
A Survey of Big Data, High Performance
Computing, and Machine Learning Benchmarks

Nina Ihde1, Paula Marten1, Ahmed Eleliemy2, Gabrielle Poerwawinata2,
Pedro Silva1, Ilin Tolovski1, Florina M. Ciorba2, and Tilmann Rabl1

1Hasso Platner Institut, Potsdam, Germany
2University of Basel, Switzerland

{pedro.silva, ilin.tolovski, tilmann.rabl}@hpi.de,
{nina.ihde, paula.marten}@student.hpi.de,

{ahmed.eleliemy, gabrielle.poerwawinata, florina.ciorba}@unibas.ch

Abstract. In recent years, there has been a convergence of Big Data
(BD), High Performance Computing (HPC), and Machine Learning (ML)
systems. This convergence is due to the increasing complexity of long
data analysis pipelines on separated software stacks. With the increas-
ing complexity of data analytics pipelines comes a need to evaluate their
systems, in order to make informed decisions about technology selection,
sizing and scoping of hardware. While there are many benchmarks for
each of these domains, there is no convergence of these efforts. As a first
step, it is also necessary to understand how the individual benchmark
domains relate.

In this work, we analyze some of the most expressive and recent bench-
marks of BD, HPC, and ML systems. We propose a taxonomy of those
systems based on individual dimensions such as accuracy metrics and
common dimensions such as workload type. Moreover, we aim at en-
abling the usage of our taxonomy in identifying adapted benchmarks for
their BD, HPC, and ML systems. Finally, we identify challenges and re-
search directions related to the future of converged BD, HPC, and ML
system benchmarking.

Keywords: Benchmarking · Big Data · HPC · Machine Learning.

1 Introduction

A benchmark refers to a process to obtain quantitative measures that enable
meaningful comparison across multiple systems [19]. Such quantitative mea-
sures are essential to explore and assess the potential benefits and drawbacks
of emerging software and hardware architectures. Benchmarks range from sim-
ple computational kernels, mini-apps, and proxy-apps to full applications, which
are used to stress one or more components of the system under test (SUT).

In this work, we turn our attention to big data (BD), high performance
computing (HPC) and machine learning (ML) systems which have been fueled
by modern applications that rely on complex data analytics pipelines. Besides

2 N. Ihde et al.

“classic” applications such as stream processing for BD, complex simulations for
HPC and neural network training for ML, we also observe a growing number
of applications that belong to two or more of those domains, such as digital
twins [33] or earning simulation engines in the context of Industry 4.0 [60].
Those applications require hybrid-systems that lie at the convergence between
BD, HPC, and ML [45,59,26].

The state-of-the-art benchmarks that either target BD, HPC, or ML systems
are rich. However, the appearance of those hybrid systems raises questions about
the need for developing new benchmarks capable of evaluating them.

Our objective in this work is to review the literature on BD, HPC, ML, and
hybrid benchmarks and investigate their capabilities. Hybrid systems include
specific hardware and software components optimized for BD, HPC, and ML
workloads. Consequently, hybrid benchmarks refer to benchmarks that can assess
the performance of hybrid systems. We propose a classification of modern and
widely used BD, HPC, and ML benchmarks using a feature space composed
of purpose, stage level, metrics, and convergence which allow us to perform a
unified analysis of BD, HPC, ML, and hybrid benchmarks. The features space
is complemented by a high level architecture of modern data analysis pipelines
that helps visualizing the capabilities of the evaluated benchmarks and drawing
insights on improvement directions.

The rest of this article is organized as follows. In Section 2, we discuss some
of the most representative and modern BD, HPC and ML benchmark systems.
In Section 3, we present our classification methodology and use it to classify the
work discussed in Section 2. In Section 4, we highlight certain research efforts
that are closely related to the current work. In Section 5, we discuss our insights,
present our vision on convergence, and conclude this work.

2 Background

Benchmarking refers to the process of obtaining quantitative measures that en-
able performance comparison across a set of target systems or components [19].
Benchmarks are critical to explore the potential benefits and drawbacks of emerg-
ing software and hardware architectures, and the vast amount of existing bench-
marks/benchmark suites reflects their importance to the scientific community.
HiBench [41], BigBench [36], BigDataBench [34], YCSB [27], LDBC Graphalyt-
ics [42] are examples of BD benchmarks. NPB [15], SPEC [10,8,10], HPCC [47],
UEABS [11] CORAL-2 [2], and HPCG [29] are examples of HPC benchmarks.
DeepBench [53], MLPerf [49], Fathom [12], LEAF [24], and CleanML [46] are
examples of ML benchmarks. The point of these lists is not to be exhaustive
but rather to show the exuberance of existing benchmarks, which yields several
challenges regarding selecting a specific benchmark. In the following, we survey
the most common and well-known benchmarks for BD, HPC, and ML systems.

Title Suppressed Due to Excessive Length 3

2.1 Big Data Benchmarking

The main characteristics of BD systems are summarized in the “Vs” of BD,
volume, variety, and velocity, these must be captured by workloads and metrics
of BD benchmarks. Typically, BD workloads are characterized by processing
large amounts of data that may be encoded in different types, such as text, semi-
structured data, structured data, or binary, and may be delivered in different
speeds, such as statically for batching, or streamed. The metrics are commonly
related to the amount of data processed, the time taken, and the resources used
for processing.

In the next paragraphs, we describe in more detail some of the most impor-
tant BD benchmarks in the literature, their workloads and metrics.

2.1.1 HiBench HiBench [41,40,39] is an open-source BD benchmark proposed
by Intel. It focuses on offering workloads based on real-world use cases that could
be representative of situations found when processing large amounts of data.
Therefore, HiBench proposes 29 different workloads in 6 different categories.

Initially designed to be a benchmark for Apache Hadoop1 in 2010, HiBench
would originally support four MapReduce related workloads categories. Never-
theless, HiBench has been continuously updated since then and currently offers
6 workload categories: (i) external sorting and file system micro-benchmarks, (ii)
machine learning (e.g., K-means and Bayesian Classification), (iii) web search
(e.g., PageRank [22]), (iv) OLAP, (v) graph processing, and (vi) stream process-
ing. The metrics considered by HiBench are resource consumption (e.g. CPU,
I/O, Memory), job running time, throughput, HDFS bandwidth, and data access
patterns (e.g., ratio amount of input data per amount of output data).

Finally, HiBench also has pre-configurations [41] for running sets of workloads
on updated versions of Apache Hadoop and Apache Spark2, and on old versions
of the stream processing systems Apache Flink3, Apache Storm4, and Apache
Kafka5.

2.1.2 BigBench BigBench [36] is an end-to-end BD benchmark and the basis
of TPCx-BB [18]. It is based on TPC-DS [56], a decision support benchmark,
and proposes a rich data model and a generator covering the key aspects of
BD systems volume, variety and velocity. That is accomplished through the
generation of large amounts of data that may be structured, semi-structured or
unstructured at high frequencies by an extension of the Parallel Data Generation
Framework [57] (PDGF) data generator.

BigBench’s workload is inspired by a BD retail business analytics by McK-
insey and encompasses the collect, store, and analysis steps of a BD system

1 https://hadoop.apache.org/
2 https://spark.apache.org/
3 https://flink.apache.org/
4 https://storm.apache.org/
5 https://kafka.apache.org/

https://hadoop.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://storm.apache.org/
https://kafka.apache.org/

4 N. Ihde et al.

life-cycle. It is composed of 30 queries designed to cover different (i) data in-
puts, (ii) processing types, and (iii) analytic techniques. In terms of data input, it
can generate and load structured data (database tables), semi-structured data
(logs), and unstructured data (natural language reviews). The supported pro-
cessing types relate to the type of paradigm that is most adapted to answering a
query, and can be procedural (e.g., Map Reduce programs) or declarative (e.g.,
SQL). Finally, the analytic techniques define the approach for solving a query,
which are statistical analysis (e.g., linear regression), data mining (e.g., cluster-
ing) or simple ad-hoc queries (e.g., simple SQL queries).

