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mains less (but still) important. This paper describes the design and im-
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1 Introduction

Increasing quantities of data produced and stored in grid environments in combi-
nation with high-speed wide area networks (WANS) stoke the desire for transferring
tremendous amounts of data between dispersed sites. 10 Gbit fiber networks pro-
vide a theoretic throughput of more than 1 GB/s. High-performance servers are
able to saturate such networks using specialized protocols.

The weakest link on the path from sender to receiver determines the achievable
throughput. A slow network link, e.g. a 100 Mbit WAN connecting two fiber Gbit
local area networks (LANs), may be the bottleneck, as well as a poor receiving
machine limited by its CPU, hard drive or network interface card (NIC).

There are several concrete usage scenarios which benefit from minimizing the
sending time:

disaster recovery: Disasters (e.g. fire, flooding, earthquakes) may threaten a
building containing information storage servers. The servers may be rendered
physically inaccessible, but still be technically intact for some time. The data
has to be “evacuated” as fast as possible. A good solution is to stripe the
data to servers nearby before bundling it at a safe and distant server.

server maintenance: Before server hardware is changed or when a server has
to be shutdown, a data backup has to be performed. To keep down backup
times, it is desirable to minimize the sending time of the transfer.

parallel computers: High-performance parallel computers are frequently shared
between many users and are becoming more and more widespread with the
advent of computing and data grids. Computing nodes are likely to be geo-
graphically far away from their users, especially in the academic science com-
munity. Each user has a certain time-slot it has to adhere to, and costs are
directly associated with the time the resources are used. After computations
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have finished, moving the resulting data from the parallel computer has top
priority to reduce costs.

FSP aims at overcoming the weakest link by introducing intermediate nodes.
The sender partitions the data into smaller blocks and starts a striped transfer
to distribute the blocks to several intermediate nodes. As soon as all blocks are
distributed, the server retreats from the transfer, while the receiver collects the
blocks from the intermediate nodes. The striping and collecting phase may be
overlapped to reduce overall transfer time. Intermediate nodes are chosen from a
preconfigured static list or from a self-organizing peer-to-peer (P2P) overlay.

The remainder of this paper is structured as follows. In section 2 related work
and preliminaries are discussed, section 3 gives a technical description of FSP.
Section 4 shows experimental results and the conclusion is presented in section 5.

2 Related Work and Preliminaries

The need for high-speed transfers of bulk data between local and remote sites
has led to a large number of network protocols and applications. These protocols
and applications seek to utilize the network to the largest extent possible. Some
approaches implement new transport layer protocols. Others make use of exist-
ing protocols (predominantly the Transmission Control Protocol (TCP)) to built
application layer protocols and applications. This section examines data transfer
protocols at both the transport and application layer. The protocols are compared
to the FSP approach where applicable.

2.1 Transport Layer Protocols

As stock TCP is not designed for modern long fat networks® (LFNs), several
approaches to overcome the performance limitations have been proposed.

2.1.1 pTCP

pTCP (Parallel TCP) is a transport layer protocol that uses several TCP-v
connections between sender and receiver (Hsieh and Sivakumar, 2002). TCP-v is a
modified version of TCP. The TCP-v connections do not use the same path through
the network. A multi-homed host, that is a host with several network interfaces,
can use a separate TCP-v connection on each interface. The TCP-v connections
are handled transparently to the user who perceives only a single logical pTCP
connection. The pTCP authors refer to a pTCP connection with several TCP-v
connections as a striped connection. The aggregated throughput of several TCP-
v connections over multiple paths yields a higher throughput than a single TCP
connection. In contrast to pTCP, FSP requires only a single network interface.

2.1.2 PSockets

PSockets (Parallel Sockets) is actually an application level protocol that uses
several TCP connections to transfer data (Sivakumar et al., 2000). However, it

2LFNs are networks with a large bandwidth-delay product.



4 T. Rabl and C. Koch and G. Hélbling and H. Kosch

is implemented as a library that can be used by applications in the same way as
ordinary TCP sockets. PSockets partitions the data into parts of equal size and
sends it in parallel over several TCP connections. Handling the TCP connections
is hidden from the user who is only concerned with one logical PSocket connection.
Parallel TCP streams between two endpoints help with TCPs poor performance
in LFNs. However, it raises fairness issues as parallel streams tend to get a larger
share of the network than a single stream. Section 3.4.4 provides more details on
parallel streams. FSP can also use parallel TCP streams between two endpoints
and therefore features the same throughput gain.

