
Benchmarking Distributed Data Processing

Systems for Machine Learning Workloads

Christoph Boden1,2, Tilmann Rabl1,2, Sebastian Schelter, and Volker Markl1,2

1Technische Universität Berlin, 2DFKI, Germany
firstname.lastname@tu-berlin.de

Abstract. Distributed data processing systems have been widely adopted
to robustly scale out computations on massive data sets to many com-
pute nodes in recent years. These systems are also popular choices to
scale out the execution of machine learning algorithms. However, it re-
mains an open question how e�ciently they actually perform at this
task and how to adequately evaluate and benchmark these systems for
scalable machine learning workloads in general. For example, the learn-
ing algorithms chosen in the corresponding systems papers tend to be
those that �t well onto the system± paradigm rather than state of the
art methods and the experiments often neglect important aspects such
as addressing all aspects of scalability.
In this this paper, we present the requirements and all crucial building
blocks of a benchmark of distributed data processing system for scal-
able machine learning workloads. We outline a set of workloads, experi-
ments and metrics that adequately and objectively assess how well data
processing systems achieve the objective to scale out machine learning
algorithms.

1 Introduction

The advent of the World Wide Web has led to a massive increase of available
data. In light of rapidly decreasing storage costs, the ubiquity of global online
services and smart mobile phones, text, audio, and video data as well as user
interaction logs are being collected at an unprecedented scale. This data has
successfully been leveraged to build and tremendously improve data-driven ap-
plications [35]. The availability of this data also revolutionized scienti�c research
as it became possible to test hypotheses on samples several orders of magnitude
larger and signi�cantly more diverse than before.

Novel distributed data processing systems commonly referred to as "Big Data
Analytics" systems have been developed in order to scale out computations and
analysis to such massive data set sizes. The availability of massive data sets and
large scale data processing systems combined with machine learning algorithms
have enabled remarkable breakthroughs in a number of core tasks including
ranking web search results [12][23], personalized content recommendation [37]
[22], statistical language models for speech recognition and machine translation

[31], click through rate prediction for online advertisements [44][48], credit scor-
ing, fraud detection and many other applications [24]. It became apparent that
for several problem settings, comparatively simple algorithms could attain supe-
rior performance to more complex and mathematically sophisticated approaches
when being trained with enough data [31]. Thus, in consequence of the sheer
size of available data sets and the remarkable successes of machine learning al-
gorithms for a variety of tasks, an unprecedented demand to e�ciently scale the
execution of machine learning algorithms materialized.

Since it quickly became apparent that Hadoop MapReduce was inherently
ine�cient at executing such workloads [49][36], novel approaches and systems
aiming to improve the performance and ease of implementation of more complex
iterative workloads such as distributed machine learning algorithms in the dis-
tributed systems and database systems research communities [13][25][54][26][42].

However, while these Second Generation Big Data Analytics Systems have
been shown to outperform Hadoop MapReduce for canonical iterative workloads
[54][5][41], it remains an open question how e�ectively they perform for actual
large scale machine learning problems due to at least two major factors. First,
the learning algorithms chosen in the corresponding systems papers are those
that �t well onto the system's paradigm (e.g. batch gradient descent solvers for
linear models) rather than state of the art methods (e.g. gradient boosted trees)
which would be chosen to solve a supervised learning problem in the absence of
these systems' constraints and provide state of the art performance with respect
to prediction quality.

While Benchmarks for traditional data process systems that evaluate the
performance of database systems for transactional workloads (TPC-C) and for
OLAP workloads (TPC-H) have evolved and are widely accepted, the bench-
marking landscape for distributed data processing systems is by no means as
mature. E�orts in the benchmarking community, notably TPCx-HS and TPCx-
BB [6][28] focused on evaluating these systems for the use case they were origi-
nally designed for: robustly scaling out simple computations and transformations
to massive data sets.

However in the context of distributed data �ow systems, in particular for
scalable machine learning workloads, it remains an open question how to prop-
erly evaluate these systems for this use case. An objective set of workloads,
experiments and metrics that adequately assess how well data processing sys-
tems achieve the objective to scale out machine learning algorithms is essential
to steer future systems research in the distributed systems and database systems
communities. It is also a useful tool for scientists and practitioners who want
to apply scalable machine learning algorithms to their problem domains and to
assess which system is suitable for their problem setting.

Contribution: In this paper we share our experience in evaluating such novel
data processing systems for scalable machine learning workloads and outline the
requirements, intricacies and pitfalls that one encounters when developing a
benchmark for this scenario. Based on these insights, we specify what we deem
to be a core set of experiments that constitute a benchmark for distributed

data processing systems for scalable machine learning workloads and provide a
rationale for their necessity.

The remainder of the paper is structured as follows: �rst we provide a brief
overview of the machine learning workloads in Section 2. Subsequently we discuss
the intricacies of evaluating machine learning workloads an the need to explore
the model quality and runtime performance trade-o� for distributed and single
machine implementations of machine learning algorithms. In Section 4 we discuss
the di�erent aspects of scalability in the context of benchmarking distributed
data�ow systems for machine learning workloads and subsequently conclude the
paper.

