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ABSTRACT
In the realm of large-scale Internet-of-Things applications, ag-
gregating data using count-based windows is a formidable chal-
lenge. Currentmethods, either centralized and slow or decentral-
ized with potential inaccuracies, fail to strike a balance. This pa-
per introduces Deco, a novel approach tailored for swift and pre-
cise aggregation in distributed stream processing systems. Ac-
complishing this balance is complex due to the dynamic nature
of event distribution: events arrive at varying rates, unordered,
and at diverse times, making accurate window computation a
challenge. To overcome this, we propose a lightweight prediction
method that derives local window sizes based on the previously
observed event rates and performs corrections when necessary
to ensure accurate and fast query results. These windows are
processed in a decentralized manner on local nodes, verified for
correctness and then aggregated on a root node. Our evaluation
showcases Deco’s superiority over centralized methods, outper-
forming others significantly. Deco reduces network traffic by up
to 99% and exhibits linear scalability with node count.

1 INTRODUCTION
IoT forms huge decentralized networks. Internet of Things
(IoT) applications are omnipresent inmany domains [20, 55] that
range from environment monitoring [39] and industry 4.0 [61]
to health care [13]. By 2025, the expected number of IoT devices
enabling such applications is expected to surpass 75 billion [20].
This massive amount of devices forms huge decentralized net-
works and generates continuous high-speed data streams. Cur-
rent Stream Processing Engines (SPEs) such as Flink [9], Spark
Streaming [66], and Kafka Streams [43, 56] serves as a natural
fit to process such large-scale and high-velocity data streams ar-
riving from IoT devices because of their inherent capabilities of
dealing with distributed unbounded data streams [32].

Typically, SPEs bound the incoming data streams from IoT
devices to fixed-sized data sets called windows (either time- or
count-based). These windows are often aggregated with a func-
tion such as an average or a sum. Existing SPEs aggregate such
events from different IoT data sources on a centralized node,
which can ultimately become a bottleneck for large-scale decen-
tralized IoT networks. Recent work such as NebulaStream [67],
Disco [6], and Desis [64] propose a distributed window aggrega-
tion approach, where multiple nodes process windows and ag-
gregations. These approaches are restricted to time-based win-
dows where the data stream can be easily split based on time,
e.g., multiple nodes can process equally sized time windows.

Count-based windows, instead, require data elements to be
accumulated based on a fixed number of events, e.g., 1 million
events per window,which is why splitting count-basedwindows
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for decentralized aggregation becomes problematic. This is be-
cause splitting count-based windows requires prior information
on the incoming event rates from the local nodes at a central
node to ensure correctness and fairness in the distribution but
processing centrally can easily become a bottleneck in large-
scale decentralized IoT networks. This is not a one-time effort
because, in stream processing, applications often observe non-
uniform distributions where event rates change continuously,
and thus fetching event rates becomes particularly hard.

The process is further complicated when partial aggregates
are to be combined and the correctness of combined aggregates
needs to be ensuredwhile dealingwith unordered and late events.
Thus, segregating and calculating count-based window aggre-
gates on multiple nodes is a challenge for large-scale decentral-
ized IoT networks as we motivate next with an IoT example.
Motivating example. In the context of a smart factory setup,
we encounter significant challenges related to real-time data pro-
cessing. In this scenario, local nodes are distributed across differ-
ent locations in the factory and continuously collect data about
various assembly line activities from weak sensors. These data
streams include information about the number and types of prod-
ucts being manufactured, crucial for ensuring the right quantity
and quality of the products. One of the key tasks involves aggre-
gating counts of specific events, such as finding the minimum,
maximum, or average quality of products within batches. This
process makes a count-based window aggregation essential for
monitoring the quality and efficiency of the assembly lines. How-
ever, this seemingly straightforward task becomes complex due
to the dynamic nature of the data streams. The challenge arises
from the fact that the event rates, indicating how fast these prod-
ucts are being produced, are not constant; they change mildly
but frequently based on the assembly line’s speed and product
demand. There might be delays in reporting products depending
on the assembly schedule, leading to unordered or late events.

To address this issue, one solution is to use approximate event
rates, which can help in splitting time windows and processing
events in a timely manner. However, relying solely on approxi-
mations [3, 16, 24, 34, 35, 54] can lead to errors. In a settingwhere
product batches are subject to rigorous quality control, such er-
rors are unacceptable. In this scenario, the challenge is to find a
balance between processing data swiftly and accurately.

Traditional centralized techniques [6, 9, 43, 56, 64, 66] are ac-
curate but can become slow and inefficient as the scale of the
monitoring system grows to handle millions of assemblies. Ex-
isting decentralized techniques, while fast, often deliver incor-
rect results due to the approximations made. This dilemma high-
lights the crucial need for advanced solutions that can navigate
the complexities of varying event rates and delays while ensur-
ing both speed and accuracy in data processing.
Deco: a decentralized aggregator for countwindows. In this
work, we present Deco, a DEcentralized approach for calculating
COunt-based window aggregations on multiple nodes by utiliz-
ing event rate information rather than aggregating all events on
the centralized node and ensure fast and correct results. The key



idea of Deco is to predict window sizes based on the incoming
event distribution previously observed. These predictions are
used by the local nodes for window processing, where events
are partially aggregated. The partial aggregates are delivered to
a root node where the final aggregation is computed (Figure 1).
Verification and correction steps at the local nodes verify if the
predictions match the actual values otherwise update (correct)
the predictions to ensure the correctness of results.

We propose three schemes of Deco that differ in utilizing the
observed event rates for splitting and computing aggregation
(Decomon) instead of predictions for local windows, and using
synchronous (Decosync) or asynchronous (Decoasync) communi-
cation schemes to distribute calculations. We discuss the differ-
ences between these schemes and show that Deco outperforms
state-of-the-art centralized techniques like Scotty [60] and dis-
tributed approaches like Disco [6] for count-based windows by
an order of magnitude. Deco is most efficient when event rates
per data source are stable, while it also can adapt to changing
event rates. Deco processes count-based windows decentralized
with the same results as centralized solutions.
Summary of contributions. (1) We propose Deco, which en-
ables decentralized window aggregation on distributed streams.
(2)We present three schemes, Decomon, Decosync, andDecoasync.
Decomon moves partial aggregations to nodes closer to the data
sources based on observed rates and local calculation of window
sizes. Decosync and Decoasync reduce the communication over-
head in local window calculation using predictions. Decosync
blocks nodes during communication while Decoasync uses asyn-
chronous. (3) We extensively evaluate Deco and show that it
outperforms state-of-the-art centralized approaches by orders of
magnitude with respect to throughput and network utilization.
The code on our implementation is available on GitHub1.

The rest of the paper is structured as follows. Section 2 gives
the necessary background. Section 3 presents the Deco system
model. Section 4 discusses the technical details of Deco. We eval-
uate Deco in Section 5 and discuss related work in Section 6.

2 BACKGROUND
To process streamed queries on unbounded data streams, SPEs
group events into bounded windows and execute aggregation
functions on windows to output results. In this section, we in-
troduce the foundation of window aggregation and then discuss
why window aggregation in centralized setting is a bottleneck.

2.1 Window Types
Based on the window type an SPEs divides a potentially infinite
data stream into finite windows. There are three major window
types that are supported by existing SPEs: tumbling windows,
sliding windows, and session windows [1]. A tumbling window
divides data streams into event groups of L successive events.
The sliding window is defined with a fixed length L and a step
S. S determines the count offset between the start of the current
window and the start of the previous window and L is the win-
dow size. In contrast to that, a session window is terminated by
a gap in which no events arrive for a fixed amount of time. Ex-
amples of session windows are HTTP sessions and ATM interac-
tions. In addition, there are user-defined windows [10] that are
not in Dataflow and they start and end with user-defined events.
Tumbling and sliding windows are created and terminated peri-
odically and have fixed window sizes. Session and user-defined
1https://github.com/hpides/Deco#deco

windows have unfixed window sizes since their window lengths
are determined by session gaps and user-defined events.

2.2 Window Measures
Window measures decide how to measure the size of a window.
There are twowindowmeasures: time and count. For time-based
windows, the window start and end are determined by time, e.g.,
output average temperature every 5 seconds. Even though every
window has the same window size, they can hold different num-
ber of events. For count-based windows, the window start and
end are determined by the number of events in a window, e.g.,
output average temperature of the last 1000 manufactured prod-
ucts. The time span of count-based windows varies and relies
on the generation speed of events from data streams but each
window has the same number of events. In this paper, we focus
on count-based windows.