The metrics used by BigBench are based on those used by TPC-DS, and are,
in summary, the partial execution times of the different steps of the benchmark.
It also proposes a final metric defined as a geometric mean [18] of the partial
execution times.

2.1.3 BigDataBench BigDataBench6 [34] is a BD and Artificial Intelligence
(AI) benchmark suite mainly provided by the Institute of Computing Tech-
nology (Chinese Academy of Sciences) and the non-profit organization Bench-
Council. BigDataBench is open-source and has been actively developed since
2013 [35,64,38,61]. Most recently, version 5.07 was released, which covers five
application domains (search engine, social networks, electronic commerce, mul-
timedia processing, bioinformatics) and defines a workload as a pipeline of one or
more so-called “data motifs”. This refers to classes of units of computation that
typically consume the majority of the runtime of workloads. Especially when
these data motifs are used together, it should be possible to address a wide
range of BD and AI workloads. So instead of applying a separate benchmark
for each workload, the authors of BigDataBench suggest using data motif-based
workloads, which is why they have elaborated eight data motifs, namely Matrix,
Sampling, Logic, Transform, Set, Graph, Sort and Statistic computation.

BigDataBench contains a BD Generator Suite (BDGS) [51] that can generate
synthetic data based on scaled real data. Both the synthetic and the additional
13 real-world data sets can be structured, semi-structured or non-structured.
Moreover, they are extracted from text, graph, table, or image data to model
the impact of different data types and inputs on the workload’s behaviour and
runtime.

Furthermore, BigDataBench offers 44 BD and AI benchmarks with respec-
tive implementations for seven workload types (online services, offline analytics,
graph analytics, AI, data warehouse, NoSQL, and streaming). Three types of
benchmarks are provided: (i) micro benchmarks, (ii) component benchmarks, and
(iii) end-to-end application benchmarks. A single data motif represents a micro
benchmark, for instance sort (offline analytics), filter (data warehouse) or con-
nected component (graph analytics). If several data motifs are put together like

6 https://www.benchcouncil.org/BigDataBench/
7 https://www.benchcouncil.org/BigDataBench/files/BigDataBench5.

0-User-Manual.pdf

https://www.benchcouncil.org/BigDataBench/
https://www.benchcouncil.org/BigDataBench/files/BigDataBench5.0-User-Manual.pdf
https://www.benchcouncil.org/BigDataBench/files/BigDataBench5.0-User-Manual.pdf

Title Suppressed Due to Excessive Length 5

for clustering or classification benchmarks, this is called a component bench-
mark. Several component benchmarks form an end-to-end application bench-
mark. Finally, BigDataBench offers a benchmark model for the examination of
the hardware, software, and algorithms. Each of the models considers at least as
metrics the wall clock time and energy efficiency to execute a benchmark.

2.1.4 YCSB The Yahoo! Cloud Serving Benchmark (YCSB)8 [27,17] is an
open-source benchmark suite for cloud data serving systems started in 2010. The
main components of this benchmark are the YCSB client for the generation of
workloads and the core package of workloads. When the YCSB client decides for
a operation to perform (insert, update, read, scan, or delete) or how many and
which records to scan, these decisions are based on random distributions (e.g.
uniform or multinomial). Accordingly, each of the 6 available workloads in the
core package is defined by one or several distribution/s which is/are combined
with a set of operations to perform and records to read or write. The offered
workloads by the YCSB are (i) update-heavy, (ii) read-heavy, (ii) read-only, (iv)
read latest, (v) read-modify-write, and (vi) short range scan. One can observe
that the core package consists of related workloads that stress a wider range of
the performance space than a single workload which can examine a system at
one specific point in the performance space. In addition, the framework is easy
expandable with new workloads that enable the benchmarking of new systems.

The YCSB mainly evaluates the performance and the scalability of the cloud
data serving the system under test. For measuring the performance, the latency
of requests is monitored while the throughput (i.e. the load of the database) is
increased. The scalability is benchmarked with two different metrics. The first
metric scaleup looks at how the system behaves as the amount of servers is
increased. This is implemented by loading the servers with data and starting the
workload. The data is then removed to add more servers, which then run the
workload again with more data. The second metric elastic speedup does basically
the same, but here the servers are added while the workload is still running.

2.1.5 LDBC Graphalytics Linked Data Benchmark Council (LDBC) Graph-
alytics9 [42] is a benchmark suite for graph analysis platforms which has been
under constant development since 2014 [37,25,55]. Its construction is mainly
based on the approach that a benchmark should have diversity in terms of
(i) algorithms, (ii) data sets, and (iii) metrics. Therefore it currently consists
of six algorithms, namely BFS, PageRank [23], weakly connected components,
community detection using label propagation, local clustering coefficient, and
single-source shortest path. The algorithms were selected in collaboration with
the LDBC Technical User Community (TUC) and using surveys to ensure that
they are the most relevant and cover a wide variety of scenarios.

Second, Graphalytics consists of synthetic and real data sets categorized into
“T-shirt size” classes of different magnitudes (e.g., graphs in scale from 7.5 to 8

8 https://github.com/brianfrankcooper/YCSB
9 https://graphalytics.org/

https://github.com/brianfrankcooper/YCSB
https://graphalytics.org/

6 N. Ihde et al.

belong to the class “S”). The criteria for the data set choice are size, domain and
characteristics. In order to make the creation of synthetic data sets possible, the
LDBC Social Network Benchmark data generator (Datagen)10 was extended.

Third, the Graphalytics benchmark suite offers a test harness which allows
to run a large set of diverse experiments. Thus, scalability and performance are
evaluated using deep metrics. For instance, scalability is measured in terms of
whether the data set size grows when using more resources (strong vs. weak
scaling). In addition, robustness of the system under test can be specified with
performance variability, crash points and service-level agreement (SLA) compli-
ance. The SLA is fulfilled if the algorithm execution for a given data set requires
a maximum of one hour.

Complementary to the algorithms, data sets, and metrics that Graphalytics
provides, it offers reference outputs for a standardized comparison of different
platforms and reference implementations for graph analysis platforms from the
community (e.g., Giraph11) and from the industry (e.g., PGX [6]). Industrial
platforms were benchmarked by the vendors themselves. In order to constantly
meet the performance requirements and general developments of graph analysis
platforms, a new version of Graphalytics is published every two years, which
mainly adapts the workload (i.e., the chosen data sets and algorithms).

2.2 High Performance Computing Benchmarking

The goal of HPC benchmarking is to evaluate the HPC system performance and
application characteristics. HPC workloads stress different system components
such as CPU, memory, I/O, network, file-system, etc. The response of these
system parts is measured with different performance metrics, such as speedup,
throughput, communication speed, access speed, and others. The workloads typ-
ically originate from computational science domains, such as physics, chemistry,
material science, etc. The evaluation of existing systems also creates a yardstick
for the design of future HPC systems. We summarize classical HPC benchmarks
in the following subsections.

2.2.1 NPB The Numerical Aerodynamic Simulation Parallel Benchmarks
(NPB)12 by NASA Ames Research Center, is a large effort to advance the state
of computational aerodynamics [14]. NPB 1.0 was introduced in 1992; later an-
other version (NPB 2.3) was introduced in 1997 [66] and included MPI imple-
mentations. NPB includes five kernels: (i) Embarrassingly Parallel (EP) that
assesses the floating point computing rate. (ii) MultiGrid (MG), (iii) Conjugate
Gradient (CG), (iiii) Discrete 3D Fast Fourier Transform (FT), and Large In-
teger Sort. (IS) which all evaluate the integer computation rate. NPB contains
three pseudo applications: (i) Lower-upper Gauss-Seidel (LU) to evaluate fine-
grained MPI communication [15], (ii) Block Tri-diagonal (BT) and (iii) Scalar

10 https://www.ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
11 https://giraph.apache.org/
12 https://www.nas.nasa.gov/software/npb.html

https://www.ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
https://giraph.apache.org/
https://www.nas.nasa.gov/software/npb.html

Title Suppressed Due to Excessive Length 7

Penta-diagonal (SP) to measure coarse-grained MPI communication [15]. NPB
defines performance results in the number of floating-point operations per second
(FLOP/s). NPB codes are written in Fortran-77 or C.