2 Machine Learning for Data Processing Systems

The two canonical problems in Machine Learning are unsupervised learning,
where the task is to discover "interesting patterns" in unlabeled data and su-
pervised learning where we leverage labeled training data to learn a mapping
from the inputs to the output labels to be used for prediction on unseen data. In
order to apply methods of machine learning to real world data, we �rst have to
�nd an appropriate (ideally numerical) representation of the real world objects
in question called features through a process known as feature extraction. In the
web setting, this may include the integration and parsing of massive amounts of
log �les from user-facing web applications or raw textual content from the web
and subsequent extraction and transformation of various signals into numerical
features in the form of feature vectors x = (x1, . . . xn)

T . This step in particular
appears to be an optimal workload to be executed on distributed data processing
systems. The potentialy very large raw data set sizes that serve as input to this
step as well as the rather simple transformations and aggregations that are com-
monly used to extract features are perfectly in line with the requirements these
systems were concieved and built for and can bene�t greatly from distribution.

The entire training data set is usually represented as a data matrix X ∈
IR(n×d) that contains all n training data samples where d is the dimensionality
of the feature space. In the context of distributed data processing systems this
matrix has to be partitioned across di�erent machines. The most common rep-
resentation for this is a RowMatrix, where each row (ergo each sample vector
x) of the matrix is stored as an element of the distributed data set such as an
Resilient Distributed Data Set in Apache Spark or a DataSet in Apache Flink.

2.1 Unsupervised Learning

In unsupervised learning, we are faced with just a data matrix A ∈ IR(n×d)

without any associated label or class information. The task is then to discover
interesting structures, patterns or classes in the data, that may be used as input
to subsequent learning tasks or to interpret the data. The most common unsu-
pervised learning task is clustering. Clustering partitions the data into subsets
(or clusters) such that elements within one cluster are similar to each other yet

as dissimilar as possible to other clusters according to some particular similarity
function. Popular large scale applications of clustering methods include: cluster-
ing of web text documents into categories, clustering of web search queries into
semantically similar groups or clustering of gene expressions into functionally-
similar clusters.

As a representative workload we propose the use of the popular algorithm for
clustering k-means, which minimizes the intra-cluster distances between the data
points xi in a cluster j and it's center (or centroid) µj : by solving the following
objective:

min

k∑
j=1

∑
i∈Cj

||xi − µj | |2

over the training data set X. It assumes a Euclidean space and that the num-
ber of clusters k be known beforehand. In k-means, the optimization problem is
solved with the heuristic where k cluster centers are initially sampled from the
data set, the euclidean distance to each of these so called centroids, where cj is
the centroid of the j-th cluster, is computed for each data point and every data
point is assigned to its closest centroid, and the centroids subsequently updated
for each cluster that resulted.

Even for this simple yet quite common unsupervised learning algorithm we
can see the the algorithm is iterative in nature, and we will have to access
the data set multiple times, a circumstance that is problematic in the Hadoop
MapReduce system.

2.2 Supervised Learning

In supervised learning, the canonical problem is to �nd a function f : X → Y
that accurately predicts a label y ∈ Y for unseen data based on a set of training
samples (xi, yi) ∈ X × Y which are commonly assumed to have been generated
from the joint distribution PX,Y . The objective of a supervised machine learning

algorithm is to learn a function f : IRN → IR in the case of regression or
f : IRN → {0, 1} in the case of classi�cation, that accurately predicts the labels
y on previously unseen data.

The actual task of learning is to �t the parameters (also called model weights)
w of the function fw : X → Y based on the training data and a loss function
l : Y×Y → IR which encodes the �t between the known label y and the prediction
fw (x). In order to avoid that the model w captures idiosyncrasies of the input
data rather than generalize well to unseen data, a so called regularization term
Ω (w) that captures the model complexity is often added to the objective (e.g.
the L1 or L2 norm of w). With this, the generic optimization problem which
serves as a template of a supervised learning problem is given by:

ŵ = argminw

 ∑
(x,y)∈(X,Y)

l (fw (x) , y) + λ ·Ω (w)

Of course the optimization cannot be carried out on the actual data set we want
to predict on, but rather on a training set that already has the corresponding
labels yi and thus aim to learn a prediction function that generalizes well on
unseen data. Di�erent instantiations of the function f , which may be selected
from di�erent function classes, the loss function l and the regularizer Ω (w) yield
a broad set of di�erent learning algorithm such as Support Vector Machines
(SVMs), LASSO and RIDGE regression as well as logistic regression.