2.2 Advanced TCP Stack Implementations

There are several new proposals and implementations for TCP protocols that
try to do better in LFNs than the commonly-used TCP Reno and TCP NewReno
implementations. They implement new techniques for flow and congestion control.
For an overview of the TCP congestion controll see section 3.2.

Fast TCP Fast Active Queue Management Scalable TCP uses a congestion con-
trol algorithm that tries to keep a constant number of packets in queues,
determined by taking the delay into account.

S-TCP Scalable TCP increases the congestion window exponentially and decreases
it by a factor of only 0.125 in case of congestion (compared to 0.5 for TCP
Reno) and therefore utilizes the bandwidth to higher extent.

HS-TCP High-Speed TCP defines a new congestion control mechanism. The con-
gestion window is not increased or decreased by a fixed value but in relation
to the current congestion window size. It can ramp up the congestion window
more aggressively and does not cut window sizes as strongly as TCP Reno.

The interested reader is referred to the empirical evaluation of some advanced TCP
stacks in Bullot et al. (2004).

2.2.1 Assessment of the Transport Layer Protocols

Transport layer protocols have to be installed at the operating system level. As
the design of FSP is directed to support a heterogeneous environment of machines,
FSP itself does not assume that any special transport layer protocol such as an
advanced TCP implementation is present. FSP uses application level tuning tech-
niques that work with any TCP implementations. In particular, it uses TCP buffer
tuning and parallel TCP streams to obtain good performance with standard TCP
stacks.

2.8 Application Layer Protocols

2.3.1 File Transfer Protocol (FTP)

FTP is an application layer protocol used to transfer files from a server ma-
chine to a client or vice versa. It is an Internet standard protocol defined by the
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Internet Engineering Task Force (IETF) in RFC959 as early as 1985 (Postel and
Reynolds, 1985). The core functionality has not been changed since which shows
the farsighted design. Besides supporting the transfer of files, FTP allows to delete,
create, and rename directories and to retrieve directory listings. It is probably the
most widespread data transfer protocol on the Internet.

FTP has one feature that sets it apart from most other network protocols. It
employs separate connections for control and data transfer. The terms control and
data channel are used interchangeably with control and data connection. Both
connections use TCP at the transport layer. The control connection is used by
the client to issue requests and by the server to reply to requests. The control
connection’s endpoints are called User Protocol Interpreter (User-PI) at the client
and Server Protocol Interpreter (Server-PI) at the server. The data transfer itself
and directory listings are performed via the data connection. The data connection’s
endpoints are referred to as User Data Transfer Process (User-DTP) and Server
Data Transfer Process (Server-DTP).

FTP does not guarantee data integrity. It completely relies on TCPs reliable
byte stream transfer.

Additionally, the original FTP specification has some security issues. Most of
the time, simple username/password authentication is performed and both user-
name and password are sent over the unencrypted control channel in clear text. To
counteract this problem, FTP security extensions have been defined that propose
SSL encryption of the control and optionally the data connection (Ford-Hutchinson,
2005). SSL protected FTP is referred to as FTPS or FTP/SSL. FTP can also be
secured by tunneling it over Secure Shell (SSH). SSH-tunneled FTP is called secure
FTP or FTP over SSH.

Being based on TCP, FTP potentially suffers from TCP’s bad performance on
LFNs (see section 3.2). It does not support features for high-speed transfers such
as parallel TCP streams, striping, or TCP buffer tuning.

2.8.2 GridFTP

GridFTP is a protocol extending FTP that offers secure high-speed data trans-
fers in Grid environments. The first GridF'TP version is specified in Allcock (2003)
and a revised second version was released two years later in Allcock and Perelmutov
(2005). The Grid or Grid computing is a form of distributed computing. It allows to
make coordinated use of decentralized resources across various administrative and
geographic domains to provide high-performance computing and storage amongst
others. A good introduction to the Grid may be found in Stockinger (2007).

