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Abstract. Stream processing systems are a fundamental component of
modern data processing, enabling timely and efficient handling of stream-
ing data. To assess and compare the capabilities of stream processing
systems, various benchmarks have been proposed over the past years.
Examples span a wide range of use cases, ranging from benchmarks
for enterprise computing to social network analyses and IoT networks.
These benchmarks are designed with different focuses and exhibit dif-
ferent characteristics during execution. In this paper, we review existing
stream processing benchmarks and analyze them across five dimensions:
benchmark type, included workloads, data ingestion, supported systems
under test (SUT), and tracked metrics. We compare their similarities
and differences, providing a comprehensive overview of existing bench-
marks. Finally, we discuss aspects that have been overlooked and high-
light those that should be addressed when benchmarking future genera-
tions of streaming systems.

1 Introduction

Modern data-intensive applications – such as fraud detection, network monitor-
ing, or Internet of Things (IoT) analytics – produce huge amounts of data. To
manage these large-volume and high-speed data streams, specialized stream pro-
cessing systems (SPSs) have emerged, including Apache Spark Streaming [74],
Apache Flink [14], Apache Storm [63], and Kafka Streaming [43, 57]. As the com-
plexity and variety of SPSs continue to grow, the need to evaluate and compare
the performance of different SPSs also increases [22]. Benchmarks play an im-
portant role in this context, offering different workloads and metrics to evaluate
key features of current SPSs, e.g., latency, throughput, fault tolerance, and scal-
ability. These benchmarks are essential for both industry and research, as they
offer a reproducible way to assess the performance of an SPS.

The state-of-the-art benchmarks targeting SPSs are rich and diverse in terms
of workloads, metrics, and terminologies. This makes it challenging to compare
current benchmarks directly and understand the trade-offs involved in these
SPSs. Therefore, a comprehensive survey of existing stream processing system
benchmarks is necessary.

In this paper, we aim to provide an in-depth overview of current SPS bench-
marks and investigate their capabilities. We review previous work and examine
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27 benchmark efforts. For each benchmark, we introduce its characteristics, in-
cluding its designed purpose, data ingestion method, workload pipeline, and
conducted experiments, to ease comparisons. Additionally, we propose a classi-
fication for current stream processing system benchmarks based on five dimen-
sions. We present a comparative analysis of these benchmarks and highlight their
strengths and weaknesses. Furthermore, we discuss the challenges and limitations
inherent in current stream processing system benchmarks and offer insights into
future trends.

The rest of this paper is organized as follows. In Section 2, we present our
classification and analysis of current stream processing system benchmarks. In
Section 3, we introduce the benchmarks we collected and discuss their character-
istics. In Section 4, we review related work and compare it with ours. In Section
5, we conclude our work and discuss potential future stream processing system
benchmarks.

2 Classification

In this section, we propose five dimensions, including type, workloads, data in-
gestion, system under test, and metrics to classify and analyze benchmarks we
present in Section 3. To provide a chronological overview of all publications we
have surveyed, Table 1 lists all benchmarks along with their earliest publication
and sorts them by year published.

2.1 Type

Type (see Table 1) refers to the purpose for which the authors present the
benchmark. We classify benchmarks into four types: benchmark specification (S),
benchmark implementation (I), benchmark evaluation (E), and benchmark tools
(T). The benchmark specification (S) provides a standardized method for evalu-
ating the performance of systems, similar to the TPC-C and TPC-H benchmarks
for relational database systems. Examples in stream processing include Linear
Road [8] and YSB [16]. They can be extended to benchmark additional sys-
tems, metrics, and workloads, and are also used by other benchmark efforts [45].
The benchmark implementation (I) offers a usable implementation to assess the
different systems in terms of performance, scalability, durability, and different
workloads. The benchmark evaluation (E) conducts evaluations to analyze the
performance of systems with various features and scenarios. For example, Ka-
rimov et al. [41] focus on accurately measuring the latency and throughput of
systems, while Zeuch et al. [75] explore efficiently utilizing modern hardware.
Additionally, benchmark tools (T) aim to generate benchmarks for evaluation
purposes, rather than evaluating systems directly.
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Table 1: Overview of the type and workloads of existing stream
processing system benchmark efforts.

