conc.
Conc. Opt.
PUT

(a) Throughput

8KiB 32KiB 128KiB 512KiB 2MiB 8MiB
Message Size

0

20000

40000

60000

80000

100000

M
es

sa
ge

 R
at

e
(m

es
sa

ge
s/

s)

Kafka
Excl.
Excl. Opt.
Conc.
Conc. Opt.
PUT

(b) Message Rate

8KiB 32KiB 128KiB 512KiB 2MiB 8MiB
Message Size

0

2500

5000

7500

10000

Th
ro

ug
hp

ut
 (M

B/
s)

Kafka
Excl.
Excl. Opt.
Conc.
Conc. Opt.
GET

(c) Throughput

8KiB 32KiB 128KiB 512KiB 2MiB 8MiB
Message Size

0

50000

100000

150000

200000

250000

M
es

sa
ge

 R
at

e
(m

es
sa

ge
s/

s)

Kafka
Excl.
Excl. Opt.
Conc.
Conc. Opt.
GET

(d) Message Rate

Figure 5: Maximum producing and consuming throughput of Ghostwriter and Apache Kafka.

difference, we leave a further investigation to future work. Finally,
we see that the optimized version of the exclusive protocol achieves
the same performance as UCX’s GET for all message sizes of at least
16 KiB, thus successfully eliminating the coordination overhead.

5.3.3 Discussion. In this section, we have provided a detailed eval-
uation of Ghostwriter against Apache Kafka as a state-of-the-art
message broker. The evaluation showed that Ghostwriter scales
with increasing message sizes and outperforms Kafka in through-
put by at least an order of magnitude. With its exclusive protocol,
Ghostwriter saturates the underlying bandwidth limit on a single
partition without the need to scale out to multiple producers or
consumers. Further, our optimized protocol versions reduce the
coordination overhead and further improve the throughput of our
system. In summary, we conclude that Ghostwriter leverages RDMA
and NVM to achieve a throughput that is an order of magnitude
higher than the current state-of-the-art message brokers, reducing
latency by an order of magnitude at the same time. This enables
it to fully leverage IB networks, which existing systems such as
Apache Kafka do not achieve.

6 RELATEDWORK
Modern hardware provides different ways for improving the data
transfer performance in data-intensive distributed systems.

DBMS and RDMA. Binnig et al. [4] show that distributed data-
base systems benefit significantly from modern IB networks, but
they need to be redesigned with RDMA in mind. The authors pro-
pose the Network-Attached-Memory architecture, which separates
computation and storage and uses RDMA to efficiently access the

remote data from the compute nodes. Compared to such systems, a
DMB for SPEs has very specific access patterns, i.e., writes limited
to the log tail, immutable data as well as sequential read access,
which we exploit in our architecture and protocol.

In addition to database systems, RDMAhas been used to redesign
distributed key-value stores [9, 11, 15, 18]. However, these systems
optimize for random accesses that are typical for key-value stores,
not the sequential accesses of a DMB.

DBMS and NVM. Over the last years, researchers have investi-
gated ways to utilize NVM in data systems. Arulraj et al. [1] explore
different storage and recovery techniques to replace traditional
secondary storage with NVM. Pelley et al. [17] propose grouped
commits to avoid synchronization, which improves the throughput
compared to in-place updates. Additionally, Van Renen et al. [23]
propose the use of NVM as a caching layer in-between faster DRAM
and larger-capacity SSD storage. However, the above approaches
focus on single-node systems designed for OLTP workloads, which
differ highly from the access patterns of a DMB. Finally, most of
the above approaches were designed without existing NVM hard-
ware and evaluated by emulating NVM based on the assumption
that NVM would perform similar to DRAM but slower. As recent
research has shown, this assumption has been proven wrong for
Intel’s Optane DC Persistent Memory [5, 24, 27], and NVM performs
significantly different to DRAM.

DMBs. Current DMBs [13, 14, 20, 25] adopt stateful design and
use segment-based storage or partition-based storage. They all rely
on disk-based persistence and use broker-centric message transfer,
which increases data-access overhead. In Ghostwriter, brokers focus
on coordination, while client transfer data directly to/from storage

6

using one-sided RDMA. This allows for parallel data transfer within
a single partition while maintaining ordering guarantees. We also
exploit remote-accessible NVM to guarantee instant persistence
without CPU involvement.

7 CONCLUSION
In this paper, we present Ghostwriter, a disaggregated message bro-
ker utilizing RDMA and NVM. Ghostwriter reduces CPU utilization
by using one-sided RDMA verbs and, thus, enables collocating the
message queue with downstream stream processing engines. By
optimizing write and read patterns, Ghostwriter achieves perfor-
mance close to the hardware limits and is one order of magnitude
faster than state of the art. Given the discontinuation of Optane
NVM, we plan to explore porting Ghostwriter to Compute Express
Link (CXL) based hardware in future work.

ACKNOWLEDGMENTS
This workwas partially funded by the German Research Foundation
(ref. 414984028), the European Union’s Horizon 2020 research and
innovation programme (ref. 957407).