With Grid computing, tremendous amounts of data are processed and pro-
duced. Data has to be transferred across wide areas as Grid resources are often far
away from each other. GridF'TP provides a set of extension to FTP that enhance
performance and security.

GridFTP separates the protocol interpreter from the data transfer process in
the same way as FTP. In order to use the combined resources of several machines
in parallel, one machine may be used as the controlling front-end that serves as the
protocol interpreter. Other machines serve as data nodes (back-end nodes) and are
statically registered at the front-end. Together they form a single logical GridF'TP
server. The protocol used between front-end and data nodes is not part of the
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standard. Clients connect to the front-end and the front-end server determines
which data nodes to use for a transfer.

GridFTP allows to transfer data at very high speeds. In practice, throughputs
of 27.3 Gbit/s memory-to-memory and 17 Gbit/s disk-to-disk were reached using
a 30 Gbit/s network with 60 ms RTT (Allcock et al., 2005).

The Globus Toolkit? provides an open source GridFTP server and client imple-
mentation. It is tightly integrated in the Grid Security Infrastructure and requires
a fair amount of configuration. While GridFTP defines commands to set the TCP
socket buffers or trigger automatic buffer negotiation, the Globus implementation
does not provide automatic negotiation at all. There are, however, research ex-
tensions to GridFTP which implement dynamic right sizing (DRS) (see section
3.2).

One of GridFTP’s shortcomings is that it does not allow to stripe data from
one server to several other independent servers and vice versa. Consequently, it can
not be used for the two stage transfer proposed and employed by FSP.

GridFTP provides point-to-point transfers where both of the logical endpoints
may span several hosts (n:m striping). In this sense, FSPs two stage transfer can
be seen as a sequence of 1:n striping during the distribution phase and a following
n:1 striping during collection at the client. While GridE'TP could be used for the
independent point-to-point transfers from the server to the intermediate nodes, a
controlling entity would still be needed.

2.3.3 UDP-based Data Transfer (UDT)

UDT is a high-performance data transfer protocol built on top of UDP. It imple-
ments its own congestion control and reliable transfer because UDP provides only
a simple connectionless and unreliable service (Gu and Grossman, 2007). UDT can
reach higher throughputs than untuned TCP because UDP does not incorporate
any flow or congestion control that artificially limits the throughput. It transfers
data directly between two endpoints. Applications can directly use UDT with a
C++ API that compiles on most operating systems. FSP does not use UDT to
perform its transfers because similar performance result can be obtained by tuning
the TCP connections (see 3.2).

2.3.4 Kangaroo

Kangaroo is an end-to-end background data movement service that moves data
from source to destination via a variable number of intermediate Kangaroo servers
(Thain et al., 2001). Kangaroo presumes that many Grid applications are not
designed to deal with unexpected failures, such as network outages and out-of-
storage errors. Its goal is to hide network or storage errors and latencies from Grid
applications to provide a robust storage framework. A client application writes
data to (or reads data from) a nearby Kangaroo server. The Kangaroo server
routes the data to the next hop server or the destination server. Data is spooled to
disk at any intermediate server. A data mover background process is responsible
for moving the data to the next hop as soon as possible. When the throughput to
the next hop does not suffice or the next hop server is currently unavailable, the

bhttp://www.globus.org
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mover retries the transfer until it can be finished successfully. Spooling the data to
disk at intermediate servers insulates the client application from network failures
as long as the temporary storage space is not exceeded. CPU and I/O usage at the
client application may be overlapped as a side effect. Kangaroo is sender-centric or
output-oriented in that it is mainly designed for writing data to a destination.

Kangaroo transfers data via a single route from source to destination, that is a
single series of hops (Kangaroo servers). The routes have to be predefined statically
at each Kangaroo server. An extension allows to take advantage of multiple routes
to one destination (Rajamani and Balakrishnan, 2001). This is accomplished by the
client application writing to several first-hop Kangaroo servers instead of a single
one. However, the routing remains static. The client has to know in advance which
first-hop servers to use and all servers along the route need a static routing table.

