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ABSTRACT
Remote Direct Memory Access (RDMA) hardware has bridged the
gap between network and main memory speed and thus invalidated
the common assumption that network is often the bottleneck in
distributed data processing systems. However, high-speed networks
do not provide "plug-and-play" performance (e.g., using IP-over-
InfiniBand) and require a careful co-design of systemand application
logic.As a result, systemdesigners need to rethink the architecture of
their data management systems to benefit from RDMA acceleration.
In this paper, we focus on the acceleration of stream processing

engines, which is challenged by real-time constraints and state con-
sistency guarantees. To this end, we propose Slash, a novel stream
processing engine that uses high-speed networks and RDMA to effi-
ciently execute distributed streaming computations. Slash embraces
a processing model suited for RDMA acceleration and scales out by
omitting the expensive data re-partitioning demands of scale-out
SPEs. While scale-out SPEs rely on data re-partitioning to execute
a query over many nodes, Slash uses RDMA to share mutable state
among nodes. Overall, Slash achieves a throughput improvement
up to two orders of magnitude over existing systems deployed on
an InfiniBand network. Furthermore, it is up to a factor of 22 faster
than a self-developed solution that relies on RDMA-based data re-
partitioning to scale out query processing.
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1 INTRODUCTION
Over the last decade, the advancement in data center networking
technology has bridged the gap between network andmainmemory
data rates [9, 25]. It is possible today to purchase or rent servers that
offer supercomputer-grade network bandwidths [45]. For instance,
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a high-speed Network Interface Controller (NIC) supports up to
25 GB/s as network throughput and 600 ns latency per port [43],
while modern switches support up to 40 TB/s as overall network
throughput [44]. Double Data Rate 4 (DDR4) modules support up
to 19.2 GB/s per channel and 13 ns CAS latency, while main memory
bandwidth reaches up to 204.8 GB/s [3]. This improvement is due
to Remote Direct Memory Access (RDMA): a feature of high-speed
networks that enables high throughput data transfer with microsec-
ond latency. Thus, the common assumption that network is often
the bottleneck in distributed settings no longer holds [60].
Research has shown that RDMA hardware does not provide a

“plug-and-play” performance gain to existing data management sys-
tems [9]. Consequently, it is necessary to revise their architecture
to use full bandwidth [9]. Recent research has proposed a number
of architecture revisions to accelerate OLAP [9, 40], OLTP [69], in-
dexing [74], and key-value stores [19, 31] using RDMA in rack-scale
deployments. In this paper, wemake the case that Stream Processing
Engines (SPEs) also require architectural changes to truly benefit
from RDMA hardware. To this end, we show that current scale-out
SPEs are not ready for RDMA acceleration and existing RDMA solu-
tions do not fit the streamprocessing paradigm. Thus, we propose an
SPE architecture that natively integrates with RDMA to efficiently
ingest and process data in rack-scale deployments.
Current SPEs, e.g., Apache Flink [11], Storm [58], TimelyData-

flow [47], and Spark [68], cannot fully benefit fromRDMAhardware.
Their design choices fundamentally prevent them from processing
data at full data-center network speed for the following reasons. First,
RDMA-unfriendliness, current SPEs rely on socket-based network-
ing, e.g., TCP/IP, to ingest and exchange data streams. Even though
socket-based networking runs on RDMA hardware, it cannot fully
exploit its potential, e.g., using IP-over-InfiniBand (IPoIB) [9]. Sec-
ond, costly message-passing, current SPEs rely on message-passing
to process data following a Map/Reduce-like paradigm [16]. This
results in a performance issue and in an inefficient execution induced
by sub-optimal data and code locality [70, 71]. In particular, message
passing induces expensive queue-based synchronization among net-
work and data processing threads [30]. Furthermore, Map/Reduce-
like paradigms are network-bound on relatively slow socket-based
connections, when considering data-intensive workloads. Yet, they
become compute bound in the presence of fast networks [9, 60].
As a result, they do not benefit from the data rate of a high-speed
network. Finally, costly scale-out execution, current scale-out SPEs
rely on operator fission [27] to achieve data-parallel computations.
This enables each SPE executor to process a disjoint partition of the
stream andmanage local state. However, fission involves continuous
data re-partitioning, which is expensive [70].
Furthermore, previous RDMA solutions for data-intensive sys-

tems donot solve the above problems.AnSPE requires to run stateful
analytics on in-flight records and perform point updates and range
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scans on operator state. However, RDMA-accelerated OLAP sys-
tems speed-up batch analytics on immutable datasets [7, 20, 40, 53].
RDMA-based key-value stores are design for transactional work-
loads comprising point lookups and insertions [19, 31]. As a result,
the data-access patterns and processing model of SPEs need dedi-
cated solutions for RDMA-acceleration.
To enable stateful stream processing at full network bandwidth

with very low latency, we propose Slash, our RDMA-accelerated SPE
for rack-scale deployments. We design a new architecture to enable
a processing model that omits data re-partitioning and applies state-
ful query logic on ingested streams. Slash comprises the following
building blocks: the RDMAChannel, the stateful query executor, and
the Slash State Backend (SSB). First, we design an RDMA-friendly
protocol to support streaming among nodes via dedicated RDMA
data channels. This enables Slash to perform data ingestion and
data exchange among nodes at full RDMA network speed, by lever-
aging the aggregated bandwidth of all NICs. Second, we devise a
stateful executor that omits message passing and runs queries fol-
lowing late merge technique [70]. Finally, we replace re-partitioning
with the SSB that enables consistent state sharing across distributed
nodes. This enables multiple nodes to concurrently update the same
key-value pair of the state (for instance, a group of a windowed
aggregation). To ensure consistency, we introduce an epoch-based
protocol to lazily synchronize state updates using RDMA.

Slash executors scale out computationbyeagerly applying stateful
operators on data stream to compute partial state. Executors store
partial state into the SSB,which ensures a consistent viewof the state
for all Slash executors. Our evaluation on common streaming work-
loads shows that Slash outperforms baseline approaches based on
data re-partitioning and is skew-agnostic. In particular, we compare
Slash against a scale-out SPE (Apache Flink) on an IPoIB network,
a scale-up SPE called LightSaber, and a self-developed straw-man
solution called RDMAUpPar, which scales out query execution via
RDMA-based data re-partitioning. Slash achieves up to 25x and 11.6x
higher throughput than RDMAUpPar and LightSaber, respectively.
Furthermore, Slash outperforms Flink by achieving an order of mag-
nitude higher throughput. In sum, this shows that RDMA alone can-
not achieve peak performancewithout redesigning the SPE internals.

In this paper, we make the following contributions.

• To natively integrate high-speed RDMA networks, we pro-
pose Slash, a novel RDMA accelerated SPE.

• We design a stateful query executor to make Slash scale-out
data stream processing over an RDMA network.

• We define an RDMA streaming protocol for Slash to transfer
data at line rate using the RDMA channel.

• Wearchitect the SSB that enables a distributed consistent state
over RDMA interconnects.

• Wevalidate Slash’s design on common streamingbenchmarks
on a high-end RDMA cluster and show up to 25x throughput
improvement over our strongest baseline.

We structure this paper as follows. In Sec. 2, we present back-
ground concepts about RDMA and data stream processing. In Sec. 3,
wemake the caseofRDMAacceleration for anSPEand list challenges
and opportunities. In Sec. 4, we present the system architecture of
Slash and provide an overview of each component. After that, we
describe the stateful executor (Sec. 5), the RDMAChannel (Sec. 6),

and the SSB (Sec. 7). Afterwards, we conduct an extensive evaluation
of Slash in Sec. 8.We describe related works in the realm of SPEs and
RDMA-enabled database systems in Sec. 9. Finally, we summarize
the findings of this paper and discuss ideas for futurework in Sec. 10.

2 BACKGROUND
In this section,we provide the background for our paper.Wedescribe
RDMA in Sec. 2.1 and provide an overview of current approaches
to stream processing in Sec. 2.2.