Benchmark Year Type Use Case #App #Task

Theodolite [27] 2021 S IoT Application 4 7
ESPBench [33] 2021 S Manufacturing 5
YSB [16] 2016 S Advertisement Analytic 1
BigBench [24] 2013 S E-commerce 30
HiBench [34] 2010 S Real & Synthetic 29
Linear Road [8] 2004 S Toll System 3

Henning et al. [29] 2024 I Cloud Application 4 7
Vikash et al. [66] 2020 I IoT Application 1
DSPBench [12] 2020 I Real & Synthetic 15
OSPBench [19] 2020 I Micro Benchmark 1
Shahverdi et al. [59] 2019 I Advertisement Analytic 1
Inoubli et al. [36] 2018 I Social Media 1
Truong et al. [65] 2018 I Micro Benchmark 1
Yang et al. [71] 2018 I Real Application 2
RIoTBench [60] 2017 I IoT Application 5 27
Čermák et al. [15] 2016 I Network Flow Analysis 1 6
Lopez et al. [45] 2016 I Threat Detection 1
Wang et al. [69] 2016 I Micro Benchmark 3
StreamBench [46] 2014 I Micro Benchmark 7

ShuffleBench [31] 2024 E Micro Benchmark 1
Pfandzelter et al. [51] 2022 E FaaS Application 2
Chu et al. [17] 2020 E Micro Benchmark 4
Zeuch et al. [75] 2019 E Real Application 3
Hesse et al. [32] 2018 E Micro Benchmark 4
Karimov et al. [41] 2018 E Online Game 1

SPBench [23] 2023 T Real Application 4
Pagliari et al. [50] 2019 T

2.2 Workloads

We use task count (#Task), application count (#App), and use case to describe
workloads in benchmarks (see Table 1). The workloads are defined differently
in different benchmark efforts. A workload may consist of one or many tasks,
which are also referred to as queries in some benchmark efforts. These typically
involve calculations such as aggregation or filtering and can be mapped to opera-
tors in the stream processing implementation. We use task count to indicate the
total number of tasks performed. Additionally, workloads correspond to applica-
tions inspired by use cases. These applications involve multiple procedures, such
as data ingestion from Kafka, data parsing and joining, and window aggrega-
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tion [19]. We count the number of applications using an application count. The
use case refers to the scenarios in which the workloads are being applied. For
example, Čermák et al. [15] evaluate SPSs based on the network data analysis
application. Some benchmarks are not from applications but focus on assessing
certain performance characteristics of SPSs, we refer to them as micro bench-
marks.

Table 2: Overview of data sets, data ingestion, system under test
(SUT), and metrics of existing stream processing system bench-
mark efforts.

Benchmark Dataset Ingestion SUT Metric
Sy

nt
he

ti
c

R
ea

l

K
af

ka
G

en
er

at
or

Lo
ca

lF
ile

O
th

er
s

F
lin

k
St

or
m

Sp
ar

k
St

re
am

in
g

K
af

ka
St

re
am

in
g

Sa
m

za
H

az
el

ca
st

O
th

er
s

T
hr

ou
gh

pu
t

La
te

nc
y

C
P

U
M

em
or

y
N

et
w

or
k

D
is

k
I/

O
O

th
er

s

Theodolite [27]

ESPBench [33]

YSB [16]

BigBench [24]

HiBench [34]

Linear Road [8] a

Henning et al. [29]

Vikash et al. [66] b c

DSPBench [12]

OSPBench [19] d

Shahverdi et al. [59]

Inoubli et al. [36]

Truong et al. [65] e f

Yang et al. [71]

RIoTBench [60]
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Čermák et al. [15]

Lopez et al. [45]

Wang et al. [69]

StreamBench [46]

ShuffleBench [31] d

Pfandzelter et al. [51]

Chu et al. [17] f

Zeuch et al. [75] g

Hesse et al. [32] h

Karimov et al. [41]

SPBench [23]

Pagliari et al. [50]
a Supports systems under test System X and Aurora.
b System ingests data via a RESTful API and MQTT.
c Supports systems under test Apex and Nifi.
d Supports system under test Structured Streaming.
e Systems under test directly ingests data.
f Supports system under test Heron.
g Supports systems under test Streambox, Saber, C++, and Java.
h Supports system under test Apex.

2.3 Data Ingestion

We define data ingestion to describe how a benchmark inputs data, including
dataset and ingestion (see Table 2). The dataset can be categorized into real
and synthetic. Real refers to real-world datasets, while synthetic indicates data
produced by data generators or retrieved from synthetic datasets. Ingestion refers
to how benchmarks feed data to evaluate SPSs. Most benchmarks input data
from Kafka [5] or directly from data generators. Truong et al. [65] implement
data generators within the evaluated systems, Vikash et al. [66] utilize interfaces
such as RESTful and MQTT to read data from networks, and RIoTBench [60]
and Linear Road [8] read data from local files.

2.4 System Under Test

In Table 2, the system under test (SUT) refers to the evaluated systems, includ-
ing Apache Flink [14], Apache Storm [63], Apache Spark Streaming [74], Apache
Spark Structured [7], Apache Kafka Streaming [43, 57], Apache Apex [3], Apache
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Samza [49], Apache NiFi [6], Hazelcast [26], and Heron [44]. Linear Road [8] com-
pares System X (a commercial database) and Aurora [1] (a research prototype).
Zeuch et al. [75] evaluate two research prototypes (Streambox[47] and Saber [42])
and two hard-coded programs, written in C++ and Java.