Kangaroo shares with FSP that it takes advantage of resources at intermediate
servers. However, it is mainly sender-centric, that is the sender pushes data to the
destination. Furthermore, Kangaroo applies static routing, whereas FSP allows to
select several intermediate nodes dynamically. The sender can only decide upon
the first-hop. Further hops depend on the static routing tables at every single
Kangaroo server. Without its multi-route extension, Kangaroo can only use one
single preconfigured path. Additionally, Kangaroo does not exploit parallel TCP
streams or buffer tuning. It has been designed to hide latencies and errors from an
application, rather than to perform high-speed bulk data transfers.

2.3.5 Network Logistics

The network logistics approach to bulk data transfers uses a store-and-forwarding
mechanism to improve throughput in LFNs (Swany, 2004). It separates a single
point-to-point TCP connection into a path of shorter connections taking advantage
of resources at intermediate hosts. Data is sent hop-by-hop along the path and
each intermediate host buffers part of the data before sending it to the next host.
The bandwidth-delay-product (BDP) of the shorter connections is smaller than the
one of the single connection. In case the single connection is flow-control limited
because of a TCP socket buffer size that is too small compared to the BDP, the
throughput can be increased using shorter connections with the same buffer sizes.
For further details of socket buffer sizes and TCP performance see section 3.2. This
approach does not require any changes at the operating system or the network level.
It is particularly applicable when the maximum buffer sizes at any of the endpoints
can not be changed.

In order to obtain optimal performance, the path of intermediate hosts has
to be selected in a way that maximizes the throughput. The total throughput is
determined mainly by the slowest link on the path. A performance matrix is created
containing the cost between each pair of nodes. After estimating the bandwidth
with a network weather service® forecast, the cost is defined as 1/bandwidth. The
optimal path is computed as the path between sender and receiver that has the
smallest maximum cost between any pair of nodes along the path (the Minimax
path). Empirical results show an increase in the throughput of 5.75% to 9% (Swany,
2004).

€A network weather service is a distributed application that monitors the bandwidth (amongst
others) between pairs of hosts and predicts the future bandwidth.
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The network logistics approach takes advantage of a whole path of intermediate
hosts while FSP uses only one level of intermediate nodes. However, it does not
employ parallel streams or TCP buffer tuning and is limited to a single path between
sender and receiver. FSP uses a number of intermediate hosts in parallel and
thus multiple routes from sender to receiver. When FSP is configured to choose
intermediate nodes halfway between server and client, the same network logistics
effect is achieved but limited to dividing the connection into two shorter ones.

2.8.6 Assessment of the Application Layer Protocols

Most of the existing and widely used application layer protocols support the
direct transfer between two endpoints. In particular, GridFTP uses interesting
concepts for high-speed data transfers. There are some protocols such as Kangaroo
that take advantage of resources at intermediate hosts in a way similar to FSP.
However, there is no protocol that is able to stripe data to several intermediate
nodes and collect it at a client machine automatically. Furthermore, FSP distin-
guishes itself by organizing the intermediate nodes in a P2P overlay and allowing
to select them dynamically according to their estimated location in the network.

3 FSP Protocol

Our design has been motivated by the goal of minimizing the sending time when
transferring data from a fast server. We observed several limitations that might
hurt throughput in traditional direct file transfers:

slow network link: WAN links somewhere on the path between sender and re-
ceiver are likely to offer less bandwidth than the server is able to saturate.
Additionally, cross traffic on shared links limits throughput.

slow receiver: The receiving machine may not be able to cope with the server’s
sending rate. Limiting factors are slow CPUs, hard disks and NICs.

transport protocol limitations: Most file transfers use TCP on the transport
layer. TCP Reno, the predominant TCP implementation, performs badly on
LFNs, i.e. connections with a large BDP. Its flow-control parameters are often
statically tuned for small BDPs. Additionally, packet loss triggers large TCP
window reductions.

The Fast Send Protocol addresses all these limitations. The main idea is to replace
the direct transfer from sender to receiver by introducing intermediate nodes. Data
is striped to several intermediate nodes. These nodes are closer to the sender or
have more resources than the receiver. Finally, the data is collected by the receiver.
Striping allows to use the combined bandwidth of several nodes and network links
to overcome slow direct network links and slow receivers. The transport protocol
limitations are addressed by using automatic TCP parameter tuning (see section
3.2).