2.1 Remote Direct Memory Access
RDMA is a communication stack provided by Infiniband (IB), RoCE
(RDMA over Converged Ethernet), and iWarp (InternetWide Area
RDMA Protocol) networks [32]. RDMA enables access to the main
memory of a remote node with minimal involvement of the remote
CPU. As a result, RDMA achieves high bandwidth (up to 200 Gbps
per port [43]) and low latency (up to 2µs per round-trip [32]). RDMA
offers bidirectional data transfer via zero-copy, which bypasses the
kernel network stack. In contrast, socket-based protocols, such as
TCP, involve costly system calls and data copies between user- and
kernel-space [9]. RDMA-capable NICs also support socket-based
communication via IP-over-InfiniBand (IPoIB). However, this ap-
proach results in lower efficiency [9]. RDMA provides two APIs
(so-called verbs) for communication: one-sided and two-sided verbs
APIs [32]. Besides, RDMAprovides reliable, unreliable, and datagram
connections. A reliable connection enables one-sided verbs and in-
order packet delivery, while unreliable and datagram connections
may drop packets. With two-sided verbs (Send-Recv), sender and
receiver are actively involved in the communication. The receiver
polls for incoming message, which requires CPU involvement. In
contrast, one-sided verbs involves one active sender and one passive
receiver (RDMAWRITE) or a passive sender and an active receiver
(RDMA READ). They enable more efficient data transfer, but need
synchronization to detect inbound messages.

RDMAprovides twomajor benefits: it 1) enables fast data transfer
and 2) shares memory areas among nodes [19]. However, RDMA-
enabled systems need careful design, as RDMA does not offer coher-
ence between local and remote memory. Instead, this is offloaded
to the application. Besides, coherence among NIC memory, main
memory, and the CPU is vendor-dependent [9]. The choice of verbs
and parameters, such as message size, is application-sensitive and
requires careful tuning [32].

2.2 Stateful Stream Processing Engines
Recent SPEs use either scale-up or scale-out processingmodel. Scale-
up SPEs focus on single-node efficiency, whereas scale-out SPEs tar-
get cluster scalability. Scale-up SPEs, such as LightSaber [56], Brisk-
Stream [72], and Grizzly [23], target single-node deployments with
multi-socket, multi-core CPUs. Scale-out SPEs, such as Flink [11],
Storm[58], SparkStreaming [68],Millwheel [4],GoogleDataflow[5],
and TimelyDataflow [47], parallelize queries on shared-nothing ar-
chitectures. Scale-up and scale-out SPEs assume common data and
query models, yet they execute queries differently. We summarize
their data, query, and processing models in the following.
Data and query model.We follow the definitions introduced

by Fernandez et al. [12] and assume a data stream to consist of an



immutable, unbounded set of records. A record contains a timestamp
𝑡 , a primary key𝑘 , and a set of attributes. Timestamp are strict mono-
tonically increasing and used for windowing related operations as
well as progress tracking. Streaming queries aremodelled as directed
acyclic graphs with stateful operators as vertices and data flows as
edges. The output of a streaming operator depends on content, times-
tamp or arrival order of input records, and its intermediate state. In
general, an operator must output no result at a timestamp 𝑡 that is
computed using records bearing timestamps greater than 𝑡 .

Scale-upexecution. Scale-up SPEs rely on task-based paralleliza-
tion, compilation-based operator fusion [27], and late merge [70] to
fullyutilize availablehardware resources. Logical operators are fused
together and compiled to machine code, which the SPE executes on
inbound data buffers using task-based parallelization. Tasks may
concurrently update a global operator state or eagerly update local
state, which the SPE eventually merges and ensure its consistency.

Scale-out execution. Scale-out SPEs use operator-to-thread par-
allelism and data re-partitioning [27] to scale out. Each logical opera-
tor consists of𝑝 physical operators, which the SPE runs in parallel on
a cluster of nodes. Scale-out SPEs re-partition input streams so that
eachphysical operators applies stateful transformations on a disjoint
partition of the data. This enables consistent stateful computations
via local mutable state [10]. Parallel instances receive records from
upstream operators via in-memory or network-based data channels
following an exchange pattern.

3 THECASE FORRDMA-ACCELERATED
STATEFUL STREAMPROCESSING

In this section, we make the case for RDMA-based acceleration of
stateful stream processing workloads. To this end, we analyze op-
tions to co-design an SPEwith RDMA networks (Sec. 3.1) and derive
design challenges to be tackled (Sec. 3.2). Afterwards, driven by our
analysis, we propose the system architecture of Slash (Sec. 4).

3.1 RDMA Integration
Previous research proposes three general approaches for the integra-
tion of RDMA into a general-purpose data management system [9].
In the following, we analyze their applicability to an SPE and the
implication behind these design decisions.
Plug-and-play integration. In this approach, the deployment

of a shared-nothing system occurs on an IPoIB network. Previous
researchhas shown that it does not necessarily result in performance
improvements [9]. In particular, IPoIB does not saturate network
bandwidth and introduces CPU overhead for small messages [9].
In our evaluation, we show that query execution of current SPEs
improves only slightly using IPoIB.
Lightweight integration. This approach involves the replace-

ment of socket-based networking with RDMA verbs. Although it
benefits from high network bandwidth, it still suffers from bottle-
necks that are present in the original design [9, 32, 70]. We validate
this claim by building a straw-man solution that implements the
lightweight approach. In particular, we implement and evaluate a
data re-partitioning component that uses RDMA QPs instead of
sockets [40]. Note that several SPEs, such as Apache Flink and Time-
lyDataflow, leverage data re-partitioning to parallelize operators
and thus scale-out computation. We refer to this approach in the

remainder of this paper as RDMA UpPar. Note that the performance
regression induced by lightweight integration does not depend on
the underlying runtime or language. Thus, we implement RDMA
UpPar in C++ to omit managed runtime overhead and show that the
performance regression is due to the overall SPE design.
Native integration. Previous research indicates that the most-

effective option for the integration is to co-design software compo-
nents with RDMA [9, 32, 69, 74]. For a data management system,
this approach involves a re-design of its internals, e.g., storage man-
agement and query processing, to remove the network bottleneck.
Notably, the data re-partitioning component of a scale-out SPE is
network bound in the presence of a high data rates and slow net-
works [60]. Furthermore, recent works have shown that data re-
partitioning is responsible for performance regressions in scale-out
SPEs due to its sub-optimal CPU utilization in the presence of high
bandwidths [70, 71]. This suggests that an SPE must re-think its
scale-out computational model and evaluate alternatives to data
re-partitioning, to fully benefit from RDMA acceleration. We refer
to this approach in the remainder of this paper as Slash.
In this paper, we focus on the native approach and discuss the

necessary architectural and algorithmic changes when designing an
RDMA-acceleratedSPE. Inaddition,weassess theperformanceof the
native solution against plug-and-play and lightweight integrations.

3.2 Design Challenges
In the previous section, we make the case for native RDMA integra-
tion, which promises peak performance, but requires changes to a
scale-out SPE. In this section, we analyze the design challenges and
the implications that come with native RDMA acceleration.

C1: Efficient Streaming Computations. Besides high-through-
put data transfer, RDMA-based systems enable a highly-efficient
decoupled processing model: storage and compute nodes access
each other’s memory at byte-level granularity [9, 31, 40, 69, 74]. In
this model, costly data re-partitioning for data-parallel processing is
not necessary, as each node can access data from any remote mem-
ory location. As a result, we identify as first design challenge to
support an efficient processingmodel for distributed streaming com-
putations that profits frommemory access at byte-level granularity.
This involves replacing re-partitioning strategy with a performance-
friendly, RDMA-based processing strategy.
C2: Efficient Data Transfer. In an SPE, data channels must en-

able efficient data transfer among operators over the network. How-
ever, RDMA provides several network transfer capabilities, which
induce many design options and trade-offs between throughput and
latency. For instance, one-sided verbs achieve lower network latency
than two-sided verbs, especially on themost recent NICs [19, 30, 48].
An RDMA READ involves a full network round-trip and has thus
higher latency than anRDMAWRITE [32]. Furthermore, techniques,
such as huge-pages, pipelining, header-only messages, and selective
signaling, further improve performance [9, 32]. To the best of our
knowledge, there is no comprehensive analysis of RDMAcapabilities
on stream processing workloads [65, 70]. As a result, we identify
as second design challenge the selection of RDMA capabilities to
achieve high-throughput stream processing with low latency.
C3: Consistent Stateful Computation. SPEs needs to ensure

consistent stateful computation. Thus, an RDMA-accelerated SPE
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Figure 1: The Architecture of Slash.

must consistently manage state, while processing incoming records.
This involves keeping track of the distributed computation, while en-
suring exactly-once state updates. As a result, we identify as third de-
sign challenge to achieve consistency guarantees for stateful stream-
ing operators that access shared data structures using RDMA.