While NPB benchmarks exhibit fine-grained exploitable parallelism, many
scientific problems require several levels of parallelism. Therefore, the NPB
Multi-zone was introduced [65]. Aside from improvements were made to par-
allel systems including the scalability and performance, the limitations on I/O
performance were evident due to access to data files. Thus, BTIO was invented
based on BT benchmark using MPI-IO and were used to test the speed of par-
allel I/O [66]. Another benchmark called Arithmetic Data Cube (ADC) extends
typical data mining operations related to Data Cube Operator in OLAP tool
into a grid environment. ADC measures data movement across computational
grid and across memory hierarchy of individual grid machines [32].

2.2.2 SPEC Standard Performance Evaluation Corporation (SPEC)13 was
founded in 1988 and is a non-profit consortium that has 22 major computer
vendors whose common goals are to provide the industry with performance mea-
surement tools and educate consumers about the performance of vendors’ prod-
ucts [48]. The development of the benchmark suites since 1994 includes obtaining
candidate benchmark codes, putting these codes into the SPEC harness, testing
and improving the codes’ portability across many operating systems, compilers,
interconnects, runtime libraries, and for correctness and scalability [52]. We con-
sider SPEC CPU 2017 and SPEC HPC: OpenMP, MPI, OpenACC, OpenCL
benchmarks are the most useful to HPC. SPEC CPU 2017 and SPEC HPC
benchmarks code were written in C, C++, or Fortran.

SPEC CPU 2017 focuses on the performance of compute-intensive applica-
tions on processor, memory systems, and compilers. SPEC CPU 2017 comprises
43 benchmarks, organized into four suites: SPECspeed Integer and SPECspeed
Floating Point suites both employ time (in seconds) as a metric to compute
single tasks; SPECrate Integer and SPECrate Floating Point both measure the
throughput or work per unit of time metric (jobs per hour) [10]. SPEC High
Performance Computing consists of SPEC ACCEL measures parallel compute
performance including the hardware accelerator, the host CPU, the memory
transfer between host and accelerators, and the compilers [7]; SPEC MPI 2007
compares measurement of MPI-parallel, floating-point, compute-intensive per-
formance, across the widest range of cluster and SMP hardware [9]; SPEC OMP
2012 measures the performance of applications based on the OpenMP 3.1 stan-
dard for shared-memory parallel processing [8].

2.2.3 HPCC The HPC Challenge (HPCC)14 benchmark suite was developed
for the DARPA’s HPCS (High Productivity Systems) Program to provide a set
of standardized hardware probes based on commonly occurring computational

13 https://www.spec.org/benchmarks.html
14 https://icl.utk.edu/hpcc/

https://www.spec.org/benchmarks.html
https://icl.utk.edu/hpcc/

8 N. Ihde et al.

software kernel [43]. The suite is designed to augment the Top500 list, providing
benchmarks that bound the performance of many real applications as a func-
tion of memory access. HPCC’s first version was released in 2003. The HPCS
program performance targets will flatten the memory hierarchy, improve real ap-
plication performance, and decrease development time. The suite is composed of
several computational kernels such as STREAM (PB/s), HPL (Pflop/s), matrix
multiply- DGEMM, parallel matrix transpose - PTRANS, and FFT (Pflop/s),
that attempt to span high and low spatial and temporal locality space [47].

2.2.4 UEABS The Unified European Application Benchmark Suite (UE-
ABS)15 was released during the Partnership for Advanced Computing in Eu-
rope Second Implementation Phase (PRACE-2IP) project in 2010 [11], which
consist of ALYA15 that solves computational mechanics models, Code Saturne15

that is a multi-purpose CFD software, CP2K15 which performs atomistic simu-
lations, GADGET15 which simulates cosmological N-body/SPH, GPAW15 and
Quantum Espresso15 which calculates electronic structure, GROMACS15 and
NAMD15 which simulates molecular dynamics, PFARM15 which solves many-
electron equation program, NEMO15 which models ocean and climate sciences,
QCD15 which performs quantum chromodynamics, SHOC15 that tests the per-
formance and stability of systems, SPECFEM3D15 which simulates seismic wave,
and DeepGalaxy15 using Tensorflow which performs neural-networks optimiza-
tion in machine learning [11].

Each benchmark has their own test case/s and were experimented over PRACE
Tier-0 and Tier-1 Systems, PRACE PCP, DEEP-ER, and Mont-Blanc 3 Pro-
totype machines [63]. The metrics such as time(s), speedup, parallel efficiency,
energy consumption (kJ), and performance in nano seconds elapsed per day
(ns/day) are the output from this suite [63]. The benchmarks programming lan-
guages are as follows: ALYA, Code Saturne, QuantumEspresso, SPECFEM3D,
NEMO were written in Fortran 90/95; PFARM in Fortran 2003; CP2K in For-
tran 2008; Code Saturne, GADGET, GPAW, and GROMACS were written
in C; NAMD and NEMO in C++; GPAW and DeepGalaxy were written in
Python [11]. Parallelization using MPI is used in CP2KL, GADGET, GPAW,
GROMACS, NAMD, PFARM, QCD, and SPECFEM3D. OpenMP and MPI are
used in ALYA, Code Saturne, PFARM, and QuantumEspresso; multi-threading
is used in CP2K; GPU support applies to CP2K, NAMD, PFARM, GROMACS
v4.6, QCD, SHOC, and DeepGalaxy; and TPUs support is provided in Deep-
Galaxy [11].

2.2.5 CORAL-2 The collaboration of Oak Ridge, Argonne, and Lawrence
Livermore National Laboratory (CORAL) began in late 2012 intending to deliver
three systems that would each improve delivered performance as compared to
the existing 20 PetaFlop Department of Energy (DOE) systems - Titan at Oak
Ridge National Laboratory (ORNL) and Sequoia at Lawrence Livermore Na-

15 https://repository.prace-ri.eu/git/UEABS/ueabs/

https://repository.prace-ri.eu/git/UEABS/ueabs/

Title Suppressed Due to Excessive Length 9

tional Laboratory (LLNL) [62]. The CORAL-2 benchmarks16 are distinguished
into four categories: scalable science, throughput, data science and deep learning,
and skeleton benchmarks.

The scalable science benchmarks are expected to run at full scale of the
CORAL systems [2], and include CORAL-2 HACC, Nekbone, LAMMPS (atom-
timesteps/s), and QMCPACK (samples/s). The throughput benchmarks (met-
ric: total number of unknowns (across all MPI tasks)/(sec/iter)) represent large
ensemble runs, and applications include CORAL-2 AMG, Kripke, Quicksilver,
and PENNANT.

The data science and deep learning benchmarks contain machine learning
(TB/s) with K-Means, PCA, and SVM; and deep learning algorithms (batch/s)
with Convolutional Neural Networks (CNN) and Recurrent Neural Network
(RNN). Lastly, skeleton benchmarks investigate various platform characteristics
including performance on network, threading overheads, I/O, memory, system
software and programming models [2].

2.2.6 HPCG The High-Performance Conjugate Gradient (HPCG) bench-
mark17 performs a fixed number of multigrid preconditioned (using a symmetric
Gauss-Seidel smoother) conjugate gradient (PCG) iterations using double preci-
sion (64-bit) floating point values [3]. High Performance Linpack (HPL)18 solves
a (random) dense linear system in 64-bit arithmetic on distributed-memory com-
puters [4] and measures the sustained floating-point rate (GFLOP/s). HPCG has
been released as a complement to the FLOPs-bound HPL [58].