2.5 Metrics

Metrics are used to measure the performance of a system. We list all metrics
in Table 2, including throughput, latency, CPU usage, memory usage, network
usage, and disk I/O. Additionally, we use others to refer to metrics defined for
specific scenarios, such as execution time [17, 32, 75], throughput and latency
penalty factor [46], garbage collection [21], and message loss rate [45].

3 Literature Review

We review previous work, selecting the most recognized and widely adopted
efforts, including six benchmark specifications, 13 benchmark implementations,
six benchmark evaluations, and two benchmark tools. Some benchmark efforts
do not have names. To save space and improve readability, we use a few keywords
from their titles instead of the full titles for section headings.

3.1 Benchmark Specifications

Theodolite Theodolite [27] aims to create specification-based benchmarks and
evaluates the scalability of SPSs, including Flink [28] and Kafka Streaming. It is
capable of assessing both the horizontal and vertical scalability of cloud-native
applications. It is implemented using microservices and ingests data streams
from Kafka. Theodolite proposes four use cases inspired by the Titan Control
Center [30], a microservice-based analytics platform for IoT data. Each use case
requires a different data input format, so Theodolite designs specific generators
for every use case. These generators produce synthetic data.

There are four use cases (applications) with seven tasks. (i) Database stor-
age: Data is directly sent to the database. (ii) Hierarchical aggregation: Data
is grouped hierarchically and then aggregated. (iii) Downsampling: Data is pro-
cessed to decrease its volume. (iv) Aggregation based on time attributes: Data
is grouped according to time and then aggregated. Theodolite introduces three
new metrics. One measures the number of instances required. The other two
indicate whether the instances are sufficient for processing tasks or if there is
backpressure.

ESPBench ESPBench [33] is designed for evaluating data stream process-
ing systems within enterprise contexts, where streaming data is combined with
structured business data. It includes an example implementation using Apache
Beam [4], which is an abstraction layer for defining data processing applica-
tions. ESPBench evaluates Hazelcast Jet, Flink, and Spark Streaming, covering
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core functionalities. The benchmark uses two datasets, one is a real-world sensor
dataset, and the other is generated using the TPC-C setting. The message bro-
ker is Kafka. Additionally, ESPBench introduces a validator tool to ensure the
credibility of query results. This tool calculates the query results and compares
them to the evaluated systems.

The systems are evaluated with five queries: (i) Check sensor status: This
query calculates the average, minimum, maximum, and overall number of sen-
sor values in tumbling windows of one second. (ii) Determine outliers: Utilizing
the Stochastic Outlier Selection algorithm [40] to identify outliers. (iii) Identify
errors: Filtering sensor records based on a threshold value. (iv) Check machine
power: This query verifies if the power of a machine is unexpectedly low from
the sensor data stream and if there is no planned downtime from the business
data. (v) Persist processing times: This query measures the processing time and
updates the database. ESPBench assesses latency and system load for stream
processing systems. System load provides an overview of the CPU and I/O uti-
lization of a server.

Yahoo Streaming Benchmarks Yahoo Streaming Benchmarks (YSB) [16, 70]
is an open-source benchmark for three stream processing platforms: Flink, Spark
Streaming, and Storm. The benchmark simulates an advertisement analytics
pipeline, where multiple advertising campaigns generate JSON events. It is also
widely used by other benchmark efforts [17, 60, 71]. To generate the desired input
load, the benchmark can run multiple Kafka producer instances. There is only
one application that reads JSON events from Kafka and filters out irrelevant
events. It takes a windowed count of events per campaign and stores each window
in Redis. Windows are aggregated to output results. The benchmark evaluates
latency and throughput for three SPSs.

Additionally, based on YSB, Karakaya et al. [45] evaluate Spark Streaming,
Flink, and Storm, focusing on throughput, network usage, and CPU usage. There
are three benchmark experiments: (i) Throughput measurement: It measures the
throughput of systems with varying cluster sizes, parallelism settings, and Kafka
partition configurations. (ii) System scalability. (iii) Resource consumption (e.g.,
network and CPU usage).