2.3 Aggregation Function
In Data Cube [28], Gray et al. categorize aggregation functions
into three types: distributive, algebraic, and holistic. Distributive
aggregate functions can perform partial aggregation on a sub-
part of a dataset and then merge partial results of all sub-parts
to output the results of the function, e.g., sum, count, andmin. Al-
gebraic aggregate functions can be computed from results of dis-
tributive aggregate functions, e.g., avg (as sum / count). Holistic
aggregate functions cannot be calculated by partial aggregation,
e.g., median or quantiles. Jesus et al. [36] similarly categorize
aggregation function as decomposable, self-decomposable, and
non-decomposable. Self-decomposable and decomposable func-
tions can split windows into slices with finer granularity. Events
in slices are partially aggregated and final results are computed
by combining partial results of the slices. Non-decomposable
functions cannot split windows in advance.2 In this work, we
focus on windows with (self-)decomposable functions.

2.4 Centralized Aggregation is a Bottleneck
Existing methods often resort to centralized aggregation for pro-
cessing count-based windows, consolidating data from diverse
sources into a central node. [9, 43, 56, 66]. While this approach
guarantees the accuracy of query results, it presents a signifi-
cant challenge. As the number of data sources and events per
source increases, a common scenario in large-scale IoT applica-
tions (as highlighted in the earlier example), the central aggrega-
tor can become a bottleneck. This occurs because all the data is
transmitted over the network and processed centrally, causing
the central node to slow down and potentially increase network
costs as the network expands. In Deco, we aim to address this
challenge by decentralized aggregation while offering the same
accuracy in the query results.

3 DECO SYSTEM MODEL
Data StreamModel. In decentralized deployments, data streams
are produced from distributed nodes as seen in Figure 1. Those
datastream nodes are weak sensor nodes and only produce data.
A stream is an infinite series of tuples 𝑡 ∈ 𝑠 . A tuple, i.e., data
event, 𝑡 = (𝑖, 𝑣, 𝜏), value 𝑣 , timestamp 𝜏 ∈ N+ and id 𝑖 are as-
signed by the data stream node. [12] All events are produced
in order per sensor, so their timestamps monotonically increase.
Deco uses timestamps and watermarks for event ordering like

2Deco performs centralized aggregation for non-decomposable functions.
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Figure 1: Network of a decentralized streaming topology

other SPEs including Flink. The datastreamnodes produce events
at an event rate that is defined as the number of events received
per second. We distinguish the event rates of local nodes and
data stream nodes (directly from the sensors). The global event
rate is the sum of the event rates of all local nodes.
WindowOperatorModel.Once awindow starts, we put events
into thewindow.When thewindow ends, we aggregate the value
of each event to produce the result. Commonly, the result is
a number. Additionally, we use a stable sorting algorithm, and
events are ordered by timestamp in windows. When two events
share the same timestamp at the count-based window edge, we
use the first one. Figure 1 shows the topology of decentralized
networks. Data streams are distributed onto local nodes (middle
layer) followed by final aggregation on the root node (top layer).
We denote the top node as a root node andmiddle devices as local
nodes. Local nodes are assumed to be wimpy but smart devices,
e.g., edge switches [18] and routers [19] that can store a window
of up to 1 million events (33 MB of RAM in our experiments (Sec-
tion 5)). The root node is assumed to be more powerful (cloud
server) and can process partial results from local nodes.

We distinguish windows calculated on root and local nodes as
global window and local window, respectively. A local window
serves as a subset of events of the global window. We refer to
every count-based window as a global window, e.g., the global
window size is 1 million when the query is to output a result
of every 1 million events. The global window size is given by
the query and is not changeable. In centralized aggregation, the
local nodes only forward the raw events to the root. Therefore,
no local windows are formed and we have only a global win-
dow that is processed at the root node. In decentralized window
aggregation, instead, a global window comprises a set of local
windows, where events are partially aggregated on local nodes
and forwarded to the root node for the final aggregation.
Communication Model.When processing windows in decen-
tralized deployments, local nodes have to receive messages from
the root node, e.g., window types, window measures, and aggre-
gation functions. Also, the root node receives messages from lo-
cal nodes, e.g., partial results, raw events, and event rates. We
define the communication between the local and the root node
as a flow. It refers to a single-direction communication, e.g., in-
formation that is sent from the local node to the root or the an-
swer is sent back from the root back to the local node. We de-
note up-flow as the communication from local nodes to root and
down-flow as the one from root to local nodes. Current central-
ized approaches are single-flow approaches since there is only
one up-flow communication for each global window.

4 THE DECO SYSTEM
In this section, we first introduce how the decentralized aggrega-
tion model works and identify the issues Deco approach has to
deal with. We then present the architecture and technical details
of the Deco and discuss optimization ideas for various situations.

4.1 Approximate Decentralized Aggregation
To process count-based windows locally, we let the root node co-
ordinate local nodes, i.e., we execute count-based window oper-
ators on the local nodes. The root node determines for each local
node the local window size l such that windows can terminate
locally. The local nodes need global information to determine
the correct end of a local count-based window. In real-world ap-
plications, the event rate f of each source can be different. We
calculate local window sizes by analyzing the local event rates
of data streams. In a decentralized network, there are many data
streams and the number of streams connected to each local node
is also different. We formally define the theoretical local window
size as follows. Given a local node a, let n be the number of con-
nected data streams. Let 𝑓1, 𝑓2, . . . , 𝑓𝑛 be the event rates of all
connected data streams where f refers to the event rate of a sin-
gle stream. Then 𝑓𝑎 =

∑𝑛
𝑖=1 𝑓𝑖 is the total event rate of node a. For

a decentralized network with m local nodes and the total event
rate of the root node is 𝑓𝑟𝑜𝑜𝑡 =

∑𝑚
𝑖=1 𝑓𝑖 . Furthermore, let 𝑙𝑔𝑙𝑜𝑏𝑎𝑙

be the global window size and 𝑙𝑎 = 𝑓𝑎
𝑓𝑟𝑜𝑜𝑡

∗ 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 be the local
window size of node a. The global window size is equal to the
sum of all local window sizes

∑𝑚
𝑖=1 𝑙𝑖 comprising events of this

global window. For example, for two local nodes a and b with
a global window size of 1 million events, where the local event
rate of node a is 1.2 million events per second and of node b is
0.8 million events per second. The local window size of node a
will be determined as 1.2

(1.2+0.8) ∗ 1 million, which is equal to 0.6
million events and similarly for local node b is 0.4million events.
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Figure 2: Approximate decentralized aggregation
A naive approximate decentralized aggregation approach has

two steps, (i) initialization step, and (ii) calculation step. When
processing the first global window, the root node executes the
initialization step that creates a global window and collects all
events from local nodes. Once the global window ends, the root
aggregates events and outputs the result. Also, local window
sizes (𝑙𝑖 ) are calculated and sent to the local nodes. From the
second global window onward, only the calculation step is exe-
cuted, as shown in Figure 2. Local nodes use local window sizes
to create local windows and send partial results to the root node.
In the root node, only partial results are collected and processed.
There is only one up-flow in each global window and every local
window reuses the same local window size as the previous one.
The single-flow approach applies decentralized aggregation to
process count-based windows, so windows can be aggregated lo-
cally and they send only the partial results instead of raw events.

This simple approach in general does not produce correct re-
sults in the case of changing event rates. A local node might con-
tribute more or fewer events to the global window. This leads to
varying sizes of local windows because the global window size
is fixed, so an increase in one local window size causes another
local window size to decrease. Therefore, when the event rate



changes and the partial result is still calculated with the static
local window size, the final result is incorrect. In the following,
we discuss how Deco approaches address these issues.

4.2 Deco Approaches
In the following we explain our three approaches that are ca-
pable of adapting to changing event rates. The Deco approach
ensures that the results are similarly correctly delivered like cen-
tralized aggregation solutions. In decentralized aggregation, Deco
splits windows and moves window aggregations to local nodes
and dynamically adapts to changing event rates. This is done by
recomputing local window sizes for each global window as the
event rates of each data stream change.

4.2.1 Monitoring scheme: Decomon. In order to adapt to chang-
ing event rates, local nodes recalculate local window sizes for
each new global window. In Figure 3, we show themechanism of
Decomon, which uses monitoring to compute local window sizes
and distribute window computations to local nodes. For each
global window, Decomon performs a sequence of three steps: (1)
initialization, (2) verification, and (3) calculation. During the ini-
tialization step, all local nodes send measured event rates from
all the data sources to the root node. Once the event rates are
collected from all data sources, the system starts the verification
step. The root node calculates local window sizes (𝑙𝑎,𝐺1 for node
a and 𝑙𝑏,𝐺1 for node b) of the global window (𝐺1) and sends them
back to local nodes. During the calculation step, local nodes cre-
ate local windows based on the local window sizes received from
the root and perform the local window aggregation.
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...

...

fA,G1

fB,G1
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...