Solvers. The most commonly used loss functions have been designed to be
both convex and di�erentiable, which guarantees the existence of a minimizer
ŵ. It also enables the application of batch gradient decent (BGD) as a solver.
This algorithm performs the following step using the gradient of the loss until
convergence:

w′ = w − η

 ∑
(x,y)∈(X,Y)

∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

This generalized formulation of a gradient-decent update encodes the solu-

tions to a variety of data analytics tasks which be framed as convex optimization
problems. However, this solver requires iterating over the entire training data set
multiple times in a batch fashion. A more popular alternative is given by stochas-
tic gradient decent (SGD), where each data point, or a small "mini-batch" of
data, is used to update the model independently:

w′ = w − η
(
∂

∂w
l (fw (x) , y) + λ

∂

∂w
Ω (w)

)

2.3 Matrix Factorization

Another quite popular and successful category of machine learning algorithms
are recommender systems, where the task is to identify and recommend items
that a user might like based on historical data of user-item interactions, a tech-
nique called collaborative �ltering (CF). Due to their success in the Net�ix Prize,
latent factor models based on matrix factorization [37] are a popular choice for
this task. One common approach to compute such recommendations in the con-
text of distributed data processing systems is Alternating Least Squares (ALS)
[7][55]. The historical data consists of ratings r assembled in a ratings matrix
R = {ri,j} with the dimensions nu × ni where nu is the number of users and ni
is the number of items. The goal is to �nds a low rank approximation to this
matrix based on the product of two, signi�cantly smaller matricies: U and M
such that UM ≈ R, where U : nu × k and M : k × ni and k is the rank. ALS
�nds the approximation by solving the following objective:

minU,M

∑
(i,j)∈I

(
ri,j − uTi mj

)2
+ λ

∑
i

nui ||ui||2 +
∑
j

nmj ||mj ||2

Where I is the set of (user, item) pairs for which ratings exist. Alternating
least squares solves this objective by alternatingly holding either U or M �xed
and solving a least squared problem to �t the "non-�xed" low-rank matrix.
Alternatively, the objective can also be solved with Stochastic Gradient Decent
[56] as introduced above. Here we randomly calculate gradient updates for a
randomly chosen (u, v) pair. SGD is a fast and popular method to solve a Matrix
Factorization problem, however it is is inherently sequential.

2.4 Deep Learning

The three aforementioned categories and algorithms: k-means clustering for un-
supervised learning, supervised learning based on a regularized optimization ap-
proach and matrix factorization for recommendation mining cover a large part
of the machine learning applications in practice [3].

In the last couple of years the popularity of training "deep" neural network
architectures ("deep learning")[29] has grown enormously. Deep Learning based
approaches have provided impressive results for what could broadly be described
as cognitive tasks such as speech recognition, visual object recognition or object
detection [38]. However this progress comes at the price of enormous computa-
tional resources that are necessary to train these networks. While deep neural
networks have also successfully been applied in various domains, it is not nec-
essarily a "silver bullet" that should be applied to every problem at hand, in
particular if the "traditional" approaches presented above deliver su�cient per-
formance in terms of quality while requiring substantially less computational
resources to train. The training of arti�cial neural networks is almost exclusively
carried out via backpropagation and mini-batch stochastic gradient descend.
The requirements for this are di�erent compared to those of the more general
distributed machine learning algorithms introduced in this chapter, which are
popular with distributed data processing systems. Contrary to the latter, where
I/O and network communication are the primary bottlenecks, training deep ar-
ti�cial neural networks is generally constrained by computation. With having
both the algorithm backpropagation and data model (tensors) �xed, dedicated
systems like TensorFlow [4], CNTK [53] or MXNet[20] have been built for this
task. They provide tensor abstractions as central data type and can automati-
cally carry out mathematical operations (e.g. automatic di�erentiation) and have
been optimized for the particular use case of training deep neural networks to a
degree that was not possible for general purpose distributed data �ow systems.

One important reason for the recent popularity and successes of deep neural
networks can be seen in the application of GPUs, which provide at least an order
magnitude more �oating point operations per second while being more power and
cost-e�cient than a CPU. With that, the rather computation-intensive train-
ing of arti�cial neural networks with "deep" architectures, which often trans-
lates to solving a non-convex optimization problem, became feasible. In con-
sequence purpose-built acceleration hardware, for example Tensor Processing
Units (TPUs) by Google, have been introduced to accelerate the training of
deep nets. In order to guide the development of such hardware, representative

benchmark experiments are evermore important, however benchmarking deep
learning systems for the task of training deep neural networks which has its own
sets of issues (e.g. degrading generalization performance with increasing batch
sizes [33]) is a problem domain in and of itself and orthogonal to the aspects
discussed in this work.

The recently introduced initiatives DAWNBench [21], an End-to-End Deep
Learning Benchmark Competition that invites submissions of runtimes for spec-
i�ed tasks as well as MLPerf [2] that extends this concept to a more broad set
of tasks tackle exactly this issue and are thus othorgonal to the work discussed
in this paper.