BigBench BigBench [24] is an end-to-end benchmark specification based on
TPC-DS [52]. It was initially implemented on the Teradata Aster DBMS and
then extended to stream processing systems. BigBench enriches TPC-DS’s data
model to incorporate structured, semi-structured, and unstructured data. Big-
Bench proposes a generic and parallel data generator called Parallel Data Gener-
ation Framework (PDGF, [55]) that can handle the volume, variety, and velocity
aspects of big data systems. PDGF can generate large amounts of data based
on a scale factor. The BigBench consists of 30 queries, which are designed to
cover one business dimension and three technical dimensions. From a business
perspective, the queries are based on nine big data retail levers identified from a
McKinsey report on big data in the retail industry. From a technical perspective,
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the queries cover three dimensions: data sources, processing types, and analytical
techniques. Data sources contain structured, semi-structured, and unstructured
data, and processing types have declarative processing (SQL-like queries) and
procedural processing (MapReduce). Analytical techniques include statistical
analysis, data mining, and simple reporting.

Rabl et al. [54] discuss the vision for BigBench, emphasizing several key
enhancements. These include the integration of graph analytics, machine learning
tasks, multimedia analysis, stream processing, and key-value processing modules.
Furthermore, Ivanov et al. [39] present an extension of the BigBench benchmark
to incorporate Spark Streaming. It executes five queries periodically on a data
stream. Also, they measure the latency of the SPSs.

HiBench HiBench [34, 37, 72] is an open-source benchmark for Hadoop that
includes both synthetic micro benchmarks and real-world applications. Initially
proposed by Intel in 2010, HiBench originally focused on evaluating MapRe-
duce [34]. It evaluates various factors such as job running time, throughput,
HDFS bandwidth, system resource utilization, and data access patterns. In its
latest version (7.1.1), HiBench has been updated to support stream processing
systems like Flink, Storm, and Spark Streaming [37]. HiBench includes its own
data generators and employs Kafka to send data to the test cluster. The metrics
used for evaluations are throughput, latency, CPU usage, memory usage, and
network usage.

HiBench contains 29 tasks divided into six categories. The first five categories
are based on Hadoop and the last one is for stream processing. (i) Micro bench-
mark: It evaluates the performance of Hadoop and the file system. (ii) Machine
learning: It includes 13 machine learning tasks, e.g., Bayesian Classification, K-
means clustering, and Random Forest. (iii) SQL: These tasks perform typical
OLAP queries. (iv) Web search. (v) Graph benchmark. (vi) Stream processing:
It contains four tasks, including identity, repartition, stateful wordcount, and
window aggregation. The identity task reads input data from the message sys-
tem and then writes it back immediately. The repartition task changes the level
of parallelism to measure the performance of data shuffle.

Linear Road Linear Road [8] is a benchmark and accompanying toolkit de-
signed for stream data management systems (SDMS). It aims to measure SDMS
performance in processing high-volume streaming and historical data. Linear
Road simulates a toll system for motor vehicle expressways in an urban area.
The input data is generated by the MIT Traffic Simulator, stored in local files,
and directly read by systems. The use cases of Linear Road include toll calcula-
tions, accident detection and notification, and historical query processing. There
are three types of historical queries: account balance queries, daily expendi-
ture queries, and travel time estimation queries. There are two implementations
of Linear Road: one with a commercially available relational database system
and the other with a stream data management system (Aurora [1]). In exper-
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iments, Linear Road is measured with three metrics: response time, accuracy,
and throughput.

3.2 Benchmark Implementation

Benchmarking Scalability of SPSs Deployed Henning et al. [29] evaluate
the scalability of various SPSs for cloud-native applications using Theodolite [27].
It also assesses how efficiently systems manage increasing workloads by scaling
up resources. They use data generators to produce synthetic data streams and
direct the data to Kafka. The evaluation involves five systems: Flink (with both
Apache Beam and non-Beam implementations), Kafka Streaming, Hazelcast Jet,
and Samza (with Apache Beam implementation), and uses tasks and applications
derived from Theodolite.

The experiments are conducted in a private and a public cloud. The pub-
lic cloud is Google Cloud while the private cloud is from the infrastructure at
Kiel University. The authors execute six experiments: (i) Baseline comparison of
frameworks: It involves assessing the scalability of systems. (ii) Impact of Apache
beam configuration. (iii) Scaling the window aggregation duration. (iv) Scaling
on a single node: It evaluates the vertical scaling. (v) Comparing scalability in
public and private clouds. (vi) Scaling the cluster size: It evaluates the horizontal
scaling. Moreover, this publication provides an overview of the implementations
and characteristics of existing stream processing benchmarks.

Evaluation of SPSs for IoT Applications Vikash et al. propose a 4-layer
infrastructure to process real-time data from IoT devices [66] using SPSs such as
Flink, Storm, Spark Streaming, Apex, and NiFi. The authors evaluate these SPSs
using two real-world datasets and employ techniques like RESTful or MQTT to
feed data to the systems. They conduct five micro-benchmark experiments with
an IoT application: (i) Startup time. (ii) Response time (including processing
time and latency). (iii) Throughput. (iv) Jitter. (v) Scalability analysis: It eval-
uates the throughput with varying cluster sizes.