...

lA,G1 lB,G1

First Global Window
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Figure 3: Decomon scheme

Compared to centralized aggregation, the Decomon can of-
fload computations to local nodes and reduce the network over-
head of a decentralized setup. This is because local nodes only
send partial results instead of events to the root node. However,
it is a synchronized approach since the root node starts the ver-
ification step only if it receives the event rate from local nodes
and local nodes start calculating results when they have local
window sizes. In this case, for every global window, there are
three communication flows between the root and local nodes.
That leads to significant latency.

To reduce communication flows, we can merge initialization
step and calculation step of two consecutive global windows as
they are both consecutive up-flows. The root node does not wait
for the initialization step to finish but computes local window
sizes based on the event rates of the last global window and as-
signs them to local nodes. In this case, the root nodewill produce
wrong local window sizes because the event rates sent by local
nodes are outdated when the event rates change, so the results
will be wrong. Therefore, in Decomon we cannot merge differ-
ent steps without losing correctness. In the following section,
we propose another scheme that reduces communication flows
and still emits correct results.

4.2.2 Synchronous Scheme: Decosync. To reduce communica-
tion flow and have correct results, we propose Decosync which
applies a simple prediction technique for local window sizes. In
general case, Decosync has three steps, i.e., prediction, calcula-
tion, and verification. Decosync is a synchronized approach. The
root node predicts the local window sizes. If the prediction is
wrong, Decosync will perform a correction step to produce the
correct results.
Initialization. For the first two global windows, Decosync has
no event rates that can be used for prediction. Thus for them, the
root node collects all events from the local nodes in a centralized
fashion and computes the global window. The root node applies
the aggregation functions and emits the result once the window
ends. When the second window ends, the root node calculates
the local window sizes for each local node. We denote the local
window sizes of node a for the first and second global windows
as 𝑙𝑎,𝐺1 and 𝑙𝑎,𝐺2.
Prediction. From the third window onward, Decosync predicts
the local window sizes to push down the count-based window
operator to local nodes and aggregate partial windows there. In
this step, local nodes wait until the message from the root node.
To distinguish between the actual local window size and pre-
dicted local window size, we let the predicted local window size
of the node a in the third global window be 𝑙𝑎,𝐺3. We reuse the
actual local window size of the previouswindow as the predicted
local window size of the window. We present Algorithm 1 that
shows the prediction step.

Algorithm 1 Decosync performs the prediction step of window
i on the root node.
Input: 𝑙𝑎,𝐺𝑖−1 , 𝑙𝑎,𝐺𝑖−2 : last two windows
Output: 𝑙𝑎,𝐺𝑖 , Δ𝑎,𝐺𝑖 : predicted local window and delta as small buffer
1: 𝑙𝑎,𝐺𝑖 = 𝑙𝑎,𝐺𝑖−1
2: Δ𝑎,𝐺𝑖 =

��𝑙𝑎,𝐺𝑖−1 − 𝑙𝑎,𝐺𝑖−2
��

3: send 𝑙𝑎,𝐺𝑖 and Δ𝑎,𝐺𝑖 to local nodes

We assume that event rates change slightly and the local win-
dow sizes in two consecutive global windows are close. The pre-
dicted local window size is defined as follows.

𝑙𝑎,𝐺𝑖 = 𝑙𝑎,𝐺𝑖−1 . (1)

However, the predicted local window size is not the actual lo-
cal window size when the event rates vary.We introduce a factor
delta (Δ) to enable the root node to correct prediction errors of
local window sizes. The delta of a local node a in third global
window is computed as Δ𝑎,𝐺3 =

��𝑙𝑎,𝐺2 − 𝑙𝑎,𝐺1
��. It reflects the dif-

ference between the consecutive windows, so we only look at
the delta between the past two local windows. The delta for a
given node a for any global window after the second global win-
dow is defined as follows:

Δ𝑎,𝐺𝑖 =
��𝑙𝑎,𝐺𝑖−1 − 𝑙𝑎,𝐺𝑖−2

�� . (2)

Example: For ease of understanding, here is a numerical exam-
ple. The local window size of node a in the last two global win-
dows are 0.6 million (𝑙𝑎,𝐺𝑖−2) and 0.601 million (𝑙𝑎,𝐺𝑖−1). Then,
𝑙𝑎,𝐺𝑖 will be 0.601 million and Δ𝑎,𝐺𝑖 will be 1000. Then, the root
node assigns all predicted local window sizes and deltas to their
corresponding local nodes. Different nodes have different pre-
dicted window sizes and deltas. The prediction step ends and
the root node waits for messages from local nodes.
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Calculation. In the calculation step, the root node waits, and
local nodes create windows and process events. Local nodes cre-
ate local windows after receiving predicted local window sizes
and deltas from the root node as shown in Figure 4. Decosync
creates a local window on node a and divides the window into
two parts, a local slice and a local buffer. We present Algorithm
2 on the calculation step.

Algorithm 2 Decosync performs calculation step of window i
on the local node a.
Input: 𝑙𝑎,𝐺𝑖 , Δ𝑎,𝐺𝑖 : predicted window size and delta
Output: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 , 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 ], 𝑒𝑣𝑒𝑛𝑡_𝑟𝑎𝑡𝑒
1: 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 = 𝑙𝑎,𝐺𝑖 − Δ𝑎,𝐺𝑖
2: 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 = 2 ∗ Δ𝑎,𝐺𝑖

3: 𝑠𝑙𝑖𝑐𝑒 [𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 ] ← 𝑒𝑣𝑒𝑛𝑡𝑠 ⊲ read events
4: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 ← aggregate 𝑠𝑙𝑖𝑐𝑒 [𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 ] ⊲ aggregation
5: 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 ] ← 𝑒𝑣𝑒𝑛𝑡𝑠 ⊲ read events
6: send 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 , 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 ], 𝑒𝑣𝑒𝑛𝑡_𝑟𝑎𝑡𝑒 to root node

Decosync partially aggregates events in the local slice. The lo-
cal buffer is a set of 2 ∗𝐷𝑒𝑙𝑡𝑎𝑎,𝐺𝑖 events after the local slice. We
formally define the local slice and local buffer as follows. Let
𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 be the local slice size and let 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 be the local buffer
size of the node a. Equations 3 and 4 define the local slice size
and buffer size as follows:

𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 =

{
𝑙𝑎,𝐺𝑖 − Δ𝑎,𝐺𝑖 𝑖 𝑓 𝑙𝑎,𝐺𝑖 > Δ𝑎,𝐺𝑖 ,

0 𝑒𝑙𝑠𝑒,
(3)

𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 = 2 ∗ Δ𝑎,𝐺𝑖 . (4)
Example: In the above numerical example, 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 is 0.6million

and 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 is 2000.
Events in a local slice belong to either the current or the next

local window. The prediction of the local window size is under-
or over-estimated when the event rate changes. This may hap-
pen as the root node predicts the local window size before know-
ing the actual event rates. Decosync’s delta intercepts this up to
a degree of Δ𝑎,𝐺𝑖 . Hereby creating a local slice is a synchronous
computation between all nodes. It is only created when the pre-
vious global window ends to make sure that the current local
slice has the correct starting event and no events from the pre-
vious window are included in the current local slice. Decosync
performs incremental aggregation to all events in the local slice
and outputs partial results to the root once the local slice ends.
Decosync creates the local buffer to buffer events and transmits
all of these events directly to the root node when the buffer is
full. We compute the local buffer size of global window i as fol-
lows. In some cases, there are late events and we will talk about
this case in the later text (4.3.1).

The predicted local window size is larger than the local slice
size but smaller than the sum of local slice size and local buffer
size, i.e., 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 + 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 . This is because the local node in-
volves more events to its window to adapt to changing event

rates. Once the local buffer is full, the local node sends the par-
tial result of the local slice, the event rate, and the events in local
buffer to the root node. The updates are propagated to the root
node and Decosync moves to the verification step.

Verification  Step

Third Global Window

Root Slice

Local Slice Local Buffer

Local Slice Local Buffer

BA ... ... ...