3 Model Quality

Contrary to traditional relational database queries that have an exact result
set which will always be returned regardless of the physical execution plan cho-
sen by the database optimizer, di�erent machine learning algorithms are known
to produce models of di�erent prediction quality when applied to a supervised
learning problem on the same data set [17][16]. Even for one particular machine
learning method, e.g. logistic regression, di�erent solvers for the underlying opti-
mization problem may posses di�erent convergence properties and thus produce
models of di�erent prediction quality after a �xed runtime. Di�erent machine
learning methods and solvers posses di�erent runtime complexity and thus scal-
ability proprieties with respect to the number of data points in the training set.
Given a �xed time budget, we are thus faced with a trade-o� space spanned by
runtime and model quality. More complex algorithms may ultimately lead to
superior prediction quality, but take longer - potentially prohibitively long - to
run until convergence. When these machine learning algorithms are scaled out
using second generation distributed data �ow systems, additional complexity
arises, as di�erent algorithms may be more or less well suited for distribution
using this paradigm. The learning algorithms chosen to evaluate the second gen-
eration distributed data �ow systems in the associated research papers tend to
be those that �t well onto the system's paradigm (e.g. gradient descent solvers
for generalized linear models) rather than state of the art methods which would
be chosen to solve a supervised learning problem in the absence of the systems'
constraints.

We thus argue that benchmarking distributed data processing systems for
scalable machine learning workloads needs to take into account the dimension
of model quality as well and to explore the trade-o� space between runtime and
model quality. Furthermore, benchmarks for distributed data processing sys-
tems should consider state of the art, single machine algorithms as baselines
when evaluating scalable machine learning workloads. Solely evaluating scalabil-
ity and comparing with other distributed systems is not su�cient and provides
potentially misleading results.

3.1 Experiments and Workloads

In order to be able to explore the trade-o� space between runtime and model
quality we propose to run training experiments for with and without evaluation
of model quality on held-out test data and to only plot the time elapsed in the no-
evaluation runs. (As distributed data processing systems such as Apache Spark
do not allow intermediate evaluation of trained models across iterations, this
translates to re-running the training with di�erent numbers of iterations from
scratch, measured the training time and subsequently evaluated model quality
on a held out set of test data.)

Parameter Tuning The search for the optimal (hyper-) parameters is a
crucial part of applying machine learning methods and can have a signi�cant
impact on an algorithms performance. In order to strive for a fair comparison in
our experiments we propose to allot a �xed and identical time-frame for tuning
the parameters to all systems and libraries, honouring the fact that practitioners
also face tight deadlines when performing hyperparameter tuning and may not
have the time for exhaustive search of a global optimum [10].

100 200 300 400 500 600 700 800
training runtime in seconds

0.92

0.94

0.96

0.98

1.00

1.02

RM
SE

 o
n

te
st

 se
t

LibMF SGD (1 node)
Spark ALS (6 nodes)
Spark ALS (3 nodes)
Spark ALS (2 nodes)
Spark ALS (2 nodes)

Fig. 1. Matrix Factorization of the Net�ix Prize Data Set using Apache Spark MLlib's
ALS implementation on six big (24 cores, 256 GB Ram) cluster nodes and LibMF one
big node. The plots show the root mean squared error (RMSE) achieved on a test
set achieved after a certain amount of training time. The Spark implementation takes
signi�cantly more time to converge in comparison to the single machine library LibMF,
even when executed on multiple nodes.

Experiment 1: Matrix Factorization: we propose to run matrix factor-
ization for collaborative �ltering as introduced in Section 2. While the presented
Alternating Least Squares approach is implemented in all popular distributed
data processing systems, single machine libraries using parallel SGD such as
LibMF 1[56] can be used for the single machine experiments. Next to training
runtime, we suggest to measure the Root Mean Squared Error (RMSE) as a
metric for model quality. Figure 1 shows the results of such an experiment com-
paring Spark MLLib's ALS implementation against LibMF. It becomes apparent
that such an experiment shows the overhead one incurs for running a machine
learning algorithm on a scalable systems such as Apache Spark. The Spark im-
plementation takes signi�cantly more time to converge in comparison to the
single machine library LibMF, even when executed on multiple nodes. The ex-
periments were executend on nodes with: 2 x AMD Opteron 6238 CPU with 12
Cores @ 2,6 GHz (24 cores), 256 GB RAM, 8x 2 TB Disk, 6 × GE Ethernet via
a Cisco C2969-48TD-L Rack Switch.

Supervised Learning Logistic regression is one of the most popular al-
gorithms for supervised learning on big data sets due to its simplicity and
the straightforward parallelizability of its training algorithms [3][36]. It has
been implemented on nearly all big data analytics systems. However, from a
implementation-agnostic point of view, it is not at all clear that logistic regres-
sion should be the method of choice. In fact, comprehensive empirical evaluations
of several di�erent supervised learning methods concluded that Boosted Trees
deliver superior performance with respect to prediction quality [17] and predict
better probabilities than all other methods evaluated. Among the machine learn-
ing methods used in practice, gradient tree boosting [27] is one technique that
shines in many applications, for example if data is not abundant or of limited di-
mensionality. In particular XGboost [19] is a very popular tree boosting algorithm
that is also available as an open source library. It is a popular choice by data
scientists and has been used quite successfully in machine learning competitions
such as Kaggle

Experiment 2: Supervised Learning: we propose to evaluate logistic re-
gression and gradient boosted trees in both distributed data processing systems
and with sophisticated single machine libraries such as Vowpal Wabbit2 (LR
SGD), XGBoost3, LightGBM 4 or CatBoost5. Next to training runtime, we sug-
gest to use the Area Under the Curve (AuC) metric, as it is not sensitive to skew
in the test data set. As data set we suggest to use (potentially a subsample) of
the Criteo Click Log Data set presented in Section 4.3. (In [8] we presented
results for this experiment for Apache Spark MLLib.)