REFERENCES
[1] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s Talk About

Storage & Recovery Methods for Non-Volatile Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data - SIGMOD ’15. ACM Press, Melbourne, Victoria, Australia, 707–722.
https://doi.org/10.1145/2723372.2749441

[2] Lawrence Benson, Hendrik Makait, and Tilmann Rabl. 2021. Viper: An Efficient
Hybrid PMem-DRAM Key-Value Store. Proceedings of the VLDB Endowment 14,
9 (2021), 1544–1556.

[3] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. PerMA-bench: bench-
marking persistent memory access. Proc. VLDB Endow. 15, 11 (jul 2022),
2463–2476. https://doi.org/10.14778/3551793.3551807

[4] Carsten Binnig, AndrewCrotty, Alex Galakatos, TimKraska, and Erfan Zamanian.
2016. The end of slow networks: it’s time for a redesign. Proceedings of the
VLDB Endowment 9, 7 (March 2016), 528–539. https://doi.org/10.14778/2904483.
2904485

[5] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing Persistent Memory Bandwidth Utilization for OLAP Workloads. In
Proceedings of the 2021 International Conference on Management of Data (SIGMOD
’21), June 20–25, 2021, Virtual Event, China (SIGMOD ’21). ACM.

[6] Bonaventura Del Monte, Steffen Zeuch, Tilmann Rabl, and Volker Markl. 2022.
Rethinking Stateful Stream Processing with RDMA. In Proceedings of the 2022 In-
ternational Conference on Management of Data (Philadelphia, PA, USA) (SIGMOD
’22). Association for Computing Machinery, New York, NY, USA, 1078–1092.
https://doi.org/10.1145/3514221.3517826

[7] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. FaRM: Fast RemoteMemory. In 11th {USENIX} Symposium onNetworked
Systems Design and Implementation ({NSDI} 14). USENIX Association, 401–414.

[8] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014. NVRAM-aware
logging in transaction systems. Proceedings of the VLDB Endowment 8, 4 (Dec.
2014), 389–400. https://doi.org/10.14778/2735496.2735502

[9] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA
efficiently for key-value services. In Proceedings of the 2014 ACM conference
on SIGCOMM - SIGCOMM ’14. ACM Press, Chicago, Illinois, USA, 295–306.
https://doi.org/10.1145/2619239.2626299

[10] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design guide-
lines for high performance RDMA systems. In Proceedings of the 2016 USENIX
Conference on Usenix Annual Technical Conference (USENIX ATC ’16). USENIX
Association, Denver, CO, USA, 437–450.

[11] Anuj Kalia,Michael Kaminsky, andDavid G. Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-sided (RDMA) Datagram RPCs.
In Proceedings of the 12th USENIX conference on Operating Systems Design and
Implementation (OSDI’16). USENIX Association, Savannah, GA, USA, 185–201.

[12] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. 2018. Benchmarking Distributed Stream Data Pro-
cessing Systems. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). IEEE, Paris, 1507–1518. https://doi.org/10.1109/ICDE.2018.00169

[13] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: a Distributed Messaging
System for Log Processing. Proceedings of the NetDB 11 (2011), 1–7.

[14] Ovidiu-Cristian Marcu, Alexandru Costan, Gabriel Antoniu, María Pérez-
Hernández, Bogdan Nicolae, Radu Tudoran, and Stefano Bortoli. 2018. KerA:
Scalable Data Ingestion for Stream Processing. In 2018 IEEE 38th Interna-
tional Conference on Distributed Computing Systems (ICDCS). IEEE, 1480–1485.
https://doi.org/10.1109/ICDCS.2018.00152 ISSN: 2575-8411.

[15] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In Proceedings of the 2013
USENIX conference on Annual Technical Conference (USENIX ATC’13). USENIX
Association, San Jose, CA, 103–114.

[16] Nikela Papadopoulou, Lena Oden, and Pavan Balaji. 2017. A Performance Study
of UCX over InfiniBand. In 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). IEEE, Madrid, 345–354. https:
//doi.org/10.1109/CCGRID.2017.149

[17] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. 2013. Storage
management in the NVRAM era. Proceedings of the VLDB Endowment 7, 2 (Oct.
2013), 121–132. https://doi.org/10.14778/2732228.2732231

[18] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Machine
Replication on RDMA Networks. In Proceedings of the 24th International Sympo-
sium on High-Performance Parallel and Distributed Computing - HPDC ’15. ACM
Press, Portland, Oregon, USA, 107–118. https://doi.org/10.1145/2749246.2749267

[19] Pavel Shamis, Manjunath Gorentla Venkata, M. Graham Lopez, Matthew B.
Baker, Oscar R. Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L.
Graham, Liran Liss, Yiftah Shahar, Sreeram Potluri, Davide Rossetti, Donald
Becker, Duncan Poole, Christopher Lamb, Sameer Kumar, Craig B. Stunkel,
George Bosilca, and Aurélien Bouteiller. 2015. UCX: An Open Source Framework
for HPC Network APIs and Beyond. In 23rd IEEE Annual Symposium on High-
Performance Interconnects, HOTI 2015, Santa Clara, CA, USA, August 26-28, 2015.
IEEE Computer Society, 40–43. https://doi.org/10.1109/HOTI.2015.13

[20] The Apache Software Foundation. 2020. Apache Pulsar. https://pulsar.apache.
org/.