Root Buffer
Root Node:

Local NodeA:

Local NodeB:

Event:

Final Result:

Data Flow:

timeline

Partial Result:

Figure 5: Verification step in the root node of Decosync
Verification. In the verification step, we verify the predicted lo-
cal window sizes and calculate the final results. While the root
node performs the verification local nodes wait for the confir-
mation. The root node first calculates the actual local window
size for all local nodes based on the event rates sent by the lo-
cal nodes. We let 𝑙𝑎,𝐺𝑖 be the predicted local window size and
𝑙𝑎,𝐺𝑖 be the actual local window size. The prediction of node a is
acceptable when 𝑙𝑎,𝐺𝑖 conforms Equation 5 or 6, otherwise the
prediction is wrong and we call this a prediction error:

𝑙𝑎,𝐺𝑖 < 𝑙𝑎,𝐺𝑖 + Δ𝑎,𝐺𝑖 , (5)

𝑙𝑎,𝐺𝑖 >= 𝑙𝑎,𝐺𝑖 − Δ𝑎,𝐺𝑖 . (6)
Here is an example of the root node performing the verifica-

tion step (Algorithm 3). Example. In the previous example, let
𝑙𝑎,𝐺𝑖 be 0.6005million, the 𝑙𝑎,𝐺𝑖 −Δ𝑎,𝐺𝑖 is 0.6million and 𝑙𝑎,𝐺𝑖 +
Δ𝑎,𝐺𝑖 is 0.602 million. Thus, the prediction of node a is correct.

Algorithm 3 Decosync performs verification step of window i
on the root node.
Input: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 , 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑏𝑢𝑓 𝑓 𝑒𝑟 ], 𝑒𝑣𝑒𝑛𝑡_𝑟𝑎𝑡𝑒
Output: 𝑟𝑒𝑠𝑢𝑙𝑡
1: 𝑟𝑒𝑠𝑢𝑙𝑡 ← aggregate 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 ⊲ aggregation
2: 𝑟𝑜𝑜𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 [ ] ← 𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑏𝑢𝑓 𝑓 𝑒𝑟 ] ⊲ read local buffers
3: 𝑟𝑒𝑠𝑢𝑙𝑡 ← aggregate 𝑟𝑜𝑜𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 ] ⊲ aggregation
4: if ∀𝑎 : [𝑙𝑎,𝐺𝑖 < 𝑙𝑎,𝐺𝑖 + Δ𝑎,𝐺𝑖 & 𝑙𝑎,𝐺𝑖 >= 𝑙𝑎,𝐺𝑖 − Δ𝑎,𝐺𝑖 ] then
5: start next global window ⊲ prediction correct
6: return 𝑟𝑒𝑠𝑢𝑙𝑡
7: else
8: start correction step ⊲ prediction wrong
9: end if

Next, we discuss the prediction error. 𝑙𝑎,𝐺𝑖 + Δ𝑎,𝐺𝑖 is equal
to 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 + 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 . Local nodes only send events that are in
local buffers and assume all events after local buffers belong to
the next window. When 𝑙𝑎,𝐺𝑖 is larger than 𝑙𝑎,𝐺𝑖 + Δ𝑎,𝐺𝑖 , i.e.,
Equation 5 is violated, the root node cannot collect all events
of the current global window, so the result is incorrect. Further-
more, 𝑙𝑎,𝐺𝑖 −Δ𝑎,𝐺𝑖 is equal to 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 . When 𝑙𝑎,𝐺𝑖 is smaller than
𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 , i.e., Equation 6 is violated, the partial result calculated by
the local node is wrong and the root node cannot produce the
correct result as well. Additionally, some cases also can result in
prediction errors, and we will discuss these cases and how to fix
prediction errors in the later text (Section 4.3).

When the prediction is correct, the root node starts to calcu-
late the final result. It creates a global window that has two parts,
root slice and root buffer, which are analogously defined as local
nodes. Let n be the number of nodes in a decentralized network
and 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 is the size of a root slice. The root slice size of the



global window i is equal to the sum of local slice sizes of all local
nodes. Formally, we compute the total root slice size as follows:

𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 =
𝑛∑
𝑗=1

𝑙 𝑗,𝑠𝑙𝑖𝑐𝑒 . (7)

The root buffer size 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 is computed as follows:

𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 =
𝑛∑
𝑗=1

𝑙 𝑗,𝑏𝑢𝑓 𝑓 𝑒𝑟 . (8)

Example: The 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 and 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 of node a are 0.6 million
and 2000. Let 𝑙𝑏,𝑠𝑙𝑖𝑐𝑒 and 𝑙𝑏,𝑏𝑢𝑓 𝑓 𝑒𝑟 of node b be 0.398million and
2000. So root slice size is 0.998 and root buffer size is 4000.

As illustrated in Figure 5, Decosync first creates a root slice
and a root buffer on the root node and collects partial results
from local node a and b and the statistics including the number
of events and the first and the last event’s timestamps. All partial
results are put into the root slice and aggregated incrementally.
Once the root slice has partial results from all local nodes, the
root node ends the root slice. Also, all events sent from the local
buffers are stored in the root buffer. Decosync sorts the events
in the root buffer by their timestamps and terminates the root
buffer once there are 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 events. Then Decosync selects
first 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 (i.e., 2000 as global window size is 1 mil-
lion) events from the root buffer and aggregates them with the
result of the root slice.

The root node calculates the final result and the actual local
window sizes. The current global window ends, the root node
then starts the next global window and repeats the prediction
step. In the local nodes, the next window starts when new pred-
icated local window sizes (e.g., local slice sizes and local buffer
sizes) arrive. The local nodes first drop all events in the previous
local window as they already contributed to an emitted result
and then repeat the calculation step.

In addition, when the local window sizes of node a of two
consecutive global windows are roughly the same Δ𝑎,𝐺𝑖 will be
close to zero as Equation 2 shows. In this case, the predicted
local window size stays the same and the local buffer size is al-
most zero. The local nodes only send partial results to the root
node rather than additional raw events. Without sending raw
events, even slight changes in event rates may result in incorrect
results. Therefore, we record Δ𝑎,𝐺𝑖 for every global window and
compute the average Δ𝑎,𝐺𝑖 of the lastm global windows. In this
case, Δ𝑎,𝐺𝑖 is affected by multiple past windows. The parameter
m is selected by the user and defines how aggressive Decosync
adapts to event rate changes.Whenm is large, theΔ𝑎,𝐺𝑖 is steady
and changes slowly. In contrast, when m is small Δ𝑎,𝐺𝑖 is easily
affected by changes in the event rate.

4.2.3 Asynchronous scheme: Decoasync. Decosync is a synchro-
nous approach with three steps to process every global window.
In the prediction step, local nodes are blocked and await infor-
mation from the root node. In the calculation step, the root node
waits for partial results and information before starting the veri-
fication step and continuing the prediction step of the next global
window. To unblock local and root nodes, we propose Decoasync.
Decoasync has at least one communication flow between the root
node and the local nodes. The first three global windows are
processed similarly to Decosync. From the fourth global window,
Decoasync only has a calculation and a verification step for each
window. Instead of waiting for new information from the root
node, local nodes predict slice sizes and buffer sizes locally.

Calculation/Verification Step

Global Window

Root Slice

Slice AFbuffer A

BA ...

Fbuffer B Slice B

Ebuffer A

Ebuffer B
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Figure 6: Calculation and verification steps of Decoasync

Calculation. In the calculation step, all local nodes have the pre-
dicted local window sizes and deltas from the previous global
window. As illustrated in Figure 6, local nodes divide local win-
dows into three parts, i.e., local front buffer (Fbuffer), local slice,
and local end buffer (Ebuffer). We let 𝑙𝑎 and Δ𝑎 be the predicted
local window size and delta of node a. In the following, we show
the calculation step of Decoasync in Algorithm 4.

Algorithm 4 Decoasync perform calculation step of window i
on the local node a.
Input: 𝑙𝑎,𝐺𝑖 , Δ𝑎,𝐺𝑖 : predicted window size and delta
Output: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 , 𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝑒𝑣𝑒𝑛𝑡_𝑟𝑎𝑡𝑒
1: 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 = 𝑙𝑎,𝐺𝑖 − 2 ∗ Δ𝑎,𝐺𝑖
2: 𝑙𝑎,𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 = 𝑙𝑎,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 = Δ𝑎,𝐺𝑖

3: 𝑠𝑙𝑖𝑐𝑒 [𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 ] ← 𝑒𝑣𝑒𝑛𝑡𝑠 ⊲ read events
4: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 ← aggregate 𝑠𝑙𝑖𝑐𝑒 [𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 ] ⊲ aggregation
5: 𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑎,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 ] ← 𝑒𝑣𝑒𝑛𝑡𝑠 ⊲ read events
6: 𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑎,𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 ] ← 𝑒𝑣𝑒𝑛𝑡𝑠 ⊲ read events
7: send 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 , 𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝑒𝑣𝑒𝑛𝑡_𝑟𝑎𝑡𝑒 to root node

We define the local slice size in Equation 9:

𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 =

{
𝑙𝑎 − 2 ∗ Δ𝑎 𝑖 𝑓 𝑙𝑎 > 2 ∗ Δ𝑎,
0 𝑒𝑙𝑠𝑒.