In 2019, the High Performance Linpack-Artificial Intelligence (HPL-AI)19

benchmark seeks to highlight the emerging convergence of HPC and AI work-
loads [5]. The development of HPL-AI is to experiment HPC simulations on new
accelerator hardware [44]. HPL-AI strives to unite modern algorithms and con-
temporary hardware while connecting its solver formulation to the decades-old
HPL framework [5]. Some of the machines on the TOP500 have been bench-
marking with HPL-AI, such as RIKEN’s Fugaku supercomputer which HPL-AI
achieved 2 EFLOP/s, while HPL achieved 0.442 EFLOP/s [5].

2.3 Machine Learning Benchmarking

ML systems are characterized by the usage of complex ML models for specific
ML inference tasks, such as classification or regression. Those models are often
trained using large amounts of data which commonly have to be pre-processed
first. Therefore, we can delineate data preparation, training, and inference as the
most common stages of ML systems and the main targets of modern ML bench-
marks. The workload of each of those stages vary, as well as their performance

16 https://asc.llnl.gov/coral-2-benchmarks
17 https://www.hpcg-benchmark.org/index.html
18 https://www.netlib.org/benchmark/hpl/
19 https://icl.bitbucket.io/hpl-ai/

https://asc.llnl.gov/coral-2-benchmarks
https://www.hpcg-benchmark.org/index.html
https://www.netlib.org/benchmark/hpl/
https://icl.bitbucket.io/hpl-ai/

10 N. Ihde et al.

metrics. Data preparation is usually a processing intensive step involving trans-
forming data into a format that can be exploited by other stages, hence, resource
consumption and execution time are common performance metrics. Training is
also a very processing intensive stage, however, the objective is often to achieve
a certain model accuracy, thus metrics related to time-to-accuracy are an ad-
dition to resource consumption and execution time. In the inference stage, the
accuracy of the model with unseen data and its latency to calculate solutions
are the main performance indicators.

In the next paragraphs we analyze some of the main ML benchmarks in
the state-of-the-art and discuss in more details stages, workloads and metrics
considered by them.

2.3.1 DeepBench [53] is a ML benchmark designed by Baidu Research
with an open source implementation20. It measures the performance of hard-
ware systems on basic operations necessary for deep neural network training
and inference. It was first released in 2016 and extended a year later to account
for broader operation types and to include inference [54].

DeepBench benchmarks four different operations: Matrix multiplications,
convolutions, recurrent layers and all-reduce. It allows for the transposition of
matrices and supports vanilla, long short term memory or gated recurrent unit
architecture for convolutions [53] DeepBench provides a selection of numerical
data that the operations are run on, all varying in size21. It allows the evalu-
ation of these operations on dense and sparse matrices and vectors in order to
also evaluate systems with regards to sparse neural network training and infer-
ence [54]. The minimum precision for all accumulating operations is 32 bits, for
multiplication in training and inference operations the precision has to be at least
16 and 8 bits respectively. The performance for each operation is measured in
TeraFLOPS and milliseconds. For sparse operations the speedup in comparison
to the same operation on dense matrices is also provided.

2.3.2 MLPerf [49] is a benchmark suite that can measure a system’s per-
formance for training and inference in ML pipelines. The suite offers customized
benchmarks for both cases under different hardware configurations, suitable for
proof-testing embedded and mobile devices, single nodes, and distributed data
centers.

The MLPerf suite covers five different ML area: image classification, object
detection, translation, reinforcement learning and recommendation. One data set
is provided for each task besides the reinforcement learning task, where the data
is generated in training. The data set used for the recommendation task is the
only synthetic set. Systems can be compared in two versions of MLPerf: In the
closed division the benchmark specifies which model to use on which task, only
for object detection and translation it is possible to choose between two models,

20 https://github.com/baidu-research/DeepBench
21 https://github.com/baidu-research/DeepBench

https://github.com/baidu-research/DeepBench
https://github.com/baidu-research/DeepBench

Title Suppressed Due to Excessive Length 11

which are fit for different applications and represent a broader collection of ML
models. The open division of the benchmark allows free model choice [50].

MLPerf training uses time-to-train to a defined accuracy as a performance
metric [50]. This end-to-end metric provides a combined measurement of the
speed and accuracy of a system. The goal-accuracy chosen for each model is
slightly beneath the state-of-the-art to, show adverse effects of speed optimiza-
tions on the quality of a model, and reduce run-to-run variations while still
being able to achieve the goal-accuracy in each run. MLPerf perform many runs
of the tasks in order to reduce the effects of run-to-run variance. However, certain
parts of the training process are excluded from the timing: System initialization,
model creation and initialization taking up to 20 minutes and data reformatting,
including organizing the data in databases or changing file formats. In the infer-
ence benchmarks, MLPerf measures the throughput of queries and samples per
second, with respect to latency constraints. Multiple latency constraints can be
imposed when evaluating distributed or multistream systems. By implementing
the latency constraints in their inference benchmarks, MLPerf can proof-test
systems in varying conditions adapted for specific use cases.

All implementations benchmarked must be mathematically equivalent to
the reference implementation, which are provided either in PyTorch or Tensor
Flow22. Adjustment of the hyper-parameters are only allowed inside of a defined
frame. These rules should ensure that the actual system performance is measured
and not any user optimization or hyper-parameter exploration abilities.

2.3.3 Fathom [12] is a collection of reference workloads of deep learning
models. It includes open source implementations of seven ML models, all repre-
sentatives of the state-of-the-art in deep learning, offering a diverse set of char-
acteristics and influential to deep learning research. All open source implemen-
tations of the workloads 23 are provided in TensorFlow and were either adapted,
translated from a different language or re-implemented to fit their description in
the original paper. Pre- or post-processing steps and extra logging was removed
from the original implementations. The implementation also provides a standard
model interface and is compatible with Fathom’s profiling tools. The workloads
are either run on the data used in the original implementation of the model or on
an open source alternative which is widely used for the type of model. Fathom
includes recurrent neural networks, memory networks, auto-encoders, residual
networks, convolutional networks and deep reinforcement learning models. To
asses the performance of the hardware and system running the model the exe-
cution time of primitive operations during training and inference is measured.
These operations, including matrix multiplies and tensor exponentiations, are
the smallest schedulable unit in TensorFlow and make up up to 99% of the run-
time. Measuring their execution time can not only offer insight into the time
spent on a certain operation, but also show similarities between workloads, ef-
fects of parallelism and the correlations and ratios between different types of

22 https://github.com/mlcommons/training
23 https://github.com/rdadolf/fathom

https://github.com/mlcommons/training
https://github.com/rdadolf/fathom

12 N. Ihde et al.

operations. Using this data the qualities and trade offs of hardware and systems
developed for ML can be understood and compared.

2.3.4 LEAF [24] is an open source ML benchmark suite for federated learn-
ing24. LEAF imitates a federated learning scenario, where models are trained on
data produced by Edge devices in a decentralized fashion [20]. LEAF’s data sets
satisfy three conditions to represent realistic federated data sets: All data is keyed
with an ID linking it to the device and user that produced it, generated in a large
network of thousands to millions of devices and the distribution of data points
is skewed across all devices in the network [24]. LEAF includes six data sets in
total, five real world, and one synthetic data set. The real world data sets offer
different sizes and number of devices. The workload associated to these data sets
are image classification, sentiment analysis, classification, next-word, and next-
character prediction25. LEAF also includes instructions for creating synthetic
data sets, which let users specify the number of devices and is designed to create
highly variable multi centered data sets [24]. Reference implementations using
the federated learning algorithms SGD, FedAvg and Mocha are provided.

The metrics proposed in LEAF include measurements of the performance at
the 10th, 50th and 90th percentile, an evaluation of the accuracy distribution
across devices and data on the performance divided by the hierarchies in the
data. This means that, for example for image classification on a set of pictures of
handwritten characters, the accuracy across devices for each letter is measured.
To not only capture a realistic picture of the performance distribution but to
also measure the resources used on each device the number of FLOPS and bytes
uploaded and downloaded on each device are included in the metrics as well.