1 https://www.csie.ntu.edu.tw/ cjlin/libmf/
2 https://github.com/JohnLangford/vowpal_wabbit/
3 https://github.com/dmlc/xgboost
4 https://github.com/Microsoft/LightGBM
5 https://github.com/catboost/catboost

4 Scalability

In the context of Big Data Analytics an ideal scalable algorithm has at worst
linear runtime complexity, i.e. O(n) and exhibits scalability behaviour in accor-
dance with Gustafsons law [30] . With this property, applications can be scaled
out by merely adding machines in proportion to growing data set sizes (i.e. due
to an increasing user base). In the context of cloud computing, this can be auto-
mated by elastically adding or removing virtual machines via auto-scaling, which
makes the scalable execution of workloads cost e�ective.

A scalable algorithm only contains a small non-parallelizable sequential frac-
tion of runtime, that does not increase with growing input size. Thus with twice
the amount of input data, an ideal scalable algorithm should take at most twice
the runtime, and given a cluster twice the size, the same algorithm should take
no more than half as long to run. [39, pp. 13-14] Ideally, a scalable algorithm
maintains these properties for various size and distribution of input data as well
as for di�erent execution clusters. However, for many real world problems there
are no known algorithms exhibiting this ideal behaviour, since the coordina-
tion and communication cost tend to grow with increasing parallelism and most
algorithms contain a non-parallelizable part.

Consider the prominent problem of click-through rate prediction for online
advertisements, a crucial building block in the multi-billion dollar online adver-
tising industry, as an example for large scale machine learning. To maximize
revenue, platforms serving online advertisements must accurately, quickly and
reliably predict the expected user behaviour for each displayed advertisement.
These prediction models are trained on hundreds of terabytes of data with hun-
dreds of billions of training samples . The data tends to be very sparse (10-100
non-zero features) but at the same time very high dimensional (up to 100 billion
unique features [15]. For this important problem, algorithms such as regularized
logistic regression are still the method of choice [44][18][32][40]). Generalized
linear models such as logistic regression are still a very popular choice by prac-
titioners for general supervised learning settings [3] with very large data sets
[36]. Since they cannot learn nonlinear decision boundaries directly, combina-
tions of features ("crossings") have to be added manually which leads to very
high dimensional training data sets after expansion even if the original data
dimensionality was modest.

As we argued in [9], the context of scalable, distributed machine learning,
there are thus multiple dimensions of scalability which are of particular interest:

1. Scaling the Data: scaling the training of (supervised) machine learning
models to extremely large data sets (in terms of the number of observations
contained) is probably the most well established notion of scalability in this
context as it has been shown that even simple models can outperform more
complex approaches when trained on su�ciently large data sets [31][11]. The
widespread dissemination of global web applications that generate tremen-

dous amounts of log data pushed the relevance of this dimension of scalabiliy
early on.

2. Scaling the Model Size: many large-scale machine learning problems ex-
hibit very high dimensionality. For example, classi�cation algorithms that
draw on textual data based on individual words or n-grams easily contain
100 million dimensions or more in particular in light of combinations of fea-
tures, models for click-through rate prediction for online advertisements can
reach up to 100 billion dimensions [15]. For these use cases, being able to
e�ciently handle high dimensional models is a crucial requirement as well.

3. Scaling the Number of Models: To tune hyper-parameters many models
with sightly di�erent parameters are usually trained in parallel to perform
grid search for these parameters

Ideally a system suited for scalable machine learning should e�ciently sup-
port all three of these dimensions.

4.1 Experiments and Workloads

The main motivation for introducing distributed processing systems into pro-
duction environments is usually the ability to robustly scale an application with
a growing production workload (e.g. growing user base), by simply adding more
hardware nodes. However in the short run, the hardware setup is usually �xed
(e.g. assuming an on-premise solution). We thus need to introduce two new ex-
periments to adequately capture the desired scaling dimensions data and model :

nodes # data points # dimensions

Production Scaling const. const.

Model Scaling const. const.

Strong Scaling const. const.

Weak Scaling const.

Fig. 2. Overview of the di�erent scalability experiments and associated parameters to
be varied.

Experiment 3: Production Scaling: Measure the runtime for training a
model while varying the size of the training data set for a �xed cluster setup
(model size �xed)

Experiment 4: Model Dimensionality Scaling: Measure the runtime
for training a model on a �xed size cluster setup and �xed training data set size.

and complete the scalability experiments by adding:

Experiment 5: Strong Scaling: Measure the runtime for training a model
for a varying number of cluster compute nodes while holding the data set size
and dimensionality �xed.