(9)

The predicted local windows may not be the same as the ac-
tual local window. To make room for prediction error, we create
an Fbuffer and an Ebuffer for every predicted local window. The
Fbuffer is before the local slice and the Ebuffer is after the local
slice. Let 𝑙𝑎,𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 and 𝑙𝑎,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 be the Fbuffer and Ebuffer size
of local node a, we define the Fbuffer and Ebuffer in Equation 10:

𝑙𝑎,𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 = 𝑙𝑎,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 = Δ𝑎,𝐺𝑖 . (10)

Example: Let 𝑙𝑎 andΔ𝑎 be 0.601million and 1000. Then, 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒
is 0.599 million, and 𝑙𝑎,𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 and 𝑙𝑎,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 are 1000.

If 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 is 0, we calculate 𝑙𝑎,𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 and 𝑙𝑎,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 as
𝑙𝑎
2 , oth-

erwise they are calculated by Equation 10. The local nodes ag-
gregate local slices and send partial results while all events in
Fbuffers and Ebuffers are transmitted to the root node directly.
The local nodes then start the calculation step of the next global
window immediately without waiting for the message from the
root node. In the next global window, the local nodes reuse the
Fbuffer sizes, local slice sizes, and Ebuffer sizes of the previous
global windows. In this case, the local nodes are not blocked and
are able to process windows consecutively as the approximate
solution but provide the correct results. Also, 𝑙𝑎 and Δ𝑎 will be
updated once the local node receives the new local window size
and delta. Otherwise, the local node reuses the same values from
the previous calculation step.
Verification. In the verification step, the root node splits global
windows into two parts, i.e., root slice and root buffer (see Fig-
ure 6). The root slice aggregates partial results from local slices
and its size is defined below:



𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 =
𝑛∑
𝑗=1

𝑙 𝑗,𝑠𝑙𝑖𝑐𝑒 . (11)

Example: Based on the above numerical example, the local
slice size of node a and b are 0.599 million and 0.397 million.
Thus, root slice size (𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 ) is 0.996 million. We present Al-
gorithm 5 on the verification step.

Algorithm 5 Decoasync perform verification step of window i
on the root node.
Input: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 , 𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 , 𝑒𝑣𝑒𝑛𝑡_𝑟𝑎𝑡𝑒
Output: 𝑙𝑎,𝐺𝑖 , Δ𝑎,𝐺𝑖 , 𝑟𝑒𝑠𝑢𝑙𝑡 : predicted local window size and delta
1: 𝑟𝑒𝑠𝑢𝑙𝑡 ← aggregate 𝑝𝑎𝑟𝑡𝑖𝑎𝑙_𝑟𝑒𝑠𝑢𝑙𝑡 ⊲ aggregation
2: 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑟𝑜𝑜𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 [ ] ← 𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑏𝑢𝑓 𝑓 𝑒𝑟 ] ⊲ read local Fbuffers
3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑜𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 [ ] ← 𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑏𝑢𝑓 𝑓 𝑒𝑟 ] ⊲ read local Ebuffers
4: 𝑟𝑒𝑠𝑢𝑙𝑡 ← aggregate 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑟𝑜𝑜𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 [ ] ⊲ aggregation
5: 𝑟𝑒𝑠𝑢𝑙𝑡 ← aggregate 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑟𝑜𝑜𝑡_𝑏𝑢𝑓 𝑓 𝑒𝑟 [𝑙𝑔𝑙𝑜𝑏𝑎𝑙 − 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 −

𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 ] ⊲ aggregation
6: if [𝑙𝑔𝑙𝑜𝑏𝑎𝑙 < 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 + 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 + 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 & 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 >=

𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 + 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 ] then
7: start next global window ⊲ prediction correct
8: 𝑙𝑎,𝐺𝑖 = 𝑙𝑎,𝐺𝑖−1
9: Δ𝑎,𝐺𝑖 =

��𝑙𝑎,𝐺𝑖−1 − 𝑙𝑎,𝐺𝑖−2
��

10: send 𝑙𝑎,𝐺𝑖 and Δ𝑎,𝐺𝑖 to local nodes
11: return 𝑟𝑒𝑠𝑢𝑙𝑡
12: else
13: start correction step ⊲ prediction wrong
14: end if

The root node has two root buffers, i.e., the previous root
buffer and the current root buffer. The previous root buffer is
from the previous global window and it is not empty if the pre-
vious window does not aggregate all events from it. Once the fi-
nal result of the previous global window is calculated, all events
belonging to the previous global window are removed from the
previous root buffer. All events that are not removed are consid-
ered part of the current global window. The previous root buffer
collects Fbuffer from local nodes. We let 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 be the pre-
vious root buffer size and it is defined in Equation 12:

𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 = 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 +
𝑛∑
𝑗=1

𝑙 𝑗,𝐹𝑏𝑢𝑓 𝑓 𝑒𝑟 . (12)

Example: The previous root buffer size initially is 100 and the
Fbuffer size of a and b are 1000 as well. The 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 is 2100.
Also, the root node creates a new root buffer for every global
window, which is the current root buffer. All Ebuffer are put into
the current root buffer. Let current root buffer size be 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟
(Equation 12).

𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 =
𝑛∑
𝑗=1

𝑙 𝑗,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 . (13)

Example: As 𝑙𝑎,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 and 𝑙𝑏,𝐸𝑏𝑢𝑓 𝑓 𝑒𝑟 are 1000, 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 is
equal to 2000.

When the root node collects all partial results, Fbuffers, and
Ebuffers, it starts to verify the local nodes’ predictions. We let
𝑙𝑔𝑙𝑜𝑏𝑎𝑙 be the global window size. The prediction is acceptable
when 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 conforms Equation 14 and 15, otherwise the predic-
tion is wrong and we perform the correction step.

𝑙𝑔𝑙𝑜𝑏𝑎𝑙 >= 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 + 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 , (14)

𝑙𝑔𝑙𝑜𝑏𝑎𝑙 < 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 + 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 + 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 . (15)

Example: The 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 is 1 million, 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 + 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 is
0.9981million, and 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 + 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 + 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 is 1.0001
million. Thus, the predictions are correct.

When the prediction is correct, the root selects first 𝑙𝑔𝑙𝑜𝑏𝑎𝑙 −
𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 − 𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 events from the current root buffer and
aggregates those events to output the partial results. This partial
result is aggregated with the root slice and previous root buffer
to produce the final results. All events calculated in the current
root buffer are dropped with the previous root buffer and root
slice. Afterwards, the root node calculates the predicted local
window sizes as well as deltas assigns them to the local nodes,
and then starts the next global window. In this case, Decoasync
is able to process windows continuously the same as the approx-
imate solution as the root node needs to wait for messages from
local nodes while local nodes do not.

4.3 Correctness of Deco Approaches
Decomon monitors the event rates of all local nodes and sends
the actual local window sizes to local nodes. In this case, Decomon
always produces correct results even if the event rates change
significantly. Decosync and Decoasync predict the local window
sizes for the next global window and their results are verified in
the verification step. The verification step ensures that any pre-
diction errors can be detected. When the predictions are wrong,
Decosync and Decoasync have to perform the correction step.

4.3.1 Correction Step of Decosync. if Decosync predicts local
window sizes correctly during the prediction step, the final re-
sults will be correct as well. However, in real decentralized net-
works, the event rates may change frequently and significantly.
We, therefore, perform verification step to detect whether the
prediction is correct or not. When the actual local window size
conforms Equation 5, 6, the prediction is correct, otherwise there
is a prediction error.

There are two scenarios that result in inaccurate predictions.
In the first scenario, the event rate of a local node increases and
the actual local window is larger than the predicted local win-
dow. To deal with this case, we create a slice and a buffer on the
local node and the sizes of slice and buffer are larger than the
size of predicted window sizes, i.e., slice size and buffer size are
𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 + 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 . The local nodes send more events than the
predicted local window to the root node so that Decosync can
make room for the prediction. The root node determines which
events from buffers belong to the current global window. In the
second scenario, the event rate decreases and the actual local
window is smaller than the predicted local window. To deal with
this case, the size of local slice is smaller than the predicted local
window, i.e., slice size is 𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 . The local node uses fewer events
when calculating the partial results in order to make room for
the prediction as well. The root node aggregates partial results
and events from buffer to calculate correct results.

Event rates might change significantly and increase too much
in a local node. The local slice and local buffer on that local node
are quickly filled. After sending the message to the root node,
the local node is blocked and waits for a message from the veri-
fication step before starting the next window. Therefore, the lo-
cal node only needs to store one window in memory. Decosync
buffers all events in the memory.