2.3.5 CleanML [46] is a joint ML and data cleansing benchmark with an
open source implementation26. It explores the influence of a set of error types
and corresponding data cleaning methods on the quality of different ML mod-
els. CleanML provides 13 real world data sets with a combination of inconsis-
tencies, duplicates, missing values and outliers, some of them with mislabeled
data injected synthetically. For each error type one or more detection and repair
methods are provided. It also specifies seven classification algorithms to train the
models with: logistic regression, KNN, decision tree, random forest, Adaboost,
XGBoost and naive Bayes.

The workloads are based on training on cleaned or dirty data and testing
on cleaned data as well as testing a model trained on cleaned data with either
cleaned or dirty test data. The effects of data cleaning on the quality of the
model is evaluated for each combination of data set, data cleaning methods
and model as well as for the best model and for the combination of the best
cleaning method with the best model. A comparison of the accuracy or F1 score

24 https://github.com/TalwalkarLab/leaf
25 https://github.com/TalwalkarLab/leaf
26 https://github.com/chu-data-lab/CleanML

https://github.com/TalwalkarLab/leaf
https://github.com/TalwalkarLab/leaf
https://github.com/chu-data-lab/CleanML

Title Suppressed Due to Excessive Length 13

of the different models determines if the model quality was affected positively,
negatively or insignificantly by the data cleaning, this result is the main metric
of CleanML.

3 Methodology

In this section we analyze the benchmarks presented in Section 2 under the
light of four dimensions: purpose, analytics pipeline stage, metrics, and conver-
gence, which compose a benchmarking feature space. Furthermore, we propose
an integrated data analytics (IDA) architecture to illustrate the reach of current
benchmarks and identify research opportunities.

3.1 Benchmarking Dimensions

Purpose relates to the aspects of the benchmark that will be used to stress
the SUT. It is usually associated to data sets, application domain, kernels, or
workloads. It is common that benchmarks have multiple purposes in order to
stress a wider spectrum of characteristics of the SUT. Examples of purposes
are a BD workload that performs external sorting on a large file [40], an HPC
kernel that calculates matrix transposition [47], and a ML image classification
application [49].

Stages refer to the different stages of the SUT that are stressed by the
benchmark. As BD, HPC, and ML systems are often represented as pipelines
composed by multiple stages, e.g., data processing, computation, and training,
the pipeline stage dimension specifies which of those stages are stressed. For
example, BigBench [36] is an end-to-end benchmark, stressing all levels (data
collection, analysis, and storage) of the SUT in the data processing stage, while
DeepBench [53] focuses only the training and inference stages of a ML pipeline.

Metrics are used to measure the performance of a SUT for given purposes
and stages. For example, the FFT kernel of HPCC [47] is measured in PFLOP/s
and stresses the computation stage, while BigBench’s [36] MapReduce workloads
are measured in seconds and stress the data processing stage.

Convergence defines the intersection between two or more of the bench-
marking domains studied in this work, i.e., BD, HPC, and ML. That intersection
may happen in the purpose or pipeline stage dimensions, or both, and reflect a
trend observed on current BD, HPC, and ML systems. HPL-AI [5], for example,
is at the convergence of HPC and ML since it has kernels based on both higher
and lower precision floating pointing operations that replicate modern HPC and
ML systems, respectively.

3.2 Integrated Data Analytics Pipelines

As discussed in Section 2, several benchmarks exist to assess BD, HPC, ML sys-
tems, and individual components. Figure 1 shows an abstraction of the ecosys-
tem for an integrated data analytics (IDA) pipeline. This abstraction includes

14 N. Ihde et al.

components from BD, HPC, ML systems. The stages of the IDA pipeline: com-
putation, data processing, and training, correspond to the HPC, BD, and ML
domains, respectively. We will use this abstraction in later section of this work
to explore which of the existing benchmarks can cover multiple components of
the three systems, and consequently, be used as a benchmark for such an IDA
ecosystem.

HPC code
Scientific simulations Data preprocessing code Machine learning code

Training ML model

Parallel environments
Mathematical libraries

MPI/OpenMP/BLAS/MKL

ML frameworks
PyTorch/TensorFlow

Data processing frameworks
Spark/Flink

Resource allocation and management
Slurm/Mesos

Application

Middleware

Cluster
Management

Compute node

CPUs GPUs FPGA TPUs VPUs

Local storage High spend network interface

Compute node

CPUs GPUs FPGA TPUs VPUs

Local storage High speed network interface

Hardware
infrastructure

Storage
System

High speed
interconnection

network

Pipeline stages Computation Data processing Training

Fig. 1. Ecosystem for an integrated data analytics pipeline

3.3 Analysis of Big Data Benchmarks

BD systems commonly have three distinct steps: data collection, data analysis,
and data storage. The data analysis step concentrates most efforts of current BD
benchmarks, since that step is the focus of state-of-the-art BD systems, such as,
stream processing, graph processing or MapReduce-based systems. Among the
benchmark systems evaluated in Section 2.1, HiBench, BigBench, BigDataBench,
and Graphalytics propose data analysis benchmarking.

The data collection step is explored by BigBench and Graphalytics, and, the
data storage step, by BigBench and YCSB. Note that, while work like Graphalyt-
ics takes into consideration two of the three steps, end-to-end BD benchmarks,
i.e., benchmark systems that consider all three data processing steps, such as
BigBench, are still seldom in the literature.

In terms of purpose, the evaluated BD benchmark systems are all multi-
purpose and very diverse, making them complementary. For the metrics, resource
management and execution time are the most used, in particular for data analysis
stages. For the data collection and storage levels, throughput and latency are
also used.

Title Suppressed Due to Excessive Length 15

Finally, the evaluated benchmarks describe some degree of convergence re-
flecting a trend observed in current production systems. Both BigBench and
BigDataBench have ML purposes and benchmarking tasks based on performing
statistical computations that simulate ML model training. The metrics related
to those purposes, however, do not reflect ML performance.

Under the light of the Integrated Data Analytics pipeline (c.f., Section 3.2),
the targets of the evaluated benchmark systems lie in the data processing pipeline
stage and are part of Application and Middleware layers. In terms of converged
benchmark systems, BigBench and BigDataBench, cover only the Application
layer.

3.4 Analysis of High Performance Computing Benchmarks

HPC benchmarks usually focus on one or multiple pipeline stages which can in-
volve parallel computation and data processing (including data communication
and/or data storage). The parallel computation stage for HPC benchmarks fol-
lows the patterns given in the Berkeley Dwarfs [1]. Based on their computation
pattern and workload, the benchmarks can involve one or more purposes such
as targeting CPU, memory, I/O, network, etc.

From their purpose, we can also include the measurement metrics that each
benchmark produces. Thus, we distinguish the benchmarks into the following
categories: (i) compute-centric benchmarks measure floating point rate perfor-
mance, testing compilers and runtime libraries, and testing code scalability and
correctness, e.g., SPEC CPU 2017, HPCG/HPL, and NPB EP, (ii) data-centric
benchmarks measure data movement, e.g., NPB ADC and the CORAL-2 Big
Data benchmark which measures the data workload per sec, (iii) network-centric
benchmarks measure communication performance between processing units, e.g.,
NPB FT and SPEC MPI, (iv) memory-centric benchmarks measure memory
bandwidth, e.g., Coral-2 Memory Benchmark, HPCC STREAM, and UEABS
NEMO, (v) I/O-centric benchmarks, e.g., CORAL-2 I/O Suite and NPB BTIO,
and (vi) a mix of the above categories with overlapping problem interest, e.g.
SPEC MPI.

We also observed certain research efforts towards benchmark convergence.
HPL-AI highlights the emerging convergence of HPC and AI workloads. Unlike
HPC benchmarks that mostly rely on 64-bit floating point operations accuracy,
HPL-AI uses lower floating-point precision formats such as 16-bit which fit ML
needs and offer better processing performance. Nevertheless, the metrics mea-
sured by these applications do not relate to ML accuracy but rather to measuring
the execution time.