DSPBench DSPBench [12] is a benchmark specifically designed for distributed
stream processing systems. It introduces 13 real-world applications and 2 syn-
thetic applications, which are spanning various domains. The benchmark offers
a low-level API for the unified development of these applications. Applications
are written once and can be run on any SPSs as long as the specific adapter
components have been developed. DSPBench uses real-world datasets for most
applications. However, in instances where real-world datasets are unavailable,
synthetic datasets are employed.

The benchmark evaluates Storm and Spark Streaming with two experiments:
(i) Latency and throughput analysis: It executes three applications and adjusts
the parallelism of each operator, such as source, counter, and sink, to assess
the latency and throughput of each system under different parallelism settings.
(ii) Resource consumption analysis: It evaluates network utilization, CPU, and
memory consumption.
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OSPBench OSPBench [18, 19] focuses on four popular systems: Flink, Spark
Streaming, Structured Streaming, and Kafka Streaming. The benchmark utilizes
real-world datasets from the IoT domain, generated by traffic sensors. These
datasets are sent to the processing systems via Kafka. They suggest using highly
optimized configurations and tuning the parameters separately for each task to
ensure accurate performance evaluations. There are four experiments: (i) La-
tency measurement. (ii) Sustainable throughput measurement [41]. (iii) Burst
workload: It evaluates the ability of systems to handle bursts or catch up on
delays. (iv) Periodic burst workload. There is only one task pipeline but with
varying complexities: ingesting data from Kafka, parsing and joining of data,
and performing window aggregation. OSPBench evaluates systems using four
metrics: latency, throughput, CPU utilization, and memory utilization.

Based on OSPBench, Van Dongen et al. [21] discuss the fault tolerance and
recovery mechanisms of SPSs and conduct three new experiments. (v) Master
Failure: It explores two scenarios: one with a single master and another with a
high-availability setup using Zookeeper. It measures the impact of master fail-
ures on system performance. (vi) Spark Driver Failure: Targeting the failure of
the spark driver component within Spark Streaming and Structured Streaming.
(vii) Worker Failure: It kills the work node in the middle of the execution and
then immediately brings it back up. Moreover, Van Dongen et al. [20] designed
a new experiment to analyze the scalability. (viii) Scalability: It includes two
scenarios: horizontal scaling with additional workers and vertical scaling with
increased CPUs and memory. They introduce three new metrics: garbage col-
lection, network utilization, and filesystem and disk I/O. Since all systems are
implemented in Java, they all involve garbage collection. This metric monitors
collection time, collection counts, and memory usage during collections. The
filesystem and disk I/O metric monitors filesystem usage and calculates bytes
read from and written to disk.

An Experimental Evaluation Shahverdi et al. [59] compare the performance
of five popular SPSs: Storm, Flink, Structured Streaming, Kafka Streams, and
Hazelcast Jet. The systems ingest synthetic data from Kafka and output results
to Redis. Two micro-benchmark experiments are executed based on the YSB
use case. The first one measures latency with varying data generation rates and
number of windows. The second one measures CPU and memory usage.

An Experimental Survey Inoubli et al. [36] discuss the features of both batch
processing and stream processing systems. The authors categorize systems based
on six key features: programming model, programming languages, type of data
sources, iterative data processing, machine learning libraries, and fault tolerance
strategy. They evaluate systems in two modes: batch mode and stream mode.

The stream mode evaluates Flink, Storm, Spark Streaming, and Samza using
only one application, which analyzes tweets from Twitter. The systems ingest
data from Kafka, parse it, and select relevant data for outputting. The dataset is
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collected from Twitter. Four metrics are used for evaluation: CPU usage, memory
usage, disk I/O usage, and bandwidth consumption (i.e., network overhead).

Performance Analysis of Large-Scale SPSs Truong et al. [65] focus on un-
derstanding the performance, back-pressure, and expected utilization of Heron[44].
The authors propose an algorithm based on queuing theory to predict the through-
put and latency of stream data processing while ensuring system stability. The
application generates events with random words from a predefined word set. It
measures the throughput and time of backpressure to study the ability to utilize
available resources effectively. It also evaluates effective utilization in scaling.
Through experiments, the publication identifies the optimal configuration that
maximizes effective throughput while minimizing resource consumption.

Scalability and State Yang et al. [71] evaluate SPSs with two applications.
The first one assesses Storm with a Java-based trend detection application. This
application, based on Twitter’s trend detection algorithm, ingests data via Kafka
and utilizes real-world Wikipedia data. The Wikipedia data is sourced from the
Amazon public web service dataset. The second one evaluates Flink, Storm,
and Spark Streaming using the Yahoo Stream Benchmark. Both applications
measure the CPU utilization of systems.