[21] Andrew Torson. 2020. Application Log Intelligence & Performance Insight
at Salesforce using Flink. https://www.ververica.com/blog/application-log-
intelligence-performance-insights-salesforce-flink

[22] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler,
Ioannis Koltsidas, and Nikolas Ioannou. 2016. On The [Ir]relevance of Network
Performance for Data Processing. In 8th USENIX Workshop on Hot Topics in
Cloud Computing, HotCloud 2016, Denver, CO, USA, June 20-21, 2016, Austin
Clements and Tyson Condie (Eds.). USENIX Association. https://www.usenix.
org/conference/hotcloud16/workshop-program/presentation/trivedi

[23] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In Proceedings of the 2018
International Conference on Management of Data - SIGMOD ’18. ACM Press,
Houston, TX, USA, 1541–1555. https://doi.org/10.1145/3183713.3196897

[24] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent Memory I/O Primitives. In Proceedings of the 15th
International Workshop on Data Management on New Hardware (DaMoN’19).
Association for Computing Machinery, Amsterdam, Netherlands, 1–7. https:
//doi.org/10.1145/3329785.3329930

[25] Guozhang Wang, Lei Chen, Ayusman Dikshit, Jason Gustafson, Boyang Chen,
Matthias J Sax, John Roesler, Sophie Blee-Goldman, Bruno Cadonna, Apurva
Mehta, et al. 2021. Consistency and completeness: Rethinking distributed stream
processing in apache kafka. In Proceedings of the 2021 international conference on
management of data. 2602–2613.

[26] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR: Rethinking
RDMA Networking for Scalable Persistent Memory. In 17th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2020, Santa Clara, CA,
USA, February 25-27, 2020, Ranjita Bhagwan and George Porter (Eds.). USENIX
Association, 111–125. https://www.usenix.org/conference/nsdi20/presentation/
yang

[27] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan-
son. 2020. An Empirical Guide to the Behavior and Use of Scalable Persistent
Memory. In 18th USENIX Conference on File and Storage Technologies, FAST
2020, Santa Clara, CA, USA, February 24-27, 2020, Sam H. Noh and Brent Welch
(Eds.). USENIXAssociation, 169–182. https://www.usenix.org/conference/fast20/
presentation/yang

[28] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. Ana-
lyzing efficient stream processing on modern hardware. Proceedings of the VLDB
Endowment 12, 5 (Jan. 2019), 516–530. https://doi.org/10.14778/3303753.3303758

[29] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-based Index Structures for Fast
RDMA-capable Networks. In Proceedings of the 2019 International Conference
on Management of Data (SIGMOD ’19). Association for Computing Machinery,
Amsterdam, Netherlands, 741–758. https://doi.org/10.1145/3299869.3300081

7

https://doi.org/10.1145/2723372.2749441
https://doi.org/10.14778/3551793.3551807
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.1145/3514221.3517826
https://doi.org/10.14778/2735496.2735502
https://doi.org/10.1145/2619239.2626299
https://doi.org/10.1109/ICDE.2018.00169
https://doi.org/10.1109/ICDCS.2018.00152
https://doi.org/10.1109/CCGRID.2017.149
https://doi.org/10.1109/CCGRID.2017.149
https://doi.org/10.14778/2732228.2732231
https://doi.org/10.1145/2749246.2749267
https://doi.org/10.1109/HOTI.2015.13
https://pulsar.apache.org/
https://pulsar.apache.org/
https://www.ververica.com/blog/application-log-intelligence-performance-insights-salesforce-flink
https://www.ververica.com/blog/application-log-intelligence-performance-insights-salesforce-flink
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/trivedi
https://www.usenix.org/conference/hotcloud16/workshop-program/presentation/trivedi
https://doi.org/10.1145/3183713.3196897
https://doi.org/10.1145/3329785.3329930
https://doi.org/10.1145/3329785.3329930
https://www.usenix.org/conference/nsdi20/presentation/yang
https://www.usenix.org/conference/nsdi20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://www.usenix.org/conference/fast20/presentation/yang
https://doi.org/10.14778/3303753.3303758
https://doi.org/10.1145/3299869.3300081

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 Remote Direct Memory Access
	2.3 Combining NVM and RDMA

	3 Ghostwriter
	3.1 System Design and Architecture Overview

	4 Components of Ghostwriter
	4.1 Storage Nodes
	4.2 Broker
	4.3 Producer and Consumer

	5 Evaluation
	5.1 System Configuration
	5.2 Microbenchmarks
	5.3 System Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