FSP is an application layer protocol extending FTP (Postel and Reynolds, 1985),
the most ubiquitous data transfer protocol. FTP has been chosen as the basis
of our protocol for quite the same reasons as in GridF'TP design (Allcock et al.,
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Server

Figure 1 Partitioning and striping using a first-come, first-served distribution strat-
egy.

2005): FTP is a widespread and mature protocol. With control and data channel
being two separate TCP connections (the figures in this paper do not distinguish
between control and data connections), third-party transfers can be implemented
and extensibility is eased. A number of extension have already been proposed by
the IETFY, e.g. in the domain of security.

FSP has been designed to be completely compatible with standard FTP and
may be used as a drop-in replacement for FTP. Additionally, FSP takes advantage
of many GridFTP concepts which address shortcomings of FTP with respect to
performance and data integrity.

An FSP data transfer is logically separated into several phases:

request: The data transfer starts with a client requesting a file or directory from
an FSP server.

partitioning: The server partitions the data into blocks of configurable size. A
block header containing a descriptor flag, header length, payload length, file
offset and file name is prepended to each block. The file name is represented
as the relative path with respect to the current directory. Including the
file name in each header allows to send complete directories with one single
request. Typical header sizes range between 20 and 50 bytes which results in
a negligible per-block overhead with sufficiently large block sizes.

intermediate node selection: After that, the intermediate nodes have to be se-
lected from a static list or from a dynamic P2P overlay (see section 3.1 for
details). Clever dynamic selection is crucial to the performance and accom-
plished by considering inter-node distances.

striping: The server opens a connection to each of the intermediate nodes and
stripes the blocks according to a distribution strategy (see figure 1). Dis-
tribution strategies include first-come, first-served (i.e. faster intermediate

dThe Internet Engineering Task Force — http://www.ietf.org/



10 T. Rabl and C. Koch and G. Hélbling and H. Kosch

Figure 2 Intermediate node selection using Meridian.

nodes receive more blocks), cyclic distribution (i.e. blocks are allocated round-
robin) and partitioned distribution (i.e. each intermediate node receives an
equally-sized contiguous share of each file). The different strategies enhance
load-balancing if it is expected that the data has to be transferred to several
clients later on. For a single target transfer first-come, first-served is in most
cases preferable.

collection: The server continuously informs the client of the block locations via
the control channel, leaving it to the client when to start collecting the dis-
tributed blocks. Typically, the distribution includes the client to keep down
the total time of transfer and the client starts collecting the distributed blocks
while distribution is still in progress. The client opens a connection to each
intermediate node and requests the respective blocks. Due to the block for-
mat and the header information, out-of-order delivery of the blocks does not
pose a problem. When the client uses the data for streaming purposes, the
block size has to be set quite small, so that a slower intermediate node does
not delay the reception of a needed block.

The following subsections describe FSP’s features and techniques in more detail.

3.1 Intermediate Node Selection

Selecting those intermediate nodes which offer the highest bandwidth is cru-
cial to minimizing the sending time. Currently, FSP selects nodes according to
their network location taking into account their distances reflected by the latency
(round-trip time) to both sender and receiver. The actual distance constraints are
configurable. One may choose intermediate nodes very close to the sender (maybe
on the same LAN) without constraints regarding their distances to the receiver.
While this approach is optimal to reduce sending time, it may hurt the total trans-
fer time. A compromise is to choose nodes somewhere in the middle between sender
and receiver.

FSP organizes the intermediate nodes using a Meridian (Wong et al., 2005) P2P
overlay as its network location service. Meridian allows to select nodes based on
their location in a network by multi-constraint queries (MCQ). Each Meridian node
keeps track of a logarithmic number of nodes organized in a set of concentric rings
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centered around itself with exponentially increasing radii. The round-trip time is
used to place the nodes in the rings.