Experiment 6: Weak Scaling: Measure the runtime for training a model
for a varying number of cluster compute nodes and varying data set size such
that the problem size per processor as well as the dimensionality remeains �xed.

as traditional scaling experiments. Figure 2 illustrates these three experi-
ments and the parameters that are varied within each of them.

4.2 Workloads

We propose to evaluate the following workloads

� Regularized Logistic Regression: run logistic regression with a gradient
decent solver as suggested in [9] using the Criteo Click Log data with sub-
and super-sampling for scaling the data set size and feature hashing for
dimensionality scaling as discussed below in Section 4.3

� Alternating Least Squares Matrix Factorization: run ALS on gener-
ated data either based on characteristics of existing ratings data sets (e.g.
Net�ix or MovieLens) as suggested in [49]. For the dimensionality scaling
we suggest to vary latent factor dimensionality (the rank) of the two factor
matrices.

� K-Means Clustering: run the clustering algorithm on generated data dis-
cussed below in Section 4.3.

4.3 Data Sets

We suggest to rely on generated data for the scalability unsupervised learning
as well as the matrix factorization experiments. E.g. 100 dimensional data from
k Gaussian distributions and add uniform random noise to the data, similar to
the data generation for k-means in Mahout[1] and HiBench[34].

For the supervised learning experiments, we suggest the use of the Criteo
Click Logs6 data set. This dataset contains feature values and click feedback for
millions of display ads drawn from a portion of Criteo's tra�c over a period of
24 days. Its purpose is to benchmark algorithms for click through rate (CTR)
prediction. It consists of 13 numeric and 26 categorical features. In its entirety,
the data set spawns about 4 billion data points, has a size of 1.5 TB .

As a pre-processing step we propose to expand the categorical features in the
data set using the hashing trick [52]. The hashing trick vectorizes the categorical
variables by applying a hash function to the feature values and using the hash
values as indices. Potential collisions do not signi�cantly reduce accuracy in
practice, they certainly do not alter the computational footprint of the training
algorithm. This allows to control the dimensionality of the training data set via
the size of the length of the vector to be hashed into. As collisions become less

6 http://labs.criteo.com/downloads/download-terabyte-click-logs/

likely with higher dimensional hash vectors, the data set sizes increases slightly
with higher dimensionality. However since the data set size is always identical
for all systems, this e�ect does not perturb results. Di�erent data set sizes for
the experiments can be generated by sub- and super-sampling the data.

5 Related Work

Benchmarking and performance analysis of data analytics frameworks have re-
ceived some attention in the research community [47][50] [51][43]. However most
of the papers focus on evaluating runtime and execution speed of non-representative
workloads such as WordCount, Grep or Sort. The ones that do focus on machine
learning workloads [14][9] neglect quality metrics such as accuracy completely.
Unfortunately, the systems papers introducing the second generation distributed
data �ow systems Apache Spark, Apache Flink and Graphlab [54][5][41] them-
selves do not provide meaningful experiments with respect to machine learning
model quality. The paper presenting the MLlib Machine Learning of Apache
Spark [46] actually only reports speed-up of the runtime relative to an older
version of MLlib itself.

On the other hand there have been several endeavours in evaluating di�erent
machine learning algorithms empirically with respect to their prediction quality,
e.g. [17][16], however none of them in the light of distributed data processing
systems, actually not taking into account the runtime of the di�erent machine
learning methods at all.

McSherry et. al [45] introduced COST (the Con�guration that Outperforms
a Single Thread) as a new metric distributed data processing systems should
be evaluated against. This metric weighs a system's scalability against the over-
heads it introduces and re�ects actual performance gains without rewarding sys-
tems that simply introduce substantial but parallelizable overheads. The authors
showed, that for popular graph processing algorithms, none of the published sys-
tems managed to outperform a competent single-threaded implementation using
a high-end 2014 laptop even though the distributed systems leveraged substan-
tial compute resources. It is thus imperative to compare these distributed data
processing systems to competent single machine baselines. Contrary to this work,
the authors only cover graph algorithms with a �xed result set and thus do not
address the quality - runtime trade-o� encountered with supervised machine
learning workloads. Furthermore, they only collect published results from the
system papers and do not report on any own experiments with the distributed
data processing systems.

6 Conclusion

Big Data Analytics frameworks that can robustly scale out computations on
massive data sets to many compute nodes such as distributed data �ow systems
have been a fruitful research topic in academic systems research and have been
widely adopted in industrial practice. These systems are also popular choices

to scale out the execution of machine learning algorithms. However, it remains
an open question how e�cient they actually perform at this task and how to
adequately evaluate and benchmark these systems for scalable machine learning
workloads in general.