In sum, there is no system that fully solves the above design chal-
lenges, to enable stateful stream processing at RDMA speed. There-
fore, we propose Slash in the next section as a solution to bridge the
gap between RDMA acceleration and stream processing.

4 SYSTEMDESIGN
The architecture of Slash comprises three components to enable ro-
bust stream processing: the stateful executor 1 , the RDMA channel
2 , and the Slash State Backend 3 . Fig. 1 shows that each node exe-
cutes an instance (a process) of a Slash stateful executor, which reads
and writes stream records using RDMA channels, applies operator
logic, and stores intermediate state into the state backend.
Stateful executor. A guiding design principle for the stateful

executor of Slash (Sec. 5) is to make the common case fast when
leveraging RDMA acceleration. To this end, Slash executors follow a
relaxedprocessingmodel basedon lazymergingof eagerly computed
partial states. This is similar to the executionmodel of scale-up SPEs,
which is based on late merge. However, Slash performs merging at
cluster level using RDMA. To avoid costly data repartitioning, Slash
executor eagerly compute partial state in parallel on physical data
flows of a stream Furthermore, Slash executors lazily merge partial,
distributed state and output consistent result using our RDMA-based
components: the SSB and the RDMA channels. We use RDMA accel-
eration to design efficient distributed algorithms and data structures
that enable fast, coherent memory access at byte-level granularity.
RDMAChannel. Slash RDMA channels (Sec. 6) are data chan-

nels that enable sending and receiving records at full line rate with
sub-millisecond latency, via anRDMA-shared circular queue. Sender
and receiver read/write from/to the queue using RDMA semantics.
In contrast to socket-based RDMA channels, our RDMA channels
enable higher throughput transfer and zero-copy semantics. We use
RDMA channels to implement data repartitioning in RDMAUpPar
as well as communication primitive for Slash.
Slash State Backend. The SSB is a distributed state backend

(Sec. 7) that maintains operator state across the aggregated mem-
ory of multiple nodes. We design our distributed state backend for
common stream processing use-cases: update-intensive workloads,
and quick triggering and post-processing of in-flight windows [13].
In contrast to traditional approaches, which allow for local mutable
state co-partitioned with input stream, our state backend enables
distributed mutable state using RDMA. As a result, Slash executors
can consistently and concurrently update key-value pairs of the
distributed state, which in turn enables lazy execution.
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Figure 2: Slash translates a query comprising filter and a
time-based windowing operators into pipelines (green and
violet shapes). Slash executes each pipeline on its instances.
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pipelines trigger the window and read the distributed state.

Overall, the Slash stateful executor tacklesC1 and enables highly
efficient yet consistent processing model using RDMA-based build-
ing blocks. RDMAchannels enable fast network transfer and address
C2. Finally, Slash’s distributed state backend solvesC3via consistent
state management, by a coherence protocol tailored to RDMA.

5 SLASH STATEFUL EXECUTOR
In this section, we present the Slash processing model (Sec. 5.1)
and discuss execution-related aspects: supported stream operators
(Sec. 5.2) and parallel execution (Sec. 5.3).

5.1 ProcessingModel
Slash’s stateful executor applies data-parallel transformations to
physically partitioned data flows of a data stream. Thus, Slash runs in
parallel multiple instances of the same operator across the nodes of a
cluster. Slashdoesnotassumethatdataflowsare logicallypartitioned
on the primary key, thus, a key may appear in multiple data flows.

Fig. 2 depicts the stateful processingmodel of Slash. Slash supports
stateless and stateful continuous operators as operator pipelines, in
line with recent scale-up approaches to stream processing [23, 36,
56, 70]. Each pipeline terminates with a soft pipeline breaker, such
as a window trigger operator [23, 56], as shown in Fig. 2. However,
Slash extends the late-merge scale-up approach to support scaling
out. To this end, Slash shares operator state among a set of nodes (via
RDMA) and omits data re-partitioning. Slash performs no data re-
partitioning, e.g., no hash-based re-partitioning. Thus, operators im-
mediately update the shared mutable state, which is kept consistent
across Slash instances by the SSB. Furthermore, the degree of par-
allelism of a pipeline is bound by the number of its input data flows.
State and computation consistency involves two properties. P1)

Slash must not output any result at timestamp 𝑡 that is computed
using records bearing timestamps greater than 𝑡 . P2) A distributed
computationoveradata stream𝐷 inSlashmust result after lazymerg-
ing in the same output that a sequential computationwould produce
processing𝐷 . We discuss below howwe achieve these properties.
Progress Tracking. Scale-out SPEs rely on re-partitioning and

in-band or out-of-band progress tracking to trigger event-time win-
dows on a key basis [10, 47]. Slash omits data re-partitioning, which
introduces a challenge in the progress tracking of the overall dis-
tributed computation. In fact, instances of a scale-out SPE that omits
data re-partitioning must coordinate to detect window termination
and merge partial windows. To satisfy P1, Slash relies on vector



clocks [39]. Every Slash executor 𝑒 tracks the lowest watermark 𝑙𝑒,𝑤
for eachwindow𝑤 : the greatest event-time timestamp of the records
that update the window. Upon lazy merging, Slash executors share
among each other their low watermarks via RDMA to build a vector
clock𝑉𝑤 =

{
𝑙1,𝑤 ,...,𝑙𝑚,𝑤

}
, where𝑚 is the number of Slash executors.

Through the vector clock, executors observe each other’s progress
and coordinate window triggering in event-time. Triggering occurs
when a Slash executor determines a timestamp entry in the vector
clock to be greater than the end timestamp of a pending window.
Consistency. Slash ensures computation consistency using an

epoch-based coherence protocol [14, 22] and conflict-free replicated
data types (CRDTs) [54]. While we discuss our coherence protocol
in Sec. 7.2.2, we describe CRDT-related aspects in the following.
The state backend represents the partial state of a window as a

CRDT. As a result, the window bucket (or the window slice) in Slash
need to be represented as a CRDT. CRDTs enable merging partial
state while guaranteeing consistent results as follows. A CRDT for
a non-holistic window computation, such as an aggregation, relies
on commutativity of the aggregation. A CRDT for a holistic window
computation, such as a join, relies on join-semilattice and delta up-
dates [64]. For instance, the CRDT for a sum-based window stores
the partial sums of each parallel summation. Upon merging, the
CRDT computes the final result as the sum of all partial values.

5.2 Stateful Operators
Slash provides two common stateful operators: hash-based aggrega-
tions and hash-based joins on event-time windows. Slash assumes
windowing techniques that rely on window buckets [38] or general
slicing [59], with the following modifications.
Windowing. Slash executes windowed operators as part of an

operator pipeline that consists of a window bucket (or slice) assigner
and a window trigger. The window assigner determines the bucket
(or slice) to which a record belongs and updates it accordingly. In
Slash, a window assigner does not assume pre-partitioned data, but
offloads state consistency to the state backend. The window trigger
outputs thewindow content based on event-time. In Slash, awindow
trigger requires a vector clock to evaluate the triggering condition
and relies on the state backend to provide consistent state.
Windowed Aggregation. Slash provides hash-based aggrega-

tion that follows the late merge approach [70]. Each Slash executor
thread eagerly computes its own local state, i.e., a partial hash-based
aggregate for each in-flightwindow. In Slash,we scale-out latemerge
using RDMAacceleration and distributed CRDT-based aggregations.
Windowed Join. Slash offers a windowed streaming join based

on a hash join. For every in-flight window, Slash eagerly builds a
hash-table for the two streams based on the key and event-time of
incoming records.Whenawindowterminates, Slashprobes thehash-
tables to output per-key pairwise combinations of stored records.
Slash ensures state consistency as the underlying distributed hash-
table lazily concatenates all partial values with the same key.