RIoTBench RIoTBench [60, 61] is a benchmark for evaluating SPSs in the In-
ternet of Things (IoT) environment. It offers a collection of realistic IoT tasks
and applications that can be customized and adjusted to evaluate the perfor-
mance and scalability of SPSs. RIoTBench contains four real-world IoT streams:
Sense Your City, Personal Fitness, Smart Grid, and Taxi Cab Services. These
streams are all related to smart city domains, varying in terms of sensor count,
attributes per message, message size, and scaling factors used.

RIoTBench includes 27 common IoT tasks, used by four applications: (i)
Extract-Transform-Load (ETL): It involves extracting data from various sources,
transforming it into a consistent format, and persisting it to table storage, e.g.,
databases or data warehouses. The purpose of ETL is to ensure that data from
different sources can be effectively combined and analyzed. (ii) Statistical sum-
marization (STATS): This category aggregates and analyzes data to provide a
high-level overview of the system. Tasks within STATS include finding approxi-
mate counts, identifying skewness in data distribution, and using linear regres-
sion for online trend analysis. (iii) Model training (TRAIN): TRAIN involves
machine learning algorithms, and its results employed in PRED. (iv) Predictive
analysis (PRED): It enables early detection of issues and optimization of sys-
tem performance. RIoTBench evaluates all tasks based on Apache Storm using
five metrics: latency, throughput, jitter, CPU utilization, and memory utiliza-
tion. Jitter refers to the difference between the observed output throughput and
the expected output throughput. Additionally, Nasiri et al. [48] extend RIoT-
Bench to include Flink and Spark Streaming. It introduces a new application:
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the advertising application sourced from Yahoo Streaming Benchmarks [16]. All
SPSs are evaluated based on four metrics: latency, throughput, CPU Usage, and
Network Utilization.

A Performance Benchmark for NetFlow Data Čermák et al. [15] focus
on effective network flow analysis. They evaluate Storm, Spark Streaming, and
Samza with the dataset comprising a network traffic sample from CAIDA [13],
sourced from real-world network data. The application has six tasks: identify,
filter, count, aggregation, top N, and SYN DoS. The SYN DOS is to detect
network attacks represented by a large volume of traffic consisting only of TCP
SYN packets from a single source IP address. In experiments, the authors change
the number of CPU cores to evaluate the throughput of SPSs. Initially, there is
one machine with 32 cores, then they decrease cores or add new machines.

A Performance Comparison Lopez et al. [45] assess SPSs such as Flink,
Storm, and Spark Streaming in a threat detection application. The data is from
real-world datasets and transmitted to the systems via Kafka. There are two
experiments: one measures system throughput with varying parallelism, while
the other assesses throughput and message loss rate during node failure.

Stream Processing Systems Benchmark Wang et al. [69] evaluate the per-
formance of Flink, Strom, and Spark Streaming. They introduce a common API
to enable different SPSs to use the same set of operations and tasks. They also
design generators to produce synthetic data with configurable parameters. These
generators send data to Kafka. There are three tasks and two performance met-
rics: throughput and latency. (i) Workcount: The offline one measures through-
put, while the online one measures latency. (ii) AdvClick: It performs the join
operator on two streams. (iii) K-means.

StreamBench StreamBench [46] is an end-to-end benchmark for distributed
SPSs. It aims to measure performance, fault tolerance ability, and durability
under different data scales with Storm and Spark Streaming. StreamBench has
two real-world datasets: one for text data and another for numerical data. The
data generators and benchmarks run on separate clusters, so the data are sent via
the network. As the data publishing speed is faster than the consumption speed
and the message system is designed to serve data faster than the consumption
speed, StreamBench can evaluate the boundary of SPSs.

StreamBench evaluates seven benchmark tasks with four experiments: (i)
Performance workload: It evaluates SPSs with different data scales. (ii) Multi-
Recipient performance workload: It introduces the reception ability to represent
the proportion of nodes in the computation cluster that receive input data.
(iii) Fault tolerance workload: It considers one node failure and measures the
fault tolerance ability of systems. (iv) Durability workload: It measures SPSs
over a period of time. In addition to throughput and latency, StreamBench also
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introduces throughput penalty factor and latency penalty factor. These metrics
measure the impact of node failure and the percentage of time during which the
systems remain available, Qian et al. [53] extend StreamBench to incorporate
Apache Storm Trident and Samza.