A node selection query MCQ = {(s,dcs), (r,dc,)} consists of two constraints,
the distance constraints to the sender dcs; and receiver de,.. The resulting nodes
are located in the intersection of the two circles with the radii des around the
sender s and dc, around the receiver r respectively as shown in figure 2. Meridian
is specifically designed to process MCQs and find a set of nodes which satisfy
multiple constraints on their network location. A Meridian node p processes an
MCQ = {(t1,dcy,), (t2,dety )y .oy (tn, dey, ) } in several steps:

e First, the distances dp;, between node p and all constraint targets ¢; are
measured.

e After that, the node calculates its distance s to the solution space using the
distance function s = Y7, maz?(0,dp, — det,). When the node does not
satisfy one of the constraints, it is penalized by adding the squared distance
to that constraint to the total distance to the solution space. A distance of
0 indicates that the node p satisfies all constraints itself and is part of the
result set.

e Subsequently, all locally known ring members j are considered whose distances
dp; to itself satisfy

Vi =1..n:maz(0,(1 = B) - (dpt, — dcy,)) < dpj < (14 ) - (dpt, + dct;)

Where g (6 € [0..1]) is called the route acceptance threshold.

This includes all nodes that satisfy at least one of the constraints or that are
close to the solution space at any rate. These nodes are requested to measure
their distances to all the constraint targets ¢; and reply with the measurement
results. With these distances, the distance to the solution space s; can be
calculated for all the nodes j. Again, a distance of 0 indicates that j satisfies
all constraints and it is added to the result set.

e When no or too few nodes lie in the solution space, the query is forwarded
to the node closest to the solution space provided it satisfies s; < 3-s. This
ensures that the query is not forwarded to a nearby node which is also likely
to be unable to provide better results. A larger 3 causes more nodes to be
considered as possible solutions and as forwarding targets and increases the
possibility of finding a large result set. However, the downside is a larger num-
ber of hops and an increased bandwidth requirement due to more measuring
requests and query forwardings. Hence a query takes longer to be processed.

A nice property of Meridian is that a node does not have to be a member of the
overlay to issue a query. It is sufficient to know at least one Meridian node as an
entry point.

3.2 TCP tuning

FSP is expected to transfer data between geographically dispersed nodes via
high-speed networks. These kind of networks exhibit large round-trip times (RTT)



12 T. Rabl and C. Koch and G. Hélbling and H. Kosch

implying a large BDP with BDP = RTT x Bandwidth. TCP, the underlying trans-
port protocol, has not been designed to adapt to such networks. It uses window
based flow and congestion control. The sender is only allowed to send up to Wi
(send window size) bytes without receiving an acknowledgement from the receiver.
When W is small compared to the BDP, the sender has to wait for acknowledge-
ments most of the time and the throughput T is limited by T'= W,/RTT. For
instance, a transatlantic TCP connection on a 100 Mbit/s line with 90 ms RTT
(and BDP = 1.125 M B) and a standard Wy = 64 K B yields a throughput of only
T =64 KB/90 ms = 5.56 Mbit/s. A W larger than the BDP wastes system mem-
ory, since the window is never completely used. Therefore best results are achieved
with Wy = BDP. Wy is the minimum of the congestion window, the receive win-
dow and the sender’s socket buffer size. The window sizes are hidden in the TCP
implementation and cannot be set directly from within the application layer. The
window size is set indirectly by changing the send and receive buffer sizes via the
socket API. The maximum possible buffer sizes are limited by operating system
settings and have to be adjusted if necessary (Allcock and Bresnahan, 2004).

Automatic buffer tuning. Several techniques have been proposed to automatically
tune buffer sizes. For an excellent comparison of the most important ones we re-
fer to Weigle and Feng (2002). For instance, AutoNcFTP measures the BDP at
connection set-up and sets buffers accordingly (National Laboratory for Applied
Network Research, 2007). However, it suffers from a potentially fluctuating BDP.
FSP implements a different approach called dynamic right-sizing (DRS) that has
been designed for GridFTP (Gardner et al., 2004). DRS continually determines
both current bandwidth and round-trip time. Bandwidth is estimated by the re-
ceiver by simply calculating the current throughput. To estimate the RTT, the
receiver periodically sends a special block header containing the receiver’s buffer
size to the sender on the data channel (unlike FTP, the data channel is used bi-
directional). The sender tries to adjust its own send buffer size to the one received
and acknowledges by setting a special descriptor flag in the header of the next out-
going block. Upon receiving the acknowledgement, the receiver can calculate the
RTT as the time it took the acknowledgement to arrive. This method slightly over-
estimates the RTT because of the application layer protocol overhead, but serves
as a good estimate. After calculating the BDP, the receiver updates its buffer sizes
and informs the sender with the next RTT measurement header. DRS makes sure
that the connection is never limited by the flow-control window.