5.3 Parallel Execution
The Slash executor parallelizes operators using worker threads
across a number of nodes. For each physical operator, Slash assigns
its RDMA channels to a worker thread. Each thread polls each chan-
nel for incoming data buffers to process. Slash uses an event-driven
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scheduler based on coroutines and a push-based processing model
(Fig. 3). Coroutines are lightweight threads that enable cooperative
multitasking [46]. The Slash scheduler interleaves compute corou-
tines with RDMA coroutines. RDMA coroutines execute RDMA-
related tasks, such as polling buffers. Compute coroutines perform
push-based processing on polled buffers. In the case of an empty
RDMA channel, the scheduler parks the related RDMA coroutine
and executes available ready compute tasks. Thus, empty RDMA
channels do not stall the execution of pending compute coroutines.

We select coroutines, as they enable context switch with 10-20 ns
of latency [31] and the interleaving of compute and I/O-tasks [26].
Current SPEs perform network-related operation on dedicated thr-
eads [10, 23, 56, 72].However, performingRDMAoperations on dedi-
cated threads needs synchronizationwith processing threads, which
wastes up to 400 cycles on common x86CPUs [30]. The Slash schedu-
ler hides network latency by executing compute tasks while RDMA
packets are in-flight. This enables fine-grained control on RDMA
and compute operations, which results in higher CPU efficiency.
Overall, Slash’s processing model is inspired by LightSaber [56]

and Grizzly [23], as it relies on task-based parallelism and late merg-
ing of partial state. However, Slash differs from them as follows.
First, it extends the processing model of the above systems to tar-
get scale-out execution. To this end, it introduces eager, distributed
computation of partial results and their lazy merge through RDMA.
Second, it extends task-based parallelism using coroutines to inter-
leave RDMA-related operations with processing tasks. Finally, it is
agnostic to the execution strategy, as it supports compilation-based
and interpretation-based strategies. Slash’s worker threads have
their own queues of coroutines to execute, whereas LightSaber and
Grizzly share a single task-queue among their worker threads and
focus on compilation-based execution.

6 RDMA FORDATA STREAMING
In this section, we present our RDMA-based transfer protocol that
enables Slash to stream data with high throughput and low latency.



Weprovide an overview of our protocol (Sec. 6.1), describe its phases
(Sec. 6.2), and discuss details of our RDMA-channels (Sec. 6.3).

6.1 RDMAData Transfer Protocol
Our protocol determines the record exchange between a producer
and a consumer via anRDMAchannel. It defines the pipelined access
to an RDMA-capable circular queue that guarantees FIFO delivery
of records. Our protocol is consumer-driven: the consumer (based
on its processing capabilities) requires the producer to adjust its
sending rate to avoid back-pressure. Furthermore, it defines a co-
herence model to access the queue: a producer cannot overwrite
unread buffers in the memory of the consumer. To this end, we
schedule writes/reads to/from the queue via credit-based flow control
(CFC) [35]. CFC is widely used in RDMA protocols to ensure coher-
ence of RDMA-based data structures [30, 31]. In this work, we use
CFC to ensure FIFO delivery of records and avoid back-pressure.

6.2 Phases of the Protocol
Our protocol has two phases: a setup phase and a transfer phase. The
setup phase defines the initialization of an RDMA channel, while
the transfer phase defines the handling of data transfer at runtime.

Setup phase. This phase consists of 1) the initialization of a circu-
lar queue of RDMA-capable memory on the sender and receiver side
and 2) setting up of a reliable RDMA connection between the two
parties. The circular queue has 𝑐 slots, which is the initial number
of credits. Each slot is an RDMA-capable, fixed-size buffer, which
are allocated in this phase. The value of 𝑐 is fixed throughout query
execution, as its selection is hardware-sensitive and determines the
level of pipelining, which depends on the NIC capabilities [32].
Transfer phase. Fig. 4 shows the steps of the transfer phase. In

this phase, a producer is permitted to: 1 acquire thenext buffer from
the circular queue andwrite to it, 2 post a write request for a buffer
to an RDMANIC, and 3 poll for credit from the consumer. A con-
sumer is permitted to: 1 poll for an incoming data buffer, 2 mark
the buffer for processing, and 3 send a credit to the producer.
Using pipelining, a producer that follows our protocol can send

up to 𝑐 buffers before it must wait for credit [30]. In particular, write
requests do not overtake each other and result in a data buffer to
be readable on the consumer upon their completion. To guarantee
that a producer does not overwrite unread data, the consumer must
notify the producer about writables buffer in its queue.

Properties. Based on the operations above, our protocol ensures
three invariants. First, a producer decreases its number of credits
by one after a write request. Second, a consumer transfers a credit
to the producer after processing a buffer. This notifies the producer
that the buffer is writable. Finally, a producer with no credit cannot
pick buffers from the queue. As a result, it cannot push further write
requests andhas towait for newcredit from the receiver.Overall, pro-
ducers and consumers that followourprotocol are guaranteed to con-
sistently exchange records in FIFO order, at a self-adjusting data rate.

6.3 RDMAChannels
An RDMA channel consists of a QP, a circular queue, and a credit
counter. RDMA channels enable zero-copy transmission and recep-
tionof buffersusingRDMA.Fundamental choices behind this compo-
nent are a flat memory layout of the circular queue and a push-based

transfer model via RDMAWRITEs. The choices influence design
regarding data structure, RDMA verbs, and message layout.

Data structure. The circular queue consists of an RDMA-capable
memory area of 𝑐 ×𝑚 bytes, with 𝑐 as number of credits and 𝑚

as the size of a single buffer. As a result, buffers are contiguously
stored,which induces a flatmemory layout. Each buffer comprises of
contiguous payload andmetadata, such as aflag for polling.Aflat lay-
out is beneficial for three reasons. First, it avoids expensive pointer
chasing operations [70]. Second, contiguously-stored payload and
metadata enable data transfer via a single RDMA request, whereas
decoupled data region and metadata would require two RDMA re-
quests. Finally, it allows for cacheline alignment and huge-pages
allocation, which reduce CPU cachemisses andNIC TLBmisses [32].
RDMA verbs.We select a push-based transfer approach using

RDMAWRITEs instead of RDMA READs for the following reasons.
First, anRDMAREADinvolvesa round-trippermessage,which leads
to higher latency and CPU utilization [31]. In contrast, an RDMA
WRITE needs a single trip per message. Second, RDMAWRITEs en-
able push-based transfer: the producerwrites into thememory of the
consumer, which polls its local memory. In contrast, RDMA READs
allow for pull-based transfers: the consumer continuously reads the
producer’s remotememoryuntil the requesteddata is available.Thus,
an RDMA pull-based model induces extra network traffic, as polling
occurs over RDMA. Overall, our push-based approach requires only
one network access per message and efficiently polls local memory.
Message layout. Slash transfers buffers as messages via RDMA

WRITEs. This needs a detection mechanism of inbound messages at
the receiver. To this end, we divide the buffer into a data region for
the payload and a footer for metadata. We use the final byte of the
footer for polling, which has two benefits compared to polling on the
header. Polling on the footer guarantees full data transfer, as RDMA
WRITE transfers buffers from lower to higher memory addresses.
Polling on the header does not ensure full reception of a buffer, as the
transfer might still be in progress. The consumer can safely process
the data region when it detects the change on the last byte.

7 SLASH STATE BACKEND
The Slash State Backend (SSB) is a concurrent key-value store for in-
memory operator state. It provides state management techniques to
buildglobal operator state sharedacrossmultiplenodesusingRDMA.
In this section, we describe our approach to RDMA-accelerated state
management (Sec. 7.1) and the components of our SSB (Sec. 7.2).

7.1 RDMA-accelerated StateManagement
In this section, we describe our approach to accelerate state man-
agement of a scale-out SPE using RDMA. Our state management
leverages RDMA to enable the nodes of an SPE to consistently read
andwrite each other’s statewith high bandwidth and low latency. To
this end, we first present requirements for a state management com-
ponent (Sec. 7.1.1) and then discuss the design of the SSB (Sec. 7.1.2).

7.1.1 Requirements. State management defines how operators ac-
cess andmodify state. To speed-up state access via RDMAand enable
running operators to concurrently modify shared state, we analyze
requirements on workloads and RDMA semantics.
Workload. A state backend for SPEs has three strict design re-

quirements [13]. First, a statebackendmust supportupdate-intensive



workloads as stateful operators concurrently perform point updates
of the state on a record basis. Point updates consists of read-modify-
write (RMW) operations that change a key-value pair based on the
previous value and the record content. Second, a state backend must
enable efficient scans of its content, for example, to timely trigger
and post-process a window. Finally, it must allow for arbitrary state
sizes, which may exceed single-node memory boundaries.