3.3 Benchmark Evaluations

ShuffleBench ShuffleBench [31] is designed for evaluating large-scale shuffle op-
erations, meeting the requirements for near real-time analytics in a large cloud
observability platform. It extends the capabilities of Theodolite [27] to support
automated execution in Kubernetes-based cloud environments. It supports im-
plementations for four SPSs: Flink, Kafka Streaming, Hazelcast Jet, and Struc-
tured Streaming. ShuffleBench inputs data from load generators. These genera-
tors produce data based on configurable parameters and output it to Kafka. It
evaluates systems based on throughput (including ad-hoc throughput and sus-
tainable throughput), latency, and scalability. Ad-hoc throughput is to measure
throughput when the data volume matches or exceeds the processing rate.

ShuffleBench executes a MapReduce-like architecture task and conducts six
micro-benchmark experiments. (i) Throughput. (ii) Latency. (iii) Deployment
impact: There are two developments, one has nine instances with one core for
each, and the other has three instances with three core for each. It aims to
compare systems with different deployments. (iv) Record size impact: It eval-
uates SPSs with different data record sizes. (v) Consumer count impact. (vi)
Selectivity impact.

Streaming vs. functions Pfandzelter et al. [51] present an evaluation study
on cloud event processing deployments, focusing on both stateful and stateless
applications. The primary aim is to provide decision-making guidelines for ap-
plication developers from the perspective of cost. The applications and data
generators are derived from the Theodolite [27] and use Kafka to pass data. One
use case involves stateless storage with Function as a Service (FaaS) platforms
like Google Cloud Functions, while the other performs stateful sliding window
aggregation with Flink. In experiments, the authors measure FaaS and Flink
with cost in different scenarios.

Maximum Sustainable Throughput Evaluation Chu et al. [17] discuss
the evaluation of the maximum sustainable throughput (MST) of distributed
stream processing systems. The authors propose an adaptive MST evaluation
method that incorporates a data-growth factor function. It dynamically adapts
the data rate based on latency feedback and achieves accurate and efficient
MST evaluation with lower error. They evaluate Storm, Flink, and Heron with
four tasks sourced from Yahoo Streaming Bench [16], BigDataBench[68], and
HiBench. In experiments, the authors measure systems with execution time,
throughput, and error rates (i.e., whether MST is reached).
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Analyzing Efficient Stream Processing on Modern Hardware Zeuch et
al. [75] analyze and optimize SPSs for effectively utilizing modern hardware.
The authors discuss current systems, identify inefficiencies and bottlenecks, and
explore data-related and processing-related optimizations for SPSs on modern
hardware. They investigate the use of multi-core CPUs, in-memory processing,
and emerging network technologies such as RDMA and Infiniband. Addition-
ally, they discuss two execution models (Operator Fusion) for performing data-
parallel pipelined stream processing and two parallelization strategies (Operator
Fission) for distributing processing among different units. Moreover, they pro-
pose a lock-free windowing mechanism aimed at minimizing contention between
worker threads.

The evaluation includes seven systems: Flink, Storm, Spark Streaming, Stream-
box [47], Saber [42], as well as C++ prototype and Java prototype. Streambox and
Saber are two research prototypes, while the C++ prototype and Java prototype
are hand-coded by the authors. The authors select use cases from the Yahoo
Streaming Benchmark [16], Linear Road Benchmark [8], and queries from NYC
Taxi [58]. The Yahoo Streaming Benchmark and Linear Road employ synthetic
data, while NYC Taxi uses real-world data. There are six experiments: (i) End-
to-End throughput. (ii) Execution time breakdown: It breaks down the execution
time for different CPU components to identify bottlenecks. (iii) Analysis of re-
source utilization, (iv) Comparison with state-of-the-art approaches, (v) RDMA
and Infiniband. (vi) Latency. The evaluated metrics include throughput, latency,
and execution time.

Quantitative Impact Evaluation Hesse et al. [32] discusses the performance
of distributed SPSs using Apache Beam. They evaluate three systems, includ-
ing Flink, Spark Streaming, and Apex. It processes four queries, ingesting data
from Kafka sourced from a real-world dataset. In experiments, they measure
the execution time of systems focusing on three aspects: average execution time,
standard deviation of execution time, and the impact of Apache Beam.

Benchmarking Distributed SPSs Karimov et al. [41] perform an evalua-
tion to accurately measure the performance of SPSs, including Flink, Storm,
and Spark Streaming. To mitigate potential interference from data exchange be-
tween message brokers and systems, the authors design generators to produce
data on the fly instead of relying on a message broker or a file system. There is
a queue between systems and data generators to ensure isolation and accurate
measurement. They propose event-time latency, processing latency, maximum
throughput, and sustainable throughput as metrics to accurately measure sys-
tems. Event-time latency measures the end-to-end time for events in the system.
Processing latency measures the processing time for events. Maximum through-
put refers to the highest load of events the system can handle, while sustainable
throughput refers to the highest load of events the system can handle without
prolonged backpressure. The network and CPU usage are measured as well.
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The application is designed in the context of online video games and evalu-
ated with synthetic data. It contains nine experiments: (i) Windowed aggrega-
tions. (ii) Windowed joins. (iii) Queries with large windows. (iv) Data skew. (un-
even data distribution) (v) Fluctuating workloads. (fluctuating load of events)
(vi) Event-time vs. Processing-time latency. (vii) Observing backpressure. (viii)
Throughput graphs. (ix) Resource usage statistics. (network and CPU usage)