Parallel streams. Besides buffer tuning, FSP adopts GridFTP’s concept of parallel
TCP streams to improve TCP throughput. The advantages of parallel TCP streams
are threefold (Tto et al., 2006). First, using n streams, means that n-times the TCP
buffer size is available compared to a single TCP connection. Second, ramping up
the transfer rate during slow-start is accelerated. Third, aggregated throughput in
the congestion-avoidance phase is increased because recovery from packet losses is
faster and competing TCP connections are suppressed. Using parallel streams on
networks carrying cross-traffic may hurt the throughput of competing connections.
Contrary, DRS connections are TCP-friendly.

Parallel streams are especially useful when buffer sizes can not be tuned due
to operating system restrictions. The number of parallel streams has to be set
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manually by the user. A good rule of thumb is to use 4 parallel streams. Combining
DRS and parallel streams may even provide better results (Gardner et al., 2004).
However, using too many streams hurts the throughput because of the overhead
associated with driving many connections.

3.8 Compression

FSP optionally supports on-the-fly per-block compression using the library zlib
(Deutsch and Gailly, 1996) with configurable compression levels. zlib has been
chosen because it is an open standard with open-source libraries being freely avail-
able. However, other algorithms could be integrated easily. As compression is
computationally expensive, it does not increase throughput in most of the cases.
Good results may be achieved with highly compressible data such as text files or
on slow network connections where compression speed is able to keep up with net-
work speed. Intermediate nodes do not decompress blocks to save CPU cycles and
storage space.

3.4 Data integrity

When large amounts of data have to be transferred without any bit errors, it
is crucial to detect the range of bytes where an error occurred. This allows to
retransmit only the erroneous block instead of the complete file. TCP offers a
reliable byte stream with its own error detection mechanism, but the checksums
used are rather weak (Stone and Partridge, 2000). Standard FTP does not offer
any integrated means to ensure data integrity. One has to resort to manually
transferring a precomputed checksum and checking the validity. With only a single
checksum per file, the complete file has to be retransmitted which is very inefficient.

FSP optionally computes its own per-block checksums and uses the same ap-
proach to data integrity as GridF'TP. Each block is appended a checksum calculated
over the complete bytes of the block. Transmission errors can be tracked down on
a per-block basis. As block sizes are relatively small compared to the complete file
length in most cases, retransmitting erroneous blocks is very efficient. Retransmis-
sion is always triggered by the receiving endpoint. The checksum algorithm may
be chosen freely. Our current implementation supports ADLER32, CRC32, MD5
and SHA1 checksum algorithms.

8.5  Security

FSP currently uses username/password authentication over a Transport Layer
Security (TLS)® encrypted control channel. Both server and client have to have a
user account at each intermediate node or there must be a common account at each
intermediate node, respectively. We are aware of the security implications and that
FSP can be extended with a more secure mechanism such as X.509 certificates.

Being based on FTP, FSP has both a control and a data channel. Both are
point-to-point connections, but the data they carry differs in its security needs.

®TLS is the successor of Secure Sockets Layer (SSL).
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Figure 3 Third-party transfer with FSP.

The control data exchanged on the control connection is only relevant to the two
involved parties. Point-to-point security is sufficient and FSP encrypts the control
channel with SSL/TLS in the same way as the protocol extension to FTP proposes
in RFC4217 (Ford-Hutchinson, 2005).

On the other hand, data exchanged on the data channel has end-to-end seman-
tics. While it is processed and stored at several intermediate nodes, only the client
and server should be able to read the (confidential) data as clear text. Blocks of
data distributed to intermediate nodes are not supposed to be readable at the in-
termediate nodes or on the wire during transmission. Thus, there is a need for
end-to-end security, which is not provided by TLS. FSP encrypts the blocks with
symmetric block ciphers offering AES (National Institute of Standards and Tech-
nology, 2001) and Blowfish (Schneier, 1993) encryption with bit sizes of at least
128 bits. The encryption key is securely exchanged between server and client via
the TLS protected control channel. Intermediate nodes are not able to decrypt the
blocks and are not aware of the content they store.

Encrypting is computationally expensive and has a negative performance im-
pact. The user has to decide upon the tradeoff between security and performance.