RDMA semantics.A state backend must efficiently handle con-
current updates among nodes. Nodes may concurrently update the
same key-value pair and thus the state backend must ensure con-
sistent update semantics. This is a two-fold challenge: 1) it needs a
coherence protocol among nodes to achieve consistency and 2) it
involves careful design of memory access patterns from the local
CPU as well as remote RDMANICs, as they are not coherent.

7.1.2 Design of the Slash State Backend. Based on the above require-
ments, we consider the following design choices to achieve RDMA
acceleration for consistent state management. As discussed in Sec. 5,
Slash does not perform re-partitioning but uses sharedmutable state
for stateful operators. Sharedmutable state enables concurrent reads
and writes on the same key-value pair. However, this requires ex-
pensive coordination among readers and writers, which we avoid
with our SSB as we show in the following.

Partial State. SSB maintains on every executor a partial state for
each locally-runningoperator.Operators eagerly update partial state
locally, which is in line with common scale-up principles [23, 56, 70].
With our approach, the common operation is the per-record update
of partial state,whichneither induces queueing amongoperators nor
suffers from skew-sensitive hash partitioning [70]. In contrast, the
commonoperation for traditional SPEs is the per-record partitioning
and the update of co-partitioned state.
State Maintenance. The SSB divides the key-value space into

disjoint partitions and assigns each partition to an executor. Each
executor is the leader for only one partition, which we call primary
partition. Slash does not perform re-partitioning thus each executor
potentially maintains state that belong to the partition of another
leader. Thus, an executor stores a fragment of each remote primary
partition and becomes helper of their respective leader executors.
For each partition, its leader and helpers synchronize their content
based on the following coherence protocol. This leads to a space am-
plification for key-value pairs proportional to the number of nodes.
However, thevalue sizedependson thesemanticsof thewindowcom-
putation.Thus, non-holisticwindowresults in anaggregatepernode,
whereas holistic windows results in disjoint sets of values per node.

Coherence Protocol. The SSB lazily synchronizes partitions
between leader and helper executors using an epoch-based coher-
ence protocol. An epoch is a time span between two synchronization
points.At the endof anepoch, helpernodesof apartition send its con-
tent to its leader node, which merges key-value pairs. Furthermore,
this enables arbitrary sizes of state as it is scattered across aggregated
memory of the cluster and ismaterialized only at the end of an epoch.

Update conflicts. The SSB needs to support concurrent updates
of the same key-value pair frommultiple executor. To this end, Slash
relies on CRDT to merge conflicting key-value pairs (see Sec. 5.2).
Our SSB enables a processing model that omits data re-partitioning
andmakes common case operation fast. The common case operation

of Slash is the eager computation of partial state, while current SPEs
partition records prior to update state.

7.2 Components of Slash State Backend
The SSB is our state storage layer, which provides distributed hash
tables to consistently manage operator state. In the following, we
describe the techniques behind our SSB: our distributed hash table
(Sec. 7.2.1) and our epoch-based coherence protocol (Sec. 7.2.2).

7.2.1 Distributed Hash Table. The SSB uses a distributed hash ta-
ble based on separate chaining and log-structuring. The hash table
consists of a hash index and a log-structured storage (LSS) [37, 49, 50]
of key-value pairs for each partition. We show the architecture of
our distributed hash table in Fig. 5a. In the following, we provide the
rationale behind our design and describe the LSS.
Rationale. An update of a key-value pair requires a lookup in

the hash index to find the position of the pair in one of the LSSs. De-
coupling indexing from storage has two advantages over techniques
such as open addressing [52]. First, it enables one index for eachparti-
tion that points tomultiple LSSs 1 . Second, log-structuring induces
temporal locality for the updates, i.e., frequently accessed key-value
pairs are in the same portion of the log. This enables quick detection
of changes in the LSS so that a helper can send them to a leader
using RDMAwithout involving pointer chasing. As a result, a helper
moves to a leader only the last modified pairs to avoid redundant
network transfer. In contrast, open addressing induces a scattered
memory layout that requires a full scan to detect update. Finally, we
do not assume a particular design for the hash index. Instead, we use
the hash index of FASTER [13] in the remainder of this paper.
Log-structured storage. Our LSS is an RDMA-capable circu-

lar buffer that stores dense key-value pairs. We partially follow
the design of FASTER [13] and consider its in-memory capabilities.
However, we extend its design to enable RDMA acceleration in a dis-
tributed setting but skip disk spilling, as it is out of our scope. TheLSS
acts as a hybrid log that enables concurrent append and in-place up-
date operations on key-value pairs 2 . We extend FASTER’s design
as follows. We rethink its design for distributed execution and intro-
duce leader and helper nodes. Helper nodes transfer delta changes to
leader executors in chunks using dedicated RDMA channels. Slash
interleaves reception and merging of delta changes with query pro-
cessing. Furthermore, we enable the circular buffer to adaptively
resize as partitions vary in size over time due to frequency shifts in
key distributions. Consequently, our state backend adapts to shifts
in workloads size. Overall, our state backend enables incremental
state synchronization via our epoch-based coherence protocol 3 .

7.2.2 Epoch-based coherence protocol. Slash slices infinite streams
into finite chunks of records based on epochs. Epoch-based concur-
rent systems safely execute global operations at epoch boundaries.
Manysystems relyonepoch-based synchronization fordiversegoals,
such as checkpointing [10, 13]. In Slash, we extend the concept of
epochs tomerge distributed shared partitions lazily (stored onhelper
nodes) into their respective primary partition. The SSB follows an
epoch-based coherence protocol that enables nodes to synchronize
state and ensures consistency. In the following, we present the setup
and synchronization phases as well as the properties of our protocol.
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Setup Phase. Consider a Slash deployment of 𝑛 Slash Executors
and 𝑛 primary partitions, where 𝑛 is the number of nodes. Each
partition has an epoch counter to version its content. In the setup
phase, each leader executor connects to all possible executors. Over-
all, Slash creates𝑛2 RDMAchannels for state synchronizationduring
this process. Note that our RDMA channels for state transfer use
the LSS memory instead of dedicated circular queues to avoid data
copies. Slash assumes epoch duration to be agnostic to window size.
However, a Slash instance signals the ahead-of-time termination of
an epoch upon window triggering.

Synchronization Phase.We assume that each stateful operator
receives records as well as tokens that notify system-wide events,
such as punctuations. This is a common technique used in several
SPEs tomake operators perform operations, e.g., trigger windows or
take a state snapshot [10]. In Slash, the arrival of a synchronization
token to an operator makes helpers perform the following steps,
which we show in Fig. 5b.

1 Increment the epoch counter for each shared partition.
2 Identify the portion of the circular buffer that contains the

latest changes in the LSS of each modified partition. Prior to
the transfer, mark the changes as read-only to prevent incon-
sistency between DMA reads and CPUwrites.

3 Transfer the changes in the circular bufferviaRDMAchannels.
4 Incrementally merge the transferred content in the local LSS.
5 After the transfer, invalidate the content of the transferredpor-

tionof the storage so that it can serve furtherRMWoperations.
Properties. In response to the above steps, leader executors lazily

receiveupdates for the state theymanage.Wepiggybackvector clock
updates with state updates so that a leader executor can observe the
progress of helpers. A leader node can trigger a per-key window
at timestamp 𝑡 only if the vector clock guarantees the occurrence
of no record nor state update that bears an event-time timestamp
smaller than 𝑡 . Note that a local epoch counter induces an order
on the arrived updates such that state updates cannot skip each
other. Furthermore, discarding transferred content is safe, as RMW
operations restart from a zero value.

Distributed instances of the SSB that follow this protocol are guar-
anteed to converge to a consistent state at the end of each epoch.
Window operators benefit from this approach as the triggering of a
window occurs at the end of an epoch. As a result, the window state
becomes consistent upon triggering, which ensures correct results.

8 EVALUATION
In this section,we experimentally validate the systemdesign of Slash
through a set of end-to-end experiments and micro-benchmarks.