In this paper, we presented work on all crucial building blocks for a bench-
mark of distributed data processing systems for scalable machine learning. In
Section 3 we discussed the relevance of exploring the trade-o� between runtime
and model quality when evaluating distributed data �ow systems for scalable ma-
chine learning workloads and proposed experiments to achieve this. We argued
that it is imperative to compare against sophisticated single machine implemen-
tations of machine learning algorithms as an absolute baseline. Merely taking
into account scalability experiments is not su�cient. Our evaluation of matrix
factorization for the net�ix prize data set indicates that even latest generation
distributed data �ows systems such as Apache Spark do incur a non-negligible
overhead and thus require more hardware resources to obtain comparable pre-
diction quality with a competent single machine implementation within a com-
parable time-frame. In Section 4 discussed the need to address all dimensions of
scalability, including the one of model dimensionality when performing such an
evaluation. We proposed data sets, experiments, measurements and workloads
that are suitable to adequately assess how well data processing systems achieve
the objective to scale out machine learning algorithms. With this we speci�ed
what we deem to be a core set of experiments that constitute a benchmark for
distributed data processing systems for scalable machine learning workloads.

Acknowledgments

This work has been supported by the German Ministry for Education and Re-
search as Berlin Big Data Center BBDC (funding mark 01IS14013A).

References

1. https://mahout.apache.org/.
2. https://mlperf.org/.
3. https://www.kaggle.com/surveys/2017.
4. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng. Tensor�ow: A system for large-scale machine learning. In OSDI, pages
265�283. USENIX Association, 2016.

5. A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao,
M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax,
S. Schelter, M. Höger, K. Tzoumas, and D. Warneke. The stratosphere platform
for big data analytics. The VLDB Journal, 23(6), Dec. 2014.

6. C. Baru, M. Bhandarkar, C. Curino, M. Danisch, M. Frank, B. Gowda, H.-A.
Jacobsen, H. Jie, D. Kumar, R. Nambiar, M. Poess, F. Raab, T. Rabl, N. Ravi,
K. Sachs, S. Sen, L. Yi, and C. Youn. Discussion of BigBench: A Proposed Industry

Standard Performance Benchmark for Big Data. In R. Nambiar and M. Poess,
editors, Performance Characterization and Benchmarking. Traditional to Big Data,
page 44�63, Cham, 2015. Springer International Publishing.

7. R. M. Bell and Y. Koren. Scalable collaborative �ltering with jointly derived
neighborhood interpolation weights. In Seventh IEEE International Conference
on Data Mining (ICDM 2007), pages 43�52, Oct 2007.

8. C. Boden, T. Rabl, and V. Markl. Distributed machine learning-but at what cost?
9. C. Boden, A. Spina, T. Rabl, and V. Markl. Benchmarking data �ow systems

for scalable machine learning. In Proceedings of the 4th Algorithms and Systems
on MapReduce and Beyond, BeyondMR'17, pages 5:1�5:10, New York, NY, USA,
2017. ACM.

10. J.-H. Böse, V. Flunkert, J. Gasthaus, T. Januschowski, D. Lange, D. Salinas,
S. Schelter, M. Seeger, and Y. Wang. Probabilistic demand forecasting at scale.
Proc. VLDB Endow., 10(12):1694�1705, Aug. 2017.

11. T. Brants, A. C. Popat, P. Xu, F. J. Och, J. Dean, and G. Inc. Large language
models in machine translation. In EMNLP, pages 858�867, 2007.

12. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer Networks and ISDN Systems, 30(1):107�117, 1998. Proceedings of the
Seventh International World Wide Web Conference.

13. Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. Haloop: E�cient iterative data
processing on large clusters. Proc. VLDB Endow., 3(1-2):285�296, Sept. 2010.

14. Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and C. Jermaine. A compari-
son of platforms for implementing and running very large scale machine learning
algorithms. In Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, SIGMOD '14, pages 1371�1382, 2014.

15. k. Caninil. Sibyl: A system for large scale supervised machine learning.
16. R. Caruana, N. Karampatziakis, and A. Yessenalina. An empirical evaluation of

supervised learning in high dimensions. In Proceedings of the 25th International
Conference on Machine Learning, ICML '08, pages 96�103, New York, NY, USA,
2008. ACM.

17. R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learn-
ing algorithms. In Proceedings of the 23rd International Conference on Machine
Learning, ICML '06, pages 161�168, New York, NY, USA, 2006. ACM.

18. O. Chapelle, E. Manavoglu, and R. Rosales. Simple and scalable response predic-
tion for display advertising. ACM Trans. Intell. Syst. Technol., 5(4):61:1�61:34,
Dec. 2014.

19. T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD '16, pages 785�794, New York, NY, USA, 2016. ACM.

20. T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang. Mxnet: A �exible and e�cient machine learning library for heterogeneous
distributed systems. CoRR, abs/1512.01274, 2015.

21. C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi, P. Bailis,
K. Olukotun, C. Ré, and M. Zaharia. Dawnbench: An end-to-end deep learning
benchmark and competition. ML Systems Workshop @ NIPS 2017, 100(101):102,
2017.

22. A. S. Das, M. Datar, A. Garg, and S. Rajaram. Google news personalization:
Scalable online collaborative �ltering. In Proceedings of the 16th International
Conference on World Wide Web, WWW '07, pages 271�280, New York, NY, USA,
2007. ACM.

23. J. Dean and S. Ghemawat. Mapreduce: Simpli�ed data processing on large clusters.
Commun. ACM, 51(1):107�113, Jan. 2008.