8.6 Third-party transfers

Transfers between two servers initiated by a third party are referred to as third-
party transfers. They are implemented differently than in FTP or GridFTP. The
client opens a control connection to the receiving server and indirectly triggers the
transfer between the two servers (shown in figure 3). It acts like a “remote control”
for the transfer. The receiving server retrieves the requested file from the sending
server as if it were a client. Unlike FTP, the client does not directly request one of
the servers to open any data connections. This approach keeps the complexity of
opening connections to the intermediate nodes at the servers.
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4 Experimental Results

The test setup is shown in figure 4. The server has a 1 Gbit ethernet connection
to a Gbit switch. The intermediate nodes and the client are connected to 100 Mbit
switches which are themselves linked to the Gbit switch. The link to intermediate
node 4 (IN4) is routed via a virtual private network and carries cross-traffic. Both
the client and IN3 share the same 100 Mbit uplink to the Gbit switch. RTTs
between the nodes range between 0.3 ms and 2 ms. The machines are not limited
by their CPU or harddrive, but only by the network connection. All tests were
conducted with transfers of a single 1 GB file using blocks of size 1 MB. DRS was
enabled which generally set the TCP buffer sizes to 128 KB.

The first test uses intermediate nodes 1 to 3. The maximum (theoretically)
achievable bandwidth during striping is 300 Mbit/s while the client is limited by its
100 Mbit/s connection. Figure 5 shows the results of our tests. The left bar of each
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column shows the goodputf during striping, the right bar indicates the goodput of
the total transfer. A direct transfer between server and client resulted in a goodput
of 86.1 Mbit/s. Striping to IN1-3 without including the client in the striping phase
yields 264 Mbit /s and 66 Mbit/s in total. Including the client in the striping phase
increases the total goodput to 76 Mbit/s (striping bandwidth remains the same as
the client and IN3 compete for bandwidth). Additionally, overlapping the striping
and the collection phase reduces the striping goodput to 252 Mbit/s, but increases
the total goodput to 82 Mbit/s. Best overall results were obtained by striping to IN1
and IN2 and including the client in the striping phase (thus removing bandwidth
competition between client and IN3). With 261 Mbit/s striping goodput and 86.4
Mbit /s total goodput, we obtained 91.6% of the theoretical 284.8 Mbit/s maximum
striping goodput and even exceeded the total goodput of a direct transfer between
client and server.

Our second test takes advantage of striping to all four intermediate nodes (see
6). This increases the theoretical striping throughput to 400 Mbit/s (however, the
line to IN4 carries cross traffic). We achieved 83.4% of the theoretical striping
throughput, but the total goodput ranged between 69 Mbit/s and 80 Mbit/s. We
attribute the worse total goodput to varying amounts of cross traffic on the route
to IN4.

Our results show, that the striping approach significantly increases the through-
put during sending and thus reduces the sending time. It is very promising to note,
that under certain circumstances (test INI-2 + direct) the total goodput is even
slightly higher than in a direct transfer.

fGoodput is defined as the application level throughput, that is the amount of useful bits
transferred per second. In our case, the overhead of the block headers and the protocol overhead
of transport, network, data link and physical layer are excluded.
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5 Conclusion

In this paper we presented a new approach for minimizing sending time in high-
speed bulk data transfers. The Fast Send Protocol uses intermediate nodes and
striping mechanisms to maximize the amount of data sent by the server and to re-
duce the impact of slow network links. The selection of intermediate nodes is either
static or based on a P2P overlay. FSP adopts concepts of GridF'TP and reaches
equal overall transfer rates. It is completely compatible with FTP. Optionally, data
integrity can be ensured by using per-block checksums. Additional mechanisms for
encryption, compression and third-party-transfers have been included. Experimen-
tal results show that FSP significantly increases the bandwith utilization at the
sender side, thus reducing the sending time. Another finding is that the overall
transfer times of striped transfer and direct transfer are equal.

Further research will address the dynamic adjustment of the number and the
selection of intermediate nodes during data transfer. To fulfil stricter security re-
quirements support of certificates will be added. The dynamic adaptation of the
number of parallel streams as described in Tto et al. (2006) could further improve
the transfer rate.
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