First, we describe the setup of our evaluation in Sec. 8.1. Second, we
compare Slash against RDMAUpPar, LightSaber, and Apache Flink
on end-to-end queries (see Sec. 8.2). Third, we perform a drill-down
analysis on Slash and RDMAUpPar to understand the implications
behind our design choices (see Sec. 8.2). Finally, we sum up our key
findings of our evaluation in Sec. 8.4.

8.1 Experimental setup
In the following, we introduce our hardware and software config-
urations (Sec. 8.1.1) as well as the selected workloads (Sec. 8.1.2).

8.1.1 Hardware and Software. In our experiments, we use the fol-
lowing hardware and software configurations.
Hardware Configuration. We run the experiments on an in-

house, 16-node cluster. Each node is equippedwith a 10-core, 2.4 Ghz
Intel XeonGold 5115 CPU, 96 GB ofmain-memory, and a single-port
Mellanox Connect-X4 EDR 100Gb/s NIC. Each NIC is connected
to a 100 Gbits InfiniBand EDR switch by Mellanox. Every node
runs Ubuntu Server 16.04. We disable hyper-threading and pin each
thread to a dedicated core. Unless stated otherwise, every hardware
component is configured with factory settings.

SoftwareConfiguration. In our evaluation,weuse Slash, RDMA
UpPar, LightSaber [56], and Apache Flink 1.9 [11] as Systems under
Test (SUTs).WeselectApacheFlinkas a representativeof production-
ready, scale-out SPEs based on managed runtimes, whereas we
choose LightSaber as representative of scale-up SPEs. Flink pro-
vides queue-based partitioning to scale-out query processing. To
configure Flink, we follow its configuration guidelines [6]. On each
node,weallocatehalf of the cores forprocessingand theotherhalf for
network I/O.We reserve 50% of the OSmemory to Flink and allocate
the remaining memory to store the input dataset that we stream via
mainmemory.We configure Flink to use IPoIB on our RDMA cluster.
We build Slash with O3 compiler optimization and native CPU

support using gcc 9.3. We configure Slash to use all physical cores
and 48 GB of memory (using 2MB hugepages) for RDMA-related
operations. Unless stated otherwise, we run Slash with the best con-
figuration parameters that we present in Sec. 8.3 and configure the
epoch of SSB to end every 64 MB of data. We follow similar config-
uration steps for LightSaber and RDMA UpPar. Note that we use
Slash’s RDMA channel to implement RDMAUpPar.

8.1.2 Workloads. To experimentally validate our system design,
we select the Yahoo! Streaming Benchmark (YSB) [70], the NEXMark
benchmark suite (NB) [61], and the Cluster Monitoring benchmark
(CM) [63].WechooseYSBandNB, as theyare commonly-usedbench-
marks that represent real-world scenarios [17, 70]. We select CM,



as it is based on a publicly-available, real-world dataset provided by
Google. Furthermore, we introduce a self-developed Read-Only (RO)
benchmark for our drill-down analysis.

YSB.The YSB assesses the performance ofwindowed aggregation
operators. A record is 78-bytes large and stores an 8-bytes primary
key and an 8-bytes creation timestamp. YSB consists of a filter, pro-
jection, and a time-based, per-key window. Following YSB specifi-
cations, we use a 10m event-time, tumbling count window.

NB.TheNB simulates a real-time auction platformwith three logi-
cal streams: an auction stream, a bid stream, and a seller event stream.
Records are 206 (seller), 269 (auction), and 32 (bid) bytes large. Each
record stores an 8-bytes primary key and an 8-bytes creation times-
tamp. The NB contains queries with stateless and stateful operators.
We use queries 7 (NB7), 8 (NB8), and 11 (NB11) to cover a wide

range of scenarios. Based on these queries, we define three work-
loads to assess our SUTs. NB7 contains a window aggregation with
a window of 60s on the bid stream. We select NB7, as it features
small state sizes and an RMW state update pattern. NB8 consists
of a 12h tumbling window join in event time over the auction and
seller streams. We choose NB8, as it reaches large state sizes due
to its append pattern for state update and large tuple sizes. NB11
consists of a sessionwindow join in event time over the bid and seller
streams. We choose NB11 to assess the effect of small tuple size on
the join implementation. We omit the other queries in the suite, as
they are either stateless (NB1-2) or evaluate aggregations and joins
(NBQ3-14), which we cover already with the selected queries.

CM. The CM benchmark executes a stateful aggregation over a
stream of timestamped records containing the traces from a 12.5K-
nodes cluster at Google. Each record is 64 bytes large and stores
an 8-bytes primary key and an 8-bytes timestamp. The stateful ag-
gregation is a 2s tumbling window that computes the mean CPU
utilization of each executed job.

RO.The RO benchmark is a stateful query that counts the number
of occurrences of items in a stream.We implement RO to investigate
I/O bottlenecks, as data flows throughout the systemwithout any
costly computation. Each record stores an 8-bytes primary key and
an 8-bytes creation timestamp. A stateful operator maintains the
count of occurrences of each key. Keys are drawn following uniform
distribution from a 100M-wide range.

Experiment Overview.We structure our evaluation as follows.
First, we execute end-to-end queries to compare Slash, RDMAUp-
Par, LightSaber, and Flink (Sec. 8.2). To this end, we scale the input
data size up to the number of nodes to perform weak scaling experi-
ments [24]. Second,we runa series ofmicro-experiments to reason in
detail about the performance behavior of Slash components (Sec. 8.3).
Specifically, we breakdown the execution time of Slash and RDMA
UpPar to perform amicro-architecture analysis [66] to reveal how
well Slash uses hardware resources. Finally, we summarize the key
findings of our evaluation (Sec. 8.4).

8.2 End-to-end Queries
In this section,we focuson theexecutionof end-to-endqueries by the
SUTs. We present our evaluation methodology in Sec. 8.2.1. We eval-
uate querieswithwindowed aggregations (YSB andNB7) in Sec. 8.2.2

and queries with windowed join (NB8 and NB11) in Sec. 8.2.3. Fi-
nally, we conduct in Sec. 8.2.4 a COST (Configuration that Out-
performs a Single Thread) analysis [42] and compare Slash against
LightSaber [56],which is anSPEoptimized for single-node execution.

8.2.1 Methodology. In our end-to-end evaluation, we follow the
benchmark methodology proposed in earlier research [70]. We pre-
generate the dataset to stream data from main memory, to omit
record creation and ingestion overhead. Thus, the upper bound for
the input rate is the main-memory bandwidth. In every run, source
operators consume data in real-time, which SUTs process. During
execution, we measure query processing throughput, which we de-
fine as the number of records the SUT can process in one second.
We repeat each experiment multiple times and compute average
measurements. Through our experiments, we evaluate the efficiency
of the SUTs while they execute a query.

8.2.2 Queries withWindowed Aggregations. In this section, we fo-
cus on the performance comparison between the SUTs while they
performwindowed aggregations using YSB, CM, and NB7.
Workload. In YSB and NB7, each executor thread processes a

partition of 1GBof input data. InCM, each executor thread processes
a partition of the provided input dataset. Each YSB partition contains
recordswith a primary key drawnuniformly from a 10M-wide range.
Each NB7 partition contains bid records with a primary key gener-
ated following a Pareto distribution that induces a long-tail due to
heavy-hitters. Partitions of YSB, NB7, and CM are non-disjoint: the
same key can occurmultiple times inmultiple partitions. In addition,
we scale the number of executor threads and nodes. We configure
each SUT to use 10 threads per node and up to 16 nodes. However,
RDMAUpPar and Flink need to partition the input stream before the
window operator. As a result, they use half the threads to execute
the filter and projection and the second half for thewindow operator.
Instead, Slash runs filter, projection, and windowing on all threads.

Result. In all YSB,CM, andNQB7 experiments, Slash outperforms
all SUTs (Fig. 6a, 6b, and 6c). It achieves up to 12x and 25x higher
throughput on the YSB compared to RDMAUpPar and Flink, respec-
tively. Slash attains up to 22x and 104x higher throughput on the
NQB7 compared to RDMAUpPar and Flink, respectively. Similarly,
Slash achieves up to two order of magnitude higher throughput than
RDMAUpPar and Flink, while executing CM. Overall, Slash is the
only SUT to achieve throughput of up to 2 billion records/second
and almost linear weak scaling in YSB , CM, and NB7.