In rare cases, the actual local window size (𝑙𝑎,𝐺𝑖 ) is larger than
local slice and local buffer sizes (𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 + 𝑙𝑎,𝑏𝑢𝑓 𝑓 𝑒𝑟 ) and the pre-
diction is wrong, i.e., predicted too less. That violate the Equa-
tion 5. Analogously, when the event rates decrease toomuch, the



actual local window size (𝑙𝑎,𝐺𝑖 ) is smaller than slice size (𝑙𝑎,𝑠𝑙𝑖𝑐𝑒 ),
i.e., predict too much. The partial results sent from local nodes
involve events belonging to the next global window and can-
not be aggregated to the current global window, which violates
Equation 6. Also, given that the global window size is fixed, an
increased local window size of one node leads to a decrease of
other node’s local window size. Two cases usually happen in
the same global window. To deal with these prediction errors,
we perform correction steps to produce the correct results. The
correction step is similar to the Decomon as they use the actual
local window sizes to calculate results.

Here, we discuss how Decosync performs the correction step.
As the root node has to calculate the actual local window size for
all local nodes, it needs to wait for all local nodes to send event
rates. Decosync terminates the verification step only if the root
node has received event rates from all local nodes. Firstly, the
root node directly assigns all the actual local window sizes to the
local nodes and informs them there is a prediction error as the
actual local window sizes of all local nodes are calculated in the
verification step. Secondly, once local nodes receive actual local
window sizes and messages, they create local windows based on
the actual local window sizes and calculate partial results. The
local nodes then send partial results as well as the last event to
the root node. This is because the actual window sizes are cal-
culated from the event rates and they might not be the integers.
The last event may or may not belong to the global window. Fi-
nally, the root node aggregates all partial results and last events
that belong to the current global window and starts to process
for the next global window. In the correction step, there are two
communication flows, one from the root to inform local nodes
and another one from local nodes to send correct partial results.

Decosync provides support for backpressure mechanisms by
introducing queues like Kafka [43]. Such mechanisms of queu-
ing might introduce additional delays for decentralized process-
ing of count windows as other nodes may have to wait until the
queued events are in the SPE, which is the case in other known
SPEs like Flink also. Still, event correctness is not compromised
in Decosync so we trade it against processing delay. Having guar-
antees for both correctness and low processing delay is an or-
thogonal direction and can be the future work of Deco.

4.3.2 Correction Step of Decoasync. If the event rates change
and Decoasync cannot ensure that every prediction is correct,
we employ a verification step to detect where the prediction
is wrong. When the global window size violates either Equa-
tions 14 or 15, there is a prediction error. There are two scenarios
that lead to prediction errors. In the root node, when the previ-
ous root buffer size and root slice size (𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 + 𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒 )
are larger than global window size, the root slices contain events
that are not part of the current window. That violates the Equa-
tion 14, i.e., an overestimation. Additionally, when the previous
root buffer size, root slice size, and current root buffer size, i.e.,
𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 +𝑙𝑟𝑜𝑜𝑡,𝑠𝑙𝑖𝑐𝑒+𝑙𝑟𝑜𝑜𝑡,𝑏𝑢𝑓 𝑓 𝑒𝑟 , are smaller than global win-
dow size, the prediction violates the Equation 15. This is because
the root node cannot collect all events of the current global win-
dow, i.e., predicted too less. To deal with these cases, Decoasync
performs correction step, which is similar to Decomon. There-
fore, the correction step ensures Decoasync produces correct re-
sults.

In the correction step, the root node sends actual local win-
dow size of the current window to local nodes and informs local

nodes the prediction is wrong. The root node then collects par-
tial results for the current window and calculates the final result.
The root node also sends the predicted local window sizes and
deltas for the next global window to local nodes. When local
nodes receive a message from the root node, they update the
newest predicted local window sizes, deltas, and watermarks. If
the predictions are wrong, local nodes calculate correct results
by the actual local window sizes and send partial results to the
root node. As the local nodes are not blocked and they continue
processing windows, all results after the wrong prediction are
incorrect. Local nodes have to back to the window that has the
wrong prediction and recalculate all local windows after that.
If the predictions are correct, local nodes continuously process
windows. Also, all events before a watermark are dropped since
their windows are verified and predicted correctly.

Similar to Decosync, the memory requirements of Decoasync
are also bounded. Local nodes require memory to store events
that are being processed. As soon as the window is processed
and the results are verified and predicted correctly, the local
node clears this window such that new events can be processed
from datastream nodes. Similar to Decosync, Decoasync also uses
backpressure to deal with increasing event rates. This alignswith
the backpressure mechanisms of current SPEs.

4.3.3 Calculation of Event Rates. When the local buffer is full,
the local node calculates the event rate and sends the event rate
to the root node. The local node polls frequencies of data sources
and calculates the event rate based on the frequencies. We as-
sume that the interval is from the time of the last polling fre-
quency to the time of the current polling frequency. So the inter-
val of event rates is a bit larger than the lifespan of the actual lo-
cal window. This is because, in general, the slice size and buffer
size are larger than the actual local window size. Local nodes
send more events than actual local windows to the root node.
All events from the local buffer are ordered by timestamp and
stored in the root buffer. The root node only selects the events
it needs, so the results are still correct.

4.3.4 FailureModel. Timeout andWatermark.We set time-
outs for all local windows to deal with delayed events and miss-
ing messages. The timeout of local nodes can be provided by the
users or calculated by the following equation. The root node’s
timeout is provided by users. For node a in global window Gi,
let 𝑙𝑎,𝐺𝑖 and Δ𝑎,𝐺𝑖 be its predicted local window size and delta.
Let 𝑓𝑎 be the event rate. Its timeout 𝑇𝑎,𝐺𝑖 is calculated as:

𝑇𝑎,𝐺𝑖 =
𝑙𝑎,𝐺𝑖 + 2 ∗ Δ𝑎,𝐺𝑖

𝑓𝑎
. (16)

When a local timeout is triggered, the local node sends events in
the buffer and the new event rate to the root node. If the slice is
still collecting events, the local node will terminate the slice and
send its partial results to the root node. In this case, the root node
still can receive correct partial results and events, since buffers
always involve more events. Also, Deco selects the timestamp
of the last event in the global window as the watermark. When
starting a new global window the root sends the watermark to
local nodes. Local nodes drop all events that have timestamps
earlier than the watermark.
Node failures and unreliable networks.Deco supports crash
failures of the root node and local nodes and can add and remove
nodes during runtime. To add or remove a node, users have to
inform the root node about the whereabouts of the local node.
The root node then adds or removes the node from the Deco and



sends the new topology to all other nodes. To handle failed local
nodes, Deco utilizes a timeout to force local nodes to send infor-
mation in time, which is similar to centralized solutions. Even
if event rates decrease sharply the root node can still receive
messages from the local nodes. When the root does not receive
messages from one of the local nodes, it assumes the node has
failed after the timeout. The root node then starts the correction
step. If the local node permanently fails, the root nodewill elect a
new local node that continues partial aggregation of the window.
When the root node fails, Deco restarts the root node and asks
local nodes to resend messages and then start processing. Addi-
tionally, the network might be unreliable and can drop or delay
messages. When a delayed message is received, if it belongs to
the previous global window, the message will be dropped, other-
wise, the root node starts the correction step. In addition, Deco
is also compatible with similar fault tolerance techniques used
in traditional SPEs like Flink and will sport more failure models
in future work.

In decentralized networks, data sources are distributed on dif-
ferent nodes and have different setups. Deco will break when
there is a data source always sending events with late times-
tamps. Current centralized aggregation solutions also meet the
same issues. In this case, processing events with wrong times-
tamps results in a global window including events that should
be in the next windows. To deal with this issue Deco can utilize
existing solutions [17, 62] to synchronize the clocks of all data
sources and local nodes, which is the same as the current solu-
tions. Deco is also compatible with similar fault tolerance tech-
niques used in traditional SPEs like Flink, e.g., heart-beats, stor-
age checkpointing, state snapshots with the Chandy-Lamport
algorithm, and rewinding the event stream in case of failures.
Therefore, Deco is able to incorporate crash-stop, omission, and
crash recovery. Deco does not support Byzantine failure models.

5 EVALUATION
In this section, we evaluate the performance of Deco and com-
pare our system with state-of-the-art approaches.
Experimental Design. We conduct experiments on a 10-node
cluster (unless specified otherwise) with 25Gbit/s Ethernet con-
nection. Each node has two 18-Core Intel Xeon Gold 5220S CPUs
and 96GB main memory. We run Deco on Ubuntu 20.04 and
OpenJDK 1.8.0.312 64 bit edition. In our experiments, we mea-
sure throughput, network utilization, and latency.
Evaluation Metrics. We measure sustainable throughput. In
this setup, the system processes incoming data without an ever-
increasing backlog [38]. We also compute the sustainable net-
work utilization of every single node in each system and then ag-
gregate them. We measure latency with processing-time rather
than event-time, which calculates the time from when the event
arrives at the node to when the result or partial result involving
the event is produced. For example, a local node starts to cal-
culate latency when the event arrives and output latency when
the partial result of this event is sent to the root node. We output
the final latency by aggregating all latency provided from differ-
ent nodes and the network overhead of latency is not consid-
ered. As data generators are deployed on local nodes, the event-
time when an event is created is the same as the processing-time
when an event arrives. We, therefore, avoid coordination omis-
sion [58] which would lead to significant underestimation of la-
tency [26].
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Figure 7: Performance of different approaches in compar-
ison to Decoasync. Decoasync outperforms centralized ap-
proaches by 10× in throughput and 100× in latency.