24. P. Domingos. A few useful things to know about machine learning. Commun.
ACM, 55(10):78�87, Oct. 2012.

25. J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox.
Twister: A runtime for iterative mapreduce. In Proceedings of the 19th ACM In-
ternational Symposium on High Performance Distributed Computing, HPDC '10,
pages 810�818, New York, NY, USA, 2010. ACM.

26. S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl. Spinning fast iterative data
�ows. Proc. VLDB Endow., 2012.

27. J. H. Friedman. Greedy function approximation: A gradient boosting machine.
Annals of Statistics, 29:1189�1232, 2000.

28. A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A. Jacobsen.
Bigbench: Towards an industry standard benchmark for big data analytics. In
Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD '13, pages 1197�1208, New York, NY, USA, 2013. ACM.

29. I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, 2016.
30. J. L. Gustafson. Reevaluating amdahl's law. Commun. ACM, 31(5):532�533, May

1988.
31. A. Halevy, P. Norvig, and F. Pereira. The unreasonable e�ectiveness of data. IEEE

Intelligent Systems, 24(2), Mar.
32. X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich,

S. Bowers, and J. Q. n. Candela. Practical lessons from predicting clicks on ads at
facebook. In Proceedings of the Eighth International Workshop on Data Mining for
Online Advertising, ADKDD'14, pages 5:1�5:9, New York, NY, USA, 2014. ACM.

33. E. Ho�er, I. Hubara, and D. Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In NIPS, pages
1729�1739, 2017.

34. S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench Benchmark Suite:
Characterization of the MapReduce-Based Data Analysis, pages 209�228. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

35. H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R. Ra-
makrishnan, and C. Shahabi. Big data and its technical challenges. Commun.
ACM, 57(7):86�94, July 2014.

36. L. Jimmy and A. Kolcz. Large-scale machine learning at twitter. SIGMOD 2012,
2012.

37. Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30�37, Aug. 2009.

38. Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436, 2015.
39. J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Morgan and

Claypool Publishers, 2010.
40. X. Ling, W. Deng, C. Gu, H. Zhou, C. Li, and F. Sun. Model ensemble for click

prediction in bing search ads. In Proceedings of the 26th International Conference
on World Wide Web Companion, WWW '17 Companion, pages 689�698, Republic
and Canton of Geneva, Switzerland, 2017. International World Wide Web Confer-
ences Steering Committee.

41. Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein.
Distributed graphlab: a framework for machine learning and data mining in the
cloud. Proceedings of the VLDB Endowment, 5(8):716�727, 2012.

42. Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Heller-
stein. Graphlab: A new framework for parallel machine learning. arXiv preprint
arXiv:1408.2041, 2014.

43. O. C. Marcu, A. Costan, G. Antoniu, and M. S. Pérez-Hernéndez. Spark ver-
sus �ink: Understanding performance in big data analytics frameworks. In IEEE
CLUSTER 2016, pages 433�442, Sept 2016.

44. H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie,
T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M.
Hrafnkelsson, T. Boulos, and J. Kubica. Ad click prediction: A view from the
trenches. In KDD '13. ACM, 2013.

45. F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what cost? In
USENIX HOTOS'15. USENIX Association, 2015.

46. X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman,
D. Tsai, M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia,
and A. Talwalkar. Mllib: Machine learning in apache spark. J. Mach. Learn. Res.,
17(1):1235�1241, Jan. 2016.

47. K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun. Making sense
of performance in data analytics frameworks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, NSDI'15, pages
293�307, Berkeley, CA, USA, 2015. USENIX Association.

48. M. Richardson, E. Dominowska, and R. Ragno. Predicting clicks: Estimating the
click-through rate for new ads. In WWW '07. ACM, 2007.

49. S. Schelter, C. Boden, M. Schenck, A. Alexandrov, and V. Markl. Distributed
matrix factorization with mapreduce using a series of broadcast-joins. ACM RecSys
2013, 2013.

50. J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan. Clash
of the titans: Mapreduce vs. spark for large scale data analytics. Proc. VLDB
Endow., 8(13), Sept. 2015.

51. J. Veiga, R. R. Expósito, X. C. Pardo, G. L. Taboada, and J. Touri�o. Performance
evaluation of big data frameworks for large-scale data analytics. In IEEE BigData
2016, pages 424�431, Dec 2016.

52. K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature
hashing for large scale multitask learning. In Proceedings of the 26th Annual Inter-
national Conference on Machine Learning, ICML '09, pages 1113�1120, New York,
NY, USA, 2009. ACM.

53. D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev,
Y. Zhang, F. Seide, H. Wang, et al. An introduction to computational networks
and the computational network toolkit. Microsoft Technical Report MSR-TR-
2014�112, 2014.

54. M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,
S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. NSDI'12, 2012.

55. Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collabora-
tive �ltering for the net�ix prize. In Proc. 4th Int'l Conf. Algorithmic Aspects in
Information and Management, LNCS 5034, pages 337�348. Springer, 2008.

56. Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for matrix
factorization in shared memory systems. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys '13, pages 249�256, New York, NY, USA, 2013.
ACM.