Discussion. In this experiment, Slash achieves almost linearweak
scaling, whereas other SUTs result in sub-optimal performance. The
reasons for this superior performance for windowed aggregations
are two-fold. First, as shown by previous research [70], queue-based
partitioning of input records introduce a significant bottleneck in
single-node setups. This also applies in the distributed case, as net-
work transfer is mediated by software queues. As a result, SUTs that
use queue-based partitioning to scale-out incur an inherent bottle-
neck regardless of the network hardware. Second, Slash efficiently
computes local partial states and consistently merges them using
point-to-pointRDMAtransfers amongnodes. In contrast, Slash isnot
affected by a performance regression, when processing workloads
that have a skewed distribution of partitioning keys. Overall, Slash
attains higher throughput due to better utilization of underlying
hardware resources, as we further explain in Sec. 8.3.
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Figure 6: Throughput for YSB, CM, and NB (in records/s) of Flink ( x ), RDMAUpPar ( x ), and Slash ( x ) on 2, 4, 8, and 16 nodes.

2.4
x 4.5

x 5.4
x
11
.6x

1.6
x 2.2
x 3.5

x 4.4
x

2.5
x

5.7
x 7.1
x 10
.5x

CM NB7 YSB

L 2 4 8 16 L 2 4 8 16 L 2 4 8 16
10 2

10 3

10 4

Number of Nodes

T
hr

ou
gh

pu
t(
M

re
c/
s)

Figure 7: COST comparison against LightSaber (L).

8.2.3 Queries withWindowed Joins. In this section, we focus on the
performance of our SUTs as they run windowed joins of NB8-11.
Workload.We follow the same setup of NB7 except for the fol-

lowing aspects. Each executor thread processes a partition of 1 GB
of input stream, in which the ratios between auction and seller and
between bid and seller are 4 to 1, according to the benchmark. Note
that every bid has always a valid seller.

Result. In allNQB8andNB11 runs, Slash achieveshigher through-
put compared to the other SUTs (Fig. 6d and 6e). In NQB8, it reaches
up to 8x and 128xhigher throughput thanRDMAUpPar and Flink, re-
spectively. In NQB11, it shows up to 1.7x and 40x higher throughput
than RDMAUpPar and Flink, respectively.
We observe that Slash achieves almost linear weak scaling on

queries with join operators, similarly to windowed aggregation. In
contrast, Apache Flink and RDMA UpPar exhibit a severe loss in
throughput. In sum, Slash does not achieve the same performance
gain of aggregations, although it outperforms the other SUTs.
Discussion. The main performance differences for windowed

joins among the SUTs result from the following characteristics. First,
a windowed join operator is more memory-intensive than a win-
dowed aggregation. A hash-based streaming join operator appends
every record to intermediate state including the records that have
nomatching join partner yet. As a result, append operations in Slash
do not benefit from CPU cache temporal locality. In contrast, RMW-
based aggregations benefit fromCPUcaches, as theRMWoperations
induce temporal relations to cache accesses. Second, partitioning
in RDMA UpPar and Flink induces performance regression as in
the case of windowed aggregation. This becomes more severe while
increasing the number of nodes. In contrast, Slash does not show
performance regression when scaling out.

In sum, hash-based streaming joins do not show the same perfor-
mancegainaswindowedaggregations, as joinare limitedbycompute
resources. We plan to conduct further studies on the RDMA-based
acceleration of streaming joins as future work.

8.2.4 COST Analysis. In this experiment, we compare the process-
ing performance of Slash against a scale-up SPE, following the COST
metric proposed by McSherry et al. [42]. We select LightSaber as
the latest proposed scale-up SPE, which does not run on a managed
runtime (as BriskStream [72]).We chooseCM,NB7, andYSB aswork-
loads supported by both SUTs, as LightSaber does not support joins.
In Fig. 7, we show the throughput of LightSaber (L) and of Slash (on
2, 4, 8, and 16 nodes) on the selected workloads.
We observe that Slash outperforms LightSaber in each run as it

improves its performance when doubling the number of nodes. Fur-
thermore, Slashachieves almost linear speeduponYSBandCM(up to
11.6x throughput incrementusing16nodes)andsub-linear scalingon
NB7 compared to LightSaber (up to 4.4x throughput increment using
16 nodes), respectively. The improvement of Slash over LightSaber
is smaller compared to the gain over RDMAUpPar, as LightSaber’s
execution is agnostic to data re-partitioning. Overall, the key insight
of this experiment is that LightSaber offers a valid alternative to
SPEs that rely on data re-partitioning as long as the workload 1) is
sustainable on a single node, 2) does not need RDMA ingestion, and
3) does not involve join operators. For highly-demandingworkloads,
Slash offers robust scale-out performance, as our evaluation shows.

8.3 Performance Drill-down
In the previous section, we have analyzed the performance result
of Slash and Flink on end-to-end queries. In this section, we reveal
the reasons behind the improvement in performance of Slash over
RDMAUpPar. We omit Flink in this evaluation, as its partitioning
approach suffers fromruntimeand IPoIBoverhead [70]. In the follow-
ing, we first describe the methodology for our drill-down evaluation
in Sec. 8.2.1. After that, we assess in Sec. 8.3.2 the maximum achiev-
able throughput of RDMAUpPar and Slash in our RDMA evaluation
setup. In this setup, we consider application-related aspects, such as
parallelismanddata skewness. InSec. 8.3.3,webreakdown theexecu-
tion time of both SUTs to analyze the impact of eachCPUcomponent.
Finally, in Sec. 8.3.4, we analyze the resource utilization of each SUT
on a stateful workload using hardware performance counters.

8.3.1 Methodology. In our performance drill-down, we analyze
workload-related and hardware-related aspects of Slash and RDMA
UpPar. Workload-related aspects provide a high-level identification
of bottlenecks and include data characteristics and application set-
tings. Hardware-related aspects consist of hardware performance
counters that we use to conduct micro-architecture analysis. These
metrics allow us to derive the CPU components that stall the execu-
tion and the saturation point of the RDMA links. In the following, we
consider the RO andYSB benchmarks and provide a brief description
of the sampled metrics for each class of experiments.



8.3.2 Analysis of workload-related aspects. In this section, we com-
pare the performance of RDMA UpPar and Slash with a focus on
RDMA-based data transfer. We consider the RO query, which is pri-
marily I/O bound, to evaluate the impact on performance of data
re-partitioning. We analyze the effect on throughput and latency
during query processing of application-related knobs, such as par-
allelism and buffer size, as well as data characteristics
Workload. We setup two Slash instances on two servers con-

nected by a single RDMANIC to measure the impact of buffer size
on throughput and latency. The producer instance streams the in-
put data to the consumer instance via our RDMA channels. The
consumer instance polls the RDMA channels and applies stateful
operator logic based on the benchmark. Each instance uses up to
10 threads for the executor. Every producer thread on the first node
sends buffers of records via RDMA to one consumer thread on the
other node in Slash. In RDMAUpPar, every producer thread sends
buffers of records to any consumer via hash-partitioning. Tomeasure
the impact of parallelism on throughput, we use up to 8 nodes. Note
that we configure our RDMA channels to use 𝑐 =8 (credits). Other
configurations, such as 𝑐 =8 and 𝑐 =16 decrease throughput by up to
3%, whereas 𝑐 =64 leads to a performance regression by up to 10%.

Results. In this experiment, we assess the impact of application-
related aspects on the performance of both SUTs. First, we show the
impactofbuffersizeon throughput forbothSUTs (Fig. 8a) and latency
(Fig. 8b). Second, we measure the effect of parallelism (Fig. 8c) by
scaling thenumber of threads andnodes. In Fig. 8a and 8c,wemark in
red the maximum achievable network bandwidth (11.8 GB/s), which
we measure using the ib_write_bw tool [33]. Finally, we analyze the
impact on throughout of a skewed distribution of the partitioning
key (Fig. 8d). To this end, we generate partitioning keys following
a Zipfian distribution using 𝑧=0.2...2.0.

Throughput.We observe that Slash outperforms RDMAUpPar
in all configurations as it utilizes up to 95% of the available network
bandwidth (11.2 GB/s out of 11.8 GB/s) using two threads. Slash
almost saturates the theoretical bandwidth limit of one RDMANIC
using two threads and 32 KB buffer size. In contrast, RDMAUpPar
utilizes up to 50% of the available network bandwidth, i.e., 5.9 GB/s.