Evaluated Approaches. We compare to four approaches, in-
cluding centralized aggregation: Central, Scotty [60], Disco [6],
approximate decentralized aggregation (Approx) against our ap-
proaches3 Decomon, Decosync, and Decoasync. All approaches
are implemented in Java. All can perform incremental aggrega-
tion except for Central. Central is a straightforward approach
that forwards all raw events to the root node and performs the
window aggregation on the root node. Central is analog to an
implementation of common SPEs like Flink and Spark [9, 66].
The Scotty baseline utilizes the Scotty API and shares partial re-
sults between concurrent windows to reduce memory usage and
avoid duplicate processing of a single event. Scotty baseline pro-
cesses events with the centralized aggregation. Disco is a decen-
tralized system that uses the Scotty API, so it also can share par-
tial results. However, Disco only performs decentralized aggre-
gation for time-based windows and processes count-based win-
dows with centralized aggregation. Compared to Scotty, Disco
uses only one thread to receive, process, and send events. We
modify the data input of Disco to use our data generator. Approx
is introduced in Section 4 and it performs decentralized aggrega-
tion for count-based windows but outputs wrong results. This is
because Approx cannot adapt the local window size when event
rates change and thus cannot ensure correctness.
Data Generators. We simulate a decentralized network envi-
ronment. The local nodes run data generator instances that sim-
ulate externally generated events. We simulate multiple paral-
lel data streams by starting each stream with a different offset
in the dataset. An event contains three elements, e.g., id, value,
timestamp. The data generator gives every event a sequential
id and a timestamp. We use the DEBS 2013 dataset [53] to gen-
erate values. Our dataset was collected by a real-time locating
system deployed on a soccer field. The local nodes replay the
dataset from different positions so that we can simulate a real
deployment. The data generator provides a parameter to define
the event rate change, e.g., the event rate is 100 events/s, and it
changes between 95 to 105 events/s if the parameter is 5%.

5.1 End to End Performance
We first compare Decoasync, Scotty, Disco, and Central. We focus
on the throughput, network utilization, and latency metrics of
each system.
End-to-End Throughput and Latency. All approaches are ex-
ecuted on a 9-node cluster with one root and eightlocal nodes.
We process a tumbling count-basedwindow and the aggregation
function 𝑠𝑢𝑚 with the event rate change of 1%.We thenmeasure
the performance of four approaches.

3https://github.com/hpides/Deco#deco



In Figure 7a, we evaluate a count-based window of size 1 mil-
lion with eight local nodes. The throughput of Decoasync is 75.9
million events/s while that of Scotty is 8.3 million events/s. The
results confirm that decentralized aggregation of partial results
has a positive effect on throughput, as we see an increase of al-
most 10×. The partial aggregation close to the source utilizes the
additional processing power of the local nodes. This is clearly an
advantage over centralized approaches like Disco and Central,
which have lower throughputs of 1.7million events/s and 3.3mil-
lion events/s, respectively. We also see that Central outperforms
Disco as Disco only uses a single thread to receive, process, and
send events, while Central and Scotty do not.

In Figure 7b, we show the latency (in ms) of each approach
with eight local nodes. We can observe that Central has the high-
est latency because it collects all events towindows and executes
aggregation functions individually for all events, once the win-
dow ends. The other approaches, instead, process events incre-
mentally. Disco uses the Scotty API to process events but only
uses a single thread, which also results in an increase in latency.
While Scotty’s approach uses separate threads to send, receive,
and process events which is why it almost matches the perfor-
mance of Decoasync in latency.

In summary, Decoasync outperforms all approaches with re-
spect to throughput and is on parwith other approaches in terms
of latency.
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Figure 8: Network utilization of different approaches in
comparison to Decoasync. Decoasync saves network cost by
up to 99% compared to centralized approaches.

Network Utilization. In this experiment, we evaluate the net-
work utilization of the different approaches. All approaches com-
pute the sum over a tumbling count-based window. Every local
node receives 100 million events and the event rate change is 1%.
We then add gradually more local nodes to the topology up to 8
nodes and calculate their network utilization.

In Figure 8a, we show the network utilization of all approaches
in a 2-node cluster, one local and one root node. In compari-
son to the other approaches, Decoasync utilizes only a fraction
of the network resources. Different from the other approaches
Decoasync avoids sending raw events whenever possible, which
saves 99% of the network resources. Our investigation showed
that the network cost of Disco is higher than Central and Scotty
because it uses strings to send events and messages. In the sec-
ond experiment, we gradually increase the number of local nodes
in each topology as seen in Figure 8b so that there are more
events sent between the root and local nodes. Compared with
the 2-node cluster, the network utilization of Decoasync increases
suddenly in the 3-node cluster. Local nodes have to transmit a
fraction of events to make room for prediction. Additionally, we
learn that the network costs of approaches increase linearly (no-
tice the log scale of the y axis) since the overall number of events
increases. Decoasync still shows superior results.

1 4 8 12 16 20 24 28 32
10 6   

10 7   

10 8   

10 9   
Central Disco Scotty Deco async 

Local Nodes

Ev
en

ts
/s

ec

(a) Local node throughput

1 4 8 12 16 20 24 28 32
0

1

10

10 2   

10 3   
Central Disco Scotty Deco async 

Local Nodes

La
te

nc
y 

in
 m

s

(b) Local node latency

Figure 9: Scalability of different approaches in compari-
son to Decoasync. Decoasync outperforms centralized ap-
proaches and its performance scales linearly.

In summary, Decoasync can reduce network cost dramatically
since it performs partial aggregations on local nodes and espe-
cially avoids sending raw events to the root node. In contrast,
centralized approaches send all data from local nodes to the root
node, which is why the total network cost increases linearly
when the number of local nodes increases.
Scalability. Next, we investigate how our approach scales with
additional local nodes. All approaches are initially working on
a 2-node cluster with one root node and one local node. We
gradually add more local nodes to the topology and measure the
throughput and latency. All approaches compute the sum over a
tumbling count-based window with an event rate change of 1%.

In Figure 9a, we gradually increase the number of local nodes
from 1 to 32. To eliminate the effect of small size windows, we
also gradually increase the window size (Section 5.2). All local
nodes connect to the root node. We observe that the through-
put of Decoasync scales linearly and the other approaches stay
the same because Decoasync offloads computations from the root
node to local nodes and aggregates partial results to produce the
final results. We also notice the trend of a gradual slowdown in
the throughput. This is because more events are sent and pro-
cessed on the root node. Scotty and Disco can perform decen-
tralized aggregation when processing time-based windows, but
for count-based windows, they still perform centralized aggre-
gation. Thus, they do not advantage of adding more local nodes
to the setup. As Disco only uses a single thread to send, receive,
and process events, it has less throughput than Scotty and Cen-
tral. Scotty outperforms Central since it performs incremental
aggregation but Central does not.

We measure latency in the same experiment as shown in Fig-
ure 9b. The latency of Decoasync increases very slowly with the
number of local nodes. More local nodes send events to the root
node, which leads to more calculations on the root node. Scotty,
Disco, and Central on the other side, send all raw events to the
root node and perform a centralized aggregation and thus ob-
serve constant latency.

In summary, when processing count-based windows, decen-
tralized aggregation benefits from additional local nodes and we
see an increase in throughput. We also notice a gradual slow-
ing trend in throughput growth and a slow increase in latency.
Decoasync has good scalability and can be extended over 32 nodes.
Microbenchmark. We also conduct a microbenchmark by re-
moving the root node and conducting the aggregation solely
based on local nodes. For this, we modify the Decomon approach
and denote this approach as Decomonlocal as follows. In the ini-
tialization step, local nodes communicate with each other to ex-
change event rates. The verification steps are moved to each lo-
cal node. Only if a local node collects all event rates from other
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Figure 10: Adaptivity of Deco in comparison to Approx

nodes, it start to calculate window sizes. The calculation step is
the same as Decomon. The root node then has to inform local
nodes to start the next window. There are still three flows for
each window in Decomonlocal. We use the same setup as before
but 32 local nodes and one root node. We see that the latency of
Decomonlocal (10.24 ms) is larger than Decomon (0.526 ms). This
is because of higher synchronization overhead, in each initial-
ization step, every local node has to synchronize with others.