Another example is MLPerf’s HPC benchmark27, which is a step towards an
end-to-end benchmark as the measured time does not include the training time
only. Nevertheless, it captures the time of data staging from parallel file systems
into accelerated and/or on-node storage systems.

27 https://mlcommons.org/en/training-hpc-07/

https://mlcommons.org/en/training-hpc-07/

16 N. Ihde et al.

3.5 Analysis of Machine Learning Benchmarks

ML systems are often composed of three main steps: data preparation, training,
and inference. The purposes and metrics of those steps are usually disjoint, with
data preparation involving purposes related to data cleaning and metrics such
as execution time; training involves model training and time-to-accuracy related
metrics; and inference involves model inference and time consumption metrics.
This behavior is also observed in the evaluated benchmarking systems.

As the training step is usually the bottleneck of ML systems, we observe
that all of the highlighted benchmark systems in Section 2.3 with exception of
CleanML focus on the training step. They have multiple purposes spanning from
matrix multiplication to sentiment analysis, but they all share time-to-accuracy
and execution time metrics. DeepBench, in particular, also measures CPU con-
sumption in teraflops and, together with MLPerf, has purposes associated to the
inference stage. CleanML is the only of the evaluated benchmark systems that
focuses on the preparation stage. It has purposes related to data cleaning, such
as, duplicate detection, mislabeled data detection, and missing value correction.
Its performance metric is the difference between the accuracy of a model training
with data cleaned by the system under test and with cleaned data.

When analyzing the evaluated ML benchmarking systems in regards to the
Integrated Data Analytics pipeline (c.f., Section 3.2), with the exception of Deep-
Bench and MLPerf, the benchmarking systems mostly cover mostly the training
part of Application and Middleware levels. DeepBench and MLPerf have pur-
poses related to GPU training, hence, they also target the hardware infrastruc-
ture. CleanML also covers the data processing part of Integrated Data Analytics
pipeline in spite of not considering the volume aspect of BD systems. Therefore,
CleanML is the only of the evaluated benchmark systems to have convergence
aspects.

4 Related Work

Many research efforts conducted extensive surveys to get deeper insights into
the existing BD, HPC, and ML benchmarks. For instance, an early research
effort introduced the Berkeley dwarfs [13], representing common computational
patterns in HPC applications. These patterns span from linear algebra to graph-
ical models, and finite state machine, and are important for understanding the
breadth of the applications that a given benchmark can cover.

Another research effort introduced the BD ogres [30,31], which defines certain
views/dimensions that capture common characteristics of BD applications. The
views are not as simple as the computational patterns of the Berkeley dwarfs,
with one view having many facets and covering several application characteris-
tics.

The literature also comprises several surveys on benchmarks that focus on
isolated stage levels (c.f., Section 3.1) of BD, HPC, and ML systems [67,28,21,16].
However, to the best of our knowledge, no other surveys focus on benchmarking

Title Suppressed Due to Excessive Length 17

of hybrid systems or systems covering two or more stages of the integrated data
analysis pipeline (c.f., Section 3.2).

5 Conclusion

In this work, we discussed the state-of-the-art of BD, HPC, and ML benchmarks.
We summarized a representative selection of some of the classic and most used
benchmarks in the state of the art and classified them under the light of a feature
space composed of purpose, stage, metric, and convergence, as well as from the
perspective of a proposed Integrated Data Analysis architecture.

Through this classification, we observed that the evaluated benchmarking
systems cover a wide range of purposes and stages of BD, HPC, and ML systems.
However, even if modern hybrid-systems become more common, benchmarking
systems are still not fully capable of targeting those data analytics systems.

We believe that a unified environment for benchmarking the performance
of hybrid data analytics systems is a promising direction to explore in the fu-
ture. We observed such behavior in a few benchmark systems. Nevertheless, we
consider that such unified benchmarking environment could go more broadly
cover the three domains and more deeply capture the ecosystem layers of the
integrated data analysis (IDA) architecture, and hence, support end-to-end con-
verged benchmarking systems.

Based on these observations, we argue that it would be possible to analyze
features that are often ignored, in particular, middleware and software connec-
tions between systems from different domains (e.g., connection between the re-
sults of an HPC simulation and an ML training system). That position does
not imply that “classic” kernel benchmarks are not needed, but that converged
and end-to-end benchmark systems are needed and can open new dimensions
for analyzing the performance of hybrid systems.

6 Acknowledgement

This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 957407 as DAPHNE.
This work has also been supported through the German Research Foundation
as FONDA.

References

1. Computer architecture is back - the berkeley view on the parallel com-
puting landscape. https://web.stanford.edu/class/ee380/Abstracts/

070131-BerkeleyView1.7.pdf, accessed: 2021-08-18
2. Coral procurement benchmarks. https://asc.llnl.gov/sites/asc/files/

2020-06/CORALBenchmarksProcedure-v26.pdf, accessed: 2021-06-30
3. High performance conjugate gradient benchmark (hpcg). https://github.com/

hpcg-benchmark/hpcg/, accessed: 2021-07-04

https://web.stanford.edu/class/ee380/Abstracts/070131-BerkeleyView1.7.pdf
https://web.stanford.edu/class/ee380/Abstracts/070131-BerkeleyView1.7.pdf
https://asc.llnl.gov/sites/asc/files/2020-06/CORALBenchmarksProcedure-v26.pdf
https://asc.llnl.gov/sites/asc/files/2020-06/CORALBenchmarksProcedure-v26.pdf
https://github.com/hpcg-benchmark/hpcg/
https://github.com/hpcg-benchmark/hpcg/

18 N. Ihde et al.

4. High performance conjugate gradient benchmark (hpcg).
http://www.netlib.org/benchmark/hpl/

5. Hpcg benchmark. https://icl.bitbucket.io/hpl-ai/, accessed: 2021-07-06

6. Parallel graph analytix (pgx). https://www.oracle.com/middleware/

technologies/parallel-graph-analytix.html, accessed: 2021-07-01

7. Spec accel: Read me first. https://www.spec.org/accel/docs/readme1st.html#
Q13, accessed: 2021-06-29

8. Spec omp 2012. https://www.spec.org/omp2012/, accessed: 2021-07-07

9. Specmpi. https://www.spec.org/mpi2007/, accessed: 2021-07-07

10. Standard performance evaluation corporation, spec cpu 2017. https://www.spec.
org/cpu2017/Docs/overview.html#suites, accessed: 2021-06-29

11. Unified european applications benchmark suite. https://repository.prace-ri.
eu/git/UEABS/ueabs, accessed: 2021-06-29

12. Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D.: Fathom: Reference work-
loads for modern deep learning methods. In: 2016 IEEE International Symposium
on Workload Characterization (IISWC). pp. 1–10. IEEE (2016)

13. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., et al.: A view of the parallel
computing landscape. Communications of the ACM 52(10), 56–67 (2009)

14. Bailey, D., Barszcz, E., J.T, B., D.S, B., R.L, C., D, D., R.A, F., Frederickson,
P., T.A, L., Schreiber, R., Simon, H., Venkatakrishnan, V., K, W.: The nas par-
allel benchmarks. , Technical report, RNR-94-007, NASA Ames Research Center,
Moffett Field, CA, 03 1994 (1994)

15. Bailey, D., Harris, T., Saphir, W., Wijngaart, R.v.d., Woo, A., Yarrow, M.: The nas
parallel benchmarks 2.0. , Technical report, RNR-95-020, NASA Ames Research
Center, Moffett Field, CA, 03 1995 (1995)

16. Bajaber, F., Sakr, S., Batarfi, O., Altalhi, A., Barnawi, A.: Benchmark-
ing big data systems: A survey. Computer Communications 149, 241–251
(2020). https://doi.org/https://doi.org/10.1016/j.comcom.2019.10.002, https://

www.sciencedirect.com/science/article/pii/S0140366419312344

17. Barata, M., Bernardino, J., Furtado, P.: Ycsb and tpc-h: Big data and decision
support benchmarks. In: 2014 IEEE International Congress on Big Data. pp. 800–
801. IEEE (2014)