3.4 Benchmark Tools

SPBench SPBench [23] is a tool designed for creating benchmarks of SPSs. It
focuses on various Parallel Programming Interfaces (PPIs) such as Intel TBB [67],
FastFlow [2], and SPar [25]. It provides both an Application Programming In-
terface (API) and a command-line interface (CLI), allowing users to access,
modify, and create custom versions of benchmarks. The benchmark tool offers
four real-world applications: (i) Bzip2: A data compression application. (ii) Lane
detection: Detection of lanes on a road using computer vision techniques. (iii)
Person recognition: Recognition and identification of people’s faces in images
or videos. (iv) Ferret: Similarity search in large databases. Four metrics can be
measured, including throughput, latency, CPU usage, and memory usage.

Towards a High-Level Description Pagliari et al. [50] introduce a high-level
description model called the Workflow Schema. It is designed for the easy and
flexible configuration of benchmark applications. This model comprises a data
stream section and a workflow section, enabling the generation of benchmark
workloads and data generators. The workflow section allows users to configure
the structure and characteristics of the workloads, including parameters such as
the number of tasks (depth), task parallelism (scalability), topology shape (con-
nection), task processing load (workload), and message reliability. The stream
section contains configuration parameters for data generators, currently sup-
porting only synthetic data generation. These parameters include defining data
size, the number of values in each event, value distribution, event distribution,
and event generation rate. The authors also present a prototype that generates
benchmark applications for Flink, evaluating Flink performance using through-
put and latency metrics.

4 Related Work

As stream processing is widely used in various domains, many research efforts
focus on SPSs and provide surveys on the state-of-the-art. Isah et al. [38] offer a
comparative study of SPSs, including both open-source and commercial systems.
Fragkoulis et al. [22] classify stream processing systems into three generations
and give an outlook of future stream processing engines. However, both efforts
primarily discuss SPSs.
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Bajaber et al. [9] discuss various benchmark approaches and tools that have
been developed for different categories of big data systems but the SPS bench-
marks are not the primary focus. The recent benchmark survey effort by Ihde
et al. [35] covers benchmarks for big data systems, high-performance comput-
ing, and machine learning, with limited mention of stream processing system
benchmarks. There are also many survey efforts focused on specific areas of
benchmarks, such as graph processing [11] and machine learning [56, 77]. The
literature [29, 31, 41] presented in our paper includes surveys of stream process-
ing benchmarks, but conducting surveys is not their primary focus. In summary,
to the best of our knowledge, there is no survey on stream processing system
benchmarks with comparable coverage or depth to this work.

5 Conclusion and Discussion

In this paper, we review state-of-the-art stream processing benchmarks, high-
lighting their focus, scenario, and features. We propose five dimensions to clas-
sify and analyze existing benchmarks. We provide a comprehensive overview of
every benchmark presented in this paper aim to aid researchers and developers in
understanding these benchmark efforts. Additionally, we discuss the challenges
and limitations of current stream processing benchmarks and explore potential
future directions in the following:

Benchmark Tools Existing efforts [12, 50] can generate benchmarks based
on user configurations. However, they are limited to specific stream processing
systems, e.g., Flink. There is a need for benchmark tools to use a unified de-
scriptive model like Apache Beam. In this case, they can translate user-defined
benchmark workloads into implementations for more stream processing systems.
Additionally, benchmark tools with graphical interfaces can help users conduct
benchmarks efficiently.

Edge Computing To reduce network costs and improve resource utilization,
state-of-the-art approaches [10, 73, 76] shift computations from the central node
to machines closer to data sources. However, current benchmarks [61, 66] focus
on central processing, where data is ingested to a central node and is processed
there. Future benchmarks should incorporate setups that allow conducting ex-
periments on less powerful machines to simulate IoT-like setups.

Research Prototype Most benchmark efforts focus on popular stream
processing systems such as Flink, Spark Streaming, and Storm. Some evalua-
tion efforts involve research prototypes, e.g., Zeuch et al. [75] compare perfor-
mance between these systems and two research prototypes, i.e., Streambox and
Saber. Also, many new research prototypes present significant improvements,
e.g., LightSaber [62], Scotty [64], Desis [73] or NebulaStream [76]. However,
there is still no benchmark available for comparing these prototypes.
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