5.2 Adaptivity Performance
In this experiment, we measure the effects of event rate changes
on the performance of the approachesApprox, Decomon, Decosync,
andDecoasync. All approaches are deployed on a three-node clus-
ter: two local nodes and a root node. We process a tumbling
count-based window with a 𝑠𝑢𝑚 function.
Adaptivity to Event Rate. In this experiment, we gradually
vary the event rate change range from 0.1% to 100%. In Figure 10a
and Figure 10b we evaluate the throughput and network utiliza-
tion. Here the Approx method has an optimal throughput since
Approx is able to move all calculations from the root node to
local nodes without transmitting events. While our approach
Decoasync roughly matches the throughput of Approx at about
20 million events/s when the event rates less than 1%. Our other
approaches like Decomon and Decosync suffer from low through-
put. This is because in the local node, Decoasync starts a newwin-
dow once the previous window ends, but Decomon and Decosync
have to wait for new messages from the root. When the event
rates change frequently, the throughput of Decoasync drops and
is even lower than Decosync since Decoasync can easily have pre-
diction errors and lead to more correct steps. Also, Decoasync
reuses the predicted local window sizes and deltas to process
the following local windows without waiting. Once the predic-
tion is wrong, Decoasync has to recalculate all windows after the

wrong one, which affects throughput significantly. Additionally,
Decomon is roughly close to Approx which has the lowest net-
work cost because both of them only transmit partial results and
a few messages. The network costs of Decosync and Decoasync
increase linearly when the event rate change increases because
of higher communication costs. This is because the buffer size
changes and the local node sends more events to the root.

Also, the root node has the most calculation load when event
rates change frequently since most of the events are sent to the
root node. In contrast, when event rates change slightly local
nodes have the most calculation load. This is because the event
rate change affects local buffer and slice sizes.

In the next experiment Figure 10c, we change the event rates
and study how many correction steps are executed for every
100 count-based windows. We let every local node send or pro-
cess 100 million events and evaluate each system. We see that
Decoasync executes more correct steps than Decosync. This is
because Decosync is a synchronous approach and it will block
the global window and execute the correction step immediately
when the prediction step is wrong. In this case, the wrong predic-
tion will not affect the next global window. However, Decoasync
executes more correction steps since it is asynchronous and can-
not fix the wrong prediction in time. When the change range is
growing larger, Decoasync and Decosync have to perform more
correction steps and in fact the same as Decomon.

We evaluate the correctness in Figure 10d. We use Central
as the ground truth and compare every window of Central and
other approaches to calculate how many events from other ap-
proaches are the same in the Central window. This way, we
know how many events in fact belong to the current window,
which means howmany events are processed correctly. We then
divide the total number of correctly processed events by the total
number of events (100million) to calculate correctness. Decomon,
Decosync, and Decoasync ensure 100% correctness which is the
same as the centralized aggregation approach. When event rates
change frequently the correctness of Approx decreases linearly,
while other approaches remain correct.

In summary, when the event rate changes frequently, all ap-
proaches are correct except Approx. Decoasync is most close to
Approx (Optimal) with respect to throughput when event rates
change slightly. Decosync has better throughputwhen event rates
change moderately. Also, the changing event rates lead to an in-
crease in network costs which behaves linearly to the buffer size.
Adaptivity toWindow Sizes.We evaluate all approaches with
a tumbling count-based window and an event rate change of 1%.
We vary the window size and measure the throughput.

Figure 10e shows that Deco is most beneficial when window
sizes grow larger. This is intuitive because for larger window
sizes we start seeing the benefit of decentralized aggregation,
otherwise centralized aggregation is sufficient for smaller win-
dow sizes. Another interesting observation is that the benefits
of Decoasync are sooner visible than other approaches Decosync
and Decomon due to the asynchronous (non-blocking) nature of
communication in Decoasync. Also after seeing an increase up
to 20 million events, the throughput is saturated and we might
see a further increase when new local nodes are added. In Fig-
ure 10f, we evaluate correctness in an unstable setup. We set the
event rate change as 50% and vary the window size. We see that
Decomon, Decosync, and Decoasync have 100% correctness when
the window size changes.
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Figure 11: Performance of different approaches in compar-
ison to Decoasync in a Raspberry Pi cluster.

In summary, Decomon, Decosync, and Decoasync suffer from
the small window size since Decomon and Decosync are blocked
and Decoasync is busy with executing the correction step.

5.3 Performance on IoT nodes
We evaluate the performance of the approaches in a more realis-
tic IoT setup with Raspberry Pis Model 4B as local nodes. They
feature 1G Ethernet, a 4-Core Cortex-A72, 8 GB memory, with
Debian 11 64-bit. We use one Intel node as the root (Intel node)
and Raspberry Pis as the local nodes. We use a tumbling window
of size one million and an event rate change of 1%.

Figure 11a shows that Decoasync has a maximum throughput
of 4.3 million events/s as it performs decentralized aggregation.
In Figure 11b and Figure 11c, we see that Scotty, Disco, and Cen-
tral transfer 49 MB per second, which is also the maximum band-
width of the Raspberry Pis. Decoasync has the lowest latency. Fig-
ure 11d shows that the throughput of Decoasync scales linearly
with the number of Raspberry Pis. Scotty’s throughput stays at
3.2 million events/s even if we add more nodes. In summary,
Decoasync still shows the lowest latency and highest throughput
when running on a realistic setup with less powerful devices.

6 RELATEDWORK
Current SPEs such as Flink, Spark Streaming, etc. [9, 43, 56, 59,
65, 66] process large-scale high speed data streams. SPEs split
the potentially unbound data streams into bounded windows
with different window types, window measures, and aggrega-
tion functions. To efficiently process windows in decentralized
networks, state-of-the-art solutions push down window aggre-
gation close to the stream source. TAG [46, 47], Cougar [63],
LEACH [29], Directed Diffusion [31], and Disco [6] assume a
tree-structured network topology and only support time-based
windows. For count-based windows previous approaches either
centrally aggregate or re-partition streams [10, 14, 44, 60]. The
decentralized approachWeb Liquid Streams [2] for heterogeneous
hardware infrastructures provides only approximate global win-
dow aggregation. To the best of our knowledge, no previous de-
centralized approach provides correct count-based window ag-
gregation.

From the communication taxonomy perspective, Deco is a hi-
erarchical approach that takes advantage of the decomposability

of aggregation functions4. Hierarchic-based approaches [8, 16,
46, 49, 52] exploit the decomposability characteristic but do not
support count-based windows. Some of these approaches apply
approximate partial aggregation close to the source [49] which
leads to incorrect results. Deco also pushes down work close
to the source but maintains correct results. Averaging based ap-
proaches like [15, 16, 33–35, 40] share averaged results and Sketch-
based approaches like [3, 21, 23, 24, 49, 54] share lightweight
approximated data structures between nodes. Digests based ap-
proaches allow approximating more complex aggregation func-
tions like median. Randomized approaches [4, 27, 30, 37, 41, 42,
48, 50] sample the data stream. Dropping events randomly re-
duces network transfer rates like in [57]. Different from these
approaches Deco produces correct results while still reducing
the number of events transferred via the network.

Other approaches tackle the problem of adapting to chang-
ing event rates. Dhalion [25] analyzes complex query pipelines
and detects operators that are bottlenecks regarding hardware
resources and operator characteristics. Based on this informa-
tion event rates are regulated. Different from Dhalion Deco fo-
cuses on low-level adaption to changing event rates rather than
high-level control of event rates. A complex approach by Bert-
simas et al. [7] approximates event rate estimations based on
linear optimization and machine learning. Deco achieves good
performance with a much simpler technique that incorporates
only at the previous event rate variance, more advanced predic-
tions could also be applied in future work.

Approaches for elastically controlling distributed applications
either minimize hardware utilization [5, 11, 45, 51] or resource
costs [22]. They focus on decentralized allocation and dealloca-
tion of resources. In contrast to Deco, these approaches focus on
high-level operator splitting and operator placement and miss
opportunities of low-level optimizations.

7 CONCLUSION
In this paper, we present the decentralized aggregation approach
Deco, which enables count-based windows in decentralized net-
works. Deco adapts to changing event rates and ingests events
from decentralized streams. Deco pushes count-based window
aggregation down to local nodes and predicts the local window
sizes based on the input distribution such that the window ag-
gregation can be performed locally. Our approach ensures the
same correct results of count-based windows as the centralized
aggregation solutions and processes windows in a decentralized
fashion without the need for a central node to collect all events.
Our evaluation shows that Deco reduces network traffic by up
to 99% and scales linearly with the number of nodes.
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