18. Baru, C., Bhandarkar, M., Curino, C., Danisch, M., Frank, M., Gowda, B., Jacob-
sen, H.A., Jie, H., Kumar, D., Nambiar, R., Poess, M., Raab, F., Rabl, T., Ravi,
N., Sachs, K., Sen, S., Yi, L., Youn, C.: Discussion of bigbench: A proposed in-
dustry standard performance benchmark for big data. In: Nambiar, R., Poess, M.
(eds.) Performance Characterization and Benchmarking. Traditional to Big Data.
pp. 44–63. Springer International Publishing, Cham (2015)

19. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: Charac-
terization and architectural implications. In: Proceedings of the 17th international
conference on Parallel architectures and compilation techniques. pp. 72–81 (2008)

20. Bonawitz, K., Eichner, H., Grieskamp, W., Huba, D., Ingerman, A., Ivanov, V.,
Kiddon, C., Konečnỳ, J., Mazzocchi, S., McMahan, H.B., et al.: Towards federated
learning at scale: System design. arXiv preprint arXiv:1902.01046 (2019)

21. Bonifati, A., Fletcher, G., Hidders, J., Iosup, A.: A Survey of Benchmarks for
Graph-Processing Systems, pp. 163–186. Springer International Publishing, Cham
(2018). https://doi.org/10.1007/978-3-319-96193-46, https://doi.org/10.1007/

978-3-319-96193-4_6

https://icl.bitbucket.io/hpl-ai/
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://www.oracle.com/middleware/technologies/parallel-graph-analytix.html
https://www.spec.org/accel/docs/readme1st.html#Q13
https://www.spec.org/accel/docs/readme1st.html#Q13
https://www.spec.org/omp2012/
https://www.spec.org/mpi2007/
https://www.spec.org/cpu2017/Docs/overview.html#suites
https://www.spec.org/cpu2017/Docs/overview.html#suites
https://repository.prace-ri.eu/git/UEABS/ueabs
https://repository.prace-ri.eu/git/UEABS/ueabs
https://doi.org/https://doi.org/10.1016/j.comcom.2019.10.002
https://www.sciencedirect.com/science/article/pii/S0140366419312344
https://www.sciencedirect.com/science/article/pii/S0140366419312344
https://doi.org/10.1007/978-3-319-96193-4_6
https://doi.org/10.1007/978-3-319-96193-4_6
https://doi.org/10.1007/978-3-319-96193-4_6

Title Suppressed Due to Excessive Length 19

22. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web
search engine. Computer Networks and ISDN Systems 30(1), 107–117
(1998). https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X, https:

//www.sciencedirect.com/science/article/pii/S016975529800110X, proceed-
ings of the Seventh International World Wide Web Conference

23. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer networks and ISDN systems 30(1-7), 107–117 (1998)

24. Caldas, S., Duddu, S.M.K., Wu, P., Li, T., Konečnỳ, J., McMahan, H.B., Smith,
V., Talwalkar, A.: Leaf: A benchmark for federated settings. arXiv preprint
arXiv:1812.01097 (2018)

25. Capotă, M., Hegeman, T., Iosup, A., Prat-Pérez, A., Erling, O., Boncz, P.: Graph-
alytics: A big data benchmark for graph-processing platforms. In: Proceedings of
the GRADES’15, pp. 1–6 (2015)

26. Cheng, P., Lu, Y., Du, Y., Chen, Z.: Experiences of converging big data analytics
frameworks with high performance computing systems. In: Asian Conference on
Supercomputing Frontiers. pp. 90–106. Springer, Cham (2018)

27. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on
Cloud computing. pp. 143–154 (2010)

28. Czarnul, P., Proficz, J., Krzywaniak, A., Weglarz, J.: Energy-aware high-
performance computing: Survey of state-of-the-art tools, techniques, and envi-
ronments. Sci. Program. 2019 (Jan 2019). https://doi.org/10.1155/2019/8348791,
https://doi.org/10.1155/2019/8348791

29. Dongarra, J., Luszczek, P., Heroux, M.: Hpcg technical specification. Sandia Na-
tional Laboratories, Sandia Report SAND2013-8752 (2013)

30. Fox, G.C., Jha, S., Qiu, J., Ekanazake, S., Luckow, A.: Towards a comprehensive
set of big data benchmarks. Big Data and High Performance Computing 26, 47
(2015)

31. Fox, G.C., Jha, S., Qiu, J., Luckow, A.: Ogres: a systematic approach to big data
benchmarks. Big Data and Extreme-scale Computing (BDEC) pp. 29–30 (2015)

32. Frumkin, M.A., Shabanov, L.: Arithmetic data cube as a data intensive benchmark.
, Technical report, NAS-03-005, NASA Ames Research Center, Moffett Field, CA,
03 2003 (2003)

33. Fuller, A., Fan, Z., Day, C., Barlow, C.: Digital twin: Enabling technologies, chal-
lenges and open research. IEEE Access 8 (2020)

34. Gao, W., Zhan, J., Wang, L., Luo, C., Zheng, D., Wen, X., Ren, R., Zheng, C., He,
X., Ye, H., et al.: Bigdatabench: A scalable and unified big data and ai benchmark
suite. arXiv preprint arXiv:1802.08254 (2018)

35. Gao, W., Zhu, Y., Jia, Z., Luo, C., Wang, L., Li, Z., Zhan, J., Qi, Y., He, Y., Gong,
S., et al.: Bigdatabench: a big data benchmark suite from web search engines. arXiv
preprint arXiv:1307.0320 (2013)

36. Ghazal, A., Rabl, T., Hu, M., Raab, F., Poess, M., Crolotte, A., Jacobsen, H.A.:
Bigbench: Towards an industry standard benchmark for big data analytics. In:
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data. p. 1197–1208. SIGMOD ’13, Association for Computing Machinery, New
York, NY, USA (2013). https://doi.org/10.1145/2463676.2463712

37. Guo, Y., Varbanescu, A.L., Iosup, A., Martella, C., Willke, T.L.: Benchmarking
graph-processing platforms: A vision. In: Proceedings of the 5th ACM/SPEC in-
ternational conference on Performance engineering. pp. 289–292 (2014)

https://doi.org/https://doi.org/10.1016/S0169-7552(98)00110-X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://doi.org/10.1155/2019/8348791
https://doi.org/10.1155/2019/8348791
https://doi.org/10.1145/2463676.2463712

20 N. Ihde et al.

38. Han, R., Zhan, S., Shao, C., Wang, J., John, L.K., Xu, J., Lu, G., Wang, L.:
Bigdatabench-mt: A benchmark tool for generating realistic mixed data center
workloads. In: BPOE. pp. 10–21. Springer (2015)

39. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The hibench benchmark suite:
Characterization of the mapreduce-based data analysis. In: 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW 2010). pp. 41–51.
IEEE (2010)

40. Huang, S., Huang, J., Liu, Y., Yi, L., Dai, J.: Hibench: A representative and com-
prehensive hadoop benchmark suite. In: Proc. ICDE Workshops. pp. 41–51 (2010)

41. Intel: Hibench (2021), https://github.com/Intel-bigdata/HiBench
42. Iosup, A., Hegeman, T., Ngai, W.L., Heldens, S., Prat-Pérez, A., Manhardto, T.,

Chafio, H., Capotă, M., Sundaram, N., Anderson, M., et al.: Ldbc graphalytics:
A benchmark for large-scale graph analysis on parallel and distributed platforms.
Proceedings of the VLDB Endowment 9(13), 1317–1328 (2016)

43. Jack Dongarra, P.L.: HPC Challenge: Design, History, and Implementation High-
lights, chap. 2. Chapman and Hall/CRC (2013)

44. Jack Dongarra, Mike Heroux, Piotr Luszczek: Bof hpcg benchmark update and a
look at the hpl-ai benchmark

45. Kambatla, K., Kollias, G., Kumar, V., Grama, A.: Trends in big data analytics.
Journal of parallel and distributed computing 74(7), 2561–2573 (2014)

46. Li, P., Rao, X., Blase, J., Zhang, Y., Chu, X., Zhang, C.: Cleanml: A benchmark
for joint data cleaning and machine learning [experiments and analysis]. arXiv
preprint arXiv:1904.09483 p. 75 (2019)

47. Luszczek, P., Dongarra, J., Koester, D., Rabenseifner, R., Lucas, B., Kepner, J.,
McCalpin, J., Bailey, D., Takahashi, D.: Introduction to the hpc challenge bench-
mark suite (12 2004)

48. M. Dixit, K.: Overview of the spec benchmark. In: Gray, J. (ed.) The Benchmark
Handbook, 1993, chap. 10, pp. 266–290. Morgan Kaufmann Publishers Inc. (1993)

49. Mattson, P., Cheng, C., Coleman, C., Diamos, G., Micikevicius, P., Patterson, D.,
Tang, H., Wei, G.Y., Bailis, P., Bittorf, V., et al.: Mlperf training benchmark.
arXiv preprint arXiv:1910.01500 (2019)

50. Mattson, P., Reddi, V.J., Cheng, C., Coleman, C., Diamos, G., Kanter, D., Mi-
cikevicius, P., Patterson, D., Schmuelling, G., Tang, H., et al.: Mlperf: An industry
standard benchmark suite for machine learning performance. IEEE Micro 40(2),
8–16 (2020)

51. Ming, Z., Luo, C., Gao, W., Han, R., Yang, Q., Wang, L., Zhan, J.: Bdgs: A
scalable big data generator suite in big data benchmarking. In: Advancing big
data benchmarks, pp. 138–154. Springer (2013)

52. Müller, M., Whitney, B., Henschel, R., Kumaran, K.: SPEC Benchmarks, pp. 1886–
1893. Springer US, Boston, MA (2011)

53. Narang, S.: Deepbench. https://svail.github.io/DeepBench/, accessed: 2021-
07-03

54. Narang, S., Diamos, G.: An update to deepbench with a focus on deep learning
inference. https://svail.github.io/DeepBench-update/, accessed: 2021-07-03

55. Ngai, W.L., Hegeman, T., Heldens, S., Iosup, A.: Granula: Toward fine-grained
performance analysis of large-scale graph processing platforms. In: Proceedings
of the Fifth International Workshop on Graph Data-management Experiences &
Systems. pp. 1–6 (2017)

56. Poess, M., Nambiar, R.O., Walrath, D.: Why you should run tpc-ds: A workload
analysis. In: Proceedings of the 33rd International Conference on Very Large Data
Bases. p. 1138–1149. VLDB ’07, VLDB Endowment (2007)

https://github.com/Intel-bigdata/HiBench
https://svail.github.io/DeepBench/
https://svail.github.io/DeepBench-update/

Title Suppressed Due to Excessive Length 21

57. Rabl, T., Frank, M., Sergieh, H.M., Kosch, H.: A data generator for cloud-scale
benchmarking. In: Nambiar, R., Poess, M. (eds.) Performance Evaluation, Mea-
surement and Characterization of Complex Systems. pp. 41–56. Springer Berlin
Heidelberg, Berlin, Heidelberg (2011)

58. Radulović, M., Asifuzzaman, K., Carpenter, P., Radojkovic, P., Ayguadé, E.: HPC
Benchmarking: Scaling Right and Looking Beyond the Average: 24th Interna-
tional Conference on Parallel and Distributed Computing, Turin, Italy, August
27 - 31, 2018, Proceedings, pp. 135–146 (01 2018). https://doi.org/10.1007/978-3-
319-96983-110

59. Reed, D.A., Dongarra, J.: Exascale computing and big data. Communications of
the ACM 58(7), 56–68 (2015)

60. von Rueden, L., Mayer, S., Sifa, R., Bauckhage, C., Garcke, J.: Combining ma-
chine learning and simulation to a hybrid modelling approach: Current and future
directions. In: Berthold, M.R., Feelders, A., Krempl, G. (eds.) Advances in Intelli-
gent Data Analysis XVIII. pp. 548–560. Springer International Publishing, Cham
(2020)

61. Tian, X., Dai, S., Du, Z., Gao, W., Ren, R., Cheng, Y., Zhang, Z., Jia, Z., Wang, P.,
Zhan, J.: Bigdatabench-s: An open-source scientific big data benchmark suite. In:
2017 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW). pp. 1068–1077. IEEE (2017)

62. Vazhkudai, S.S., de Supinski, B.R., Bland, A.S., Geist, A., Sexton, J., Kahle, J.,
Zimmer, C.J., Atchley, S., Oral, S., Maxwell, D.E., Larrea, V.G.V., Bertsch, A.,
Goldstone, R., Joubert, W., Chambreau, C., Appelhans, D., Blackmore, R., Casses,
B., Chochia, G., Davison, G., Ezell, M.A., Gooding, T., Gonsiorowski, E., Grinberg,
L., Hanson, B., Hartner, B., Karlin, I., Leininger, M.L., Leverman, D., Marroquin,
C., Moody, A., Ohmacht, M., Pankajakshan, R., Pizzano, F., Rogers, J.H., Rosen-
burg, B., Schmidt, D., Shankar, M., Wang, F., Watson, P., Walkup, B., Weems,
L.D., Yin, J.: The design, deployment, and evaluation of the coral pre-exascale
systems. In: SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 661–672 (2018)

63. Walter Lioen, Miguel Avillez, V.C.D.D.S.D.A.E.J.F.C.J.M.L.C.M.C.M.A.P.A.S.:
Evaluation of accelerated and non-accelerated benchmarks. (2019)

64. Wang, L., Zhan, J., Luo, C., Zhu, Y., Yang, Q., He, Y., Gao, W., Jia, Z., Shi, Y.,
Zhang, S., et al.: Bigdatabench: A big data benchmark suite from internet ser-
vices. In: 2014 IEEE 20th international symposium on high performance computer
architecture (HPCA). pp. 488–499. IEEE (2014)

65. Wijngaart, R.v.d., Jin, H.: Nas parallel benchmarks, multi-zone versions. , Techni-
cal report, NAS-03-010, NASA Ames Research Center, Moffett Field, CA, 03 2003
(2003)

66. Wong, P., Wijngaart, R.v.d.: Nas parallel benchmarks i/o version 2.4. , Technical
report, NAS-03-020, NASA Ames Research Center, Moffett Field, CA, 03 2003
(2003)

67. Zhang, Q., Zha, L., Lin, J., Tu, D., Li, M., Liang, F., Wu, R., Lu, X.: A survey
on deep learning benchmarks: Do we still need new ones? In: Zheng, C., Zhan,
J. (eds.) Benchmarking, Measuring, and Optimizing. pp. 36–49. Springer Interna-
tional Publishing, Cham (2019)

https://doi.org/10.1007/978-3-319-96983-1_10
https://doi.org/10.1007/978-3-319-96983-1_10

	A Survey of Big Data, High Performance Computing, and Machine Learning Benchmarks
	Introduction
	Background
	Big Data Benchmarking
	HiBench
	BigBench
	BigDataBench
	YCSB
	LDBC Graphalytics

	High Performance Computing Benchmarking
	NPB
	SPEC
	HPCC
	UEABS
	CORAL-2
	HPCG

	Machine Learning Benchmarking
	DeepBench
	MLPerf
	Fathom
	LEAF
	CleanML

	Methodology
	Benchmarking Dimensions
	Integrated Data Analytics Pipelines
	Analysis of Big Data Benchmarks
	Analysis of High Performance Computing Benchmarks
	Analysis of Machine Learning Benchmarks

	Related Work
	Conclusion
	Acknowledgement