Latency. Slash achieves latencies below 100 𝜇s for buffers sizes
below 128 KB, while it achieve up to 1ms of latencywith 1MB buffer
size and above. In contrast, latencies of RDMAUpPar for each buffer
size are about 10% higher than Slash.

Parallelism. Slash achieves the highest aggregated throughput
for query processing (Fig. 8c). Slash achieves 11.2 GB/s on the RO
benchmark using two threads. In contrast, RDMAUpPar requires
10 thread to saturate up to 91% of the available network throughput.

Data Skewness. Slash shows robust performance in the pres-
ence of a skewed distribution of the partitioning keys. Interestingly,
we observe that the throughput of Slash increases, when the parti-
tioning keys in the data stream are highly skewed. In contrast, the
throughput of RDMAUpPar decreases by up to 68% (RO) and 110%
(YSB), while the skewness in the distribution increases.

Discussion.Overall, our experiments show three interesting as-
pects. First, Slash becomes network bound with a lower number
of threads compared to RDMA UpPar (i.e., 2 vs. 10). This induces
an important benefit: increasing the number of threads and RDMA
NICs per node results in higher processing throughput. We cannot
derive the same conclusion for RDMAUpPar, as it requires an higher

numberof threads toachievealmost full line rate.Asa result, Slashex-
hibits a higher per-thread efficiency compared to RDMAUpPar. Sec-
ond, buffer size plays an interesting role also for data stream process-
ingonRDMAhardware. It enables thehighest (or lowest) throughput
(or latency) based on workloads and service constraints. In partic-
ular, both SUTs achieve micro-second latency, which is one order of
magnitude lower than the latencies measured on Flink (not shown
in the figures). Finally, Slash offers more robust performance than
RDMAUpPar, in the presence of skewed data. RDMAUpPar suffers a
performance regression, as hash-partitioning causes load imbalance
due to the data-dependent selection of the consumer induced by data
skewness. In contrast, Slash achieves constant throughput on RO, re-
gardless of the skewness, as the transfer performance of RDMAchan-
nels is not data-dependent.When executing a stateful query, such as
YSB, skewness results in higher throughput for Slash, as it reduces
the number of key-value pairs of the state to be merged by the SSB.

8.3.3 Execution Breakdown. In the previous section, we have an-
alyzed the effect of application-related knobs on throughput and
latencyof queryprocessing. Inparticular,wehave shown thatRDMA
UpPar provides lower efficiency compared to Slash. In this section,
we performan execution breakdown to reveal the reasons behind the
sub-optimal performance of RDMAUpPar in comparison to Slash.
To this end, we carry out a micro-architecture analysis of Slash and
RDMAUpPar on the RO benchmark.
Metrics. Before delving into our analysis, we provide a brief de-

scription of the consideredmetrics. On a high level, recent x86 CPUs
consist of two pipelined components: a front-end and a back-end.
The front-end decodes instructions into 𝜇-ops and delivers up to
four 𝜇-ops per cycle to the back-end. The back-end processes 𝜇-ops
out-of-order by allocating execution units and loading data from
memory. Completed 𝜇-ops are defined as retired (R) and constitute
the useful work performed by a CPU. Front-end stalls, back-end
stalls, and branch mis-prediction are sources of inefficiency for a
CPU. Upon a front-end stall, the back-end has no 𝜇-ops to process,
thus, the application is front-end bound (FeB). Upon a back-end stall,
a 𝜇-ops needs to wait for data from the memory subsystem or for an
execution unit. In the former case, the execution isMemory-bound
(MemB), whereas in the latter case, it is Core-bound (CoreB). Finally,
bad speculation (BadS) due to branch mis-prediction results in the
cancellation of 𝜇-ops prior to their retirement.
Workload.We execute the RO benchmark with best configura-

tions of both SUTs that we derive in the previous experiments and
refer to the nodes as sender and receiver. Specifically, we choose 64
KB as buffer size and repeat the measurements using two and ten
threads, as they induce the highest throughput.

Results. In Fig. 9, we show the execution breakdown in 𝜇-ops for
the RO benchmark. RDMAUpPar requires up to twicemore 𝜇-ops to
execute the RO benchmark than Slash. Its senders incur in up to 7x
more front-end stalls than the senders of Slash. In fact, the execution
of its senders with two and ten threads are front-end bound (22 and
33% of total CPU cycles, respectively). In contrast, Slash’s senders
are essentially core-bound and its receivers are memory-bound.
Discussion. This experiment reveals the source of inefficiency

of RDMAUpPar as we compare it to Slash. The key finding is that
RDMAUpPar inefficiently use CPU resources due to more complex
application logic. This has a two-fold impact on the execution. First,
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Figure 8: Drill-down analysis of Slash and RDMAUpPar.We consider the impact on throughput and latency of buffer size (a,
b), parallelism (c), and skewness in the distribution of the partitioning key (d).
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the complex logic behind partitioning results in a large code foot-
print and thus high number of 𝜇-ops to retire, compared to Slash. A
large code footprint results in front-end stalls that slow down the
sender and in turn the receiver needs to spend more time waiting.
Furthermore, the implementation of partitioning requires branches,
which lead to front-end stalls in the case of branch mis-prediction.

Second, the receivers of RDMA UpPar need to poll on multiple
RDMA channels (and thus memory locations) depending on fan-out,
which makes execution mainly core-bound. Core-bound execution
is induced by the pause instruction [15] that RDMA channels use for
polling (see Sec. 6). This occurs when an RDMA buffer is not fully
transferred from remote to localmemory. In contrast, Slash’s senders
are core-bound, as they saturate the network and thus must wait for
data transmission through thepause instruction [15]. Its receivers are
primarily memory-bound, which is the result of waiting for in-flight
data to materialize in registers. Its receivers are also core-bound, as
they must wait on senders. However, this differs from the execution
of RDMA UpPar. In fact, the senders of Slash cannot send as the
network is saturated,whereas the senders of Slash cannot senddue to
stalls. In sum, the discussion above suggests that themain bottleneck
of Slash is the network, in line with our findings of Sec. 8.3.2.

8.3.4 Resource Utilization of Stateful Execution. In the following,
we further analyze the usage of CPU resources of Slash and RDMA
UpPar to understand the impact of our design choices on stateful
queries. We use the best performing configuration as in Sec. 8.3.3 to
conduct amicro-architecture analysis of YSB on Slash and the sender
and receiver of RDMAUpPar.We collect execution-relatedhardware
performance counters to analyze the following three aspects.
Micro-architectural Analysis. In Fig. 10, we consider the re-

source utilization of the CPUmicro-architecture and observe that
Slash is primarily memory-bound, whereas sender and receiver of
RDMAUpPar are core-bound. RDMAUpPar’s sender suffers from
front-end stalls, as shown by prior findings [70], whereas Slash min-
imally suffers from branch mis-prediction. Finally, we note that

Slash spends about 20% of its execution time performing retirement,
whereas the receiver of RDMA UpPar - which computes results -
spends 10% of its time retiring instructions.

The reason behind the above observations are as follows. On the
sender side of RDMAUpPar, the partitioning logic results in front-
end stalls. Besides, the data-dependent writes to fan-out RDMA
buffers result in back-end stalls (memory-bound fraction). In total,
this accounts for about 30% of the execution time, which slows down
partitioning. Receiver threads of RDMAUpPar poll on multiple, in-
bound RDMA channels, which rely on the pause instruction, thereby
execution becomes core-bound and slows down the receivers. Note
that the sender adjusts its speed to the processing rate of the re-
ceiver, which results in waiting that makes the sender core-bound.
In contrast, Slash shows a more efficient execution than RDMA
UpPar, as it essentially performs RMWs to the in-memory area of
the SSB. RMWs induce a mainly memory-bound execution due to
the latency of atomic instructions, such as compare-and-swap. The
epoch-based state synchronization of Slash results in streamlined
RDMA accesses that negligibly impact performance.
Instruction StreamAnalysis.We show in Tab. 1 that Slash re-

quires up to 4x less instructions and up to 5x less cycles to process
each single record compared to RDMAUpPar. Furthermore, Slash
executes close to one instruction per cycle (IPC). RDMA UpPar re-
quires up to 0.4 and 0.6 IPC on sender and receiver, respectively. Note
that an optimal execution retires 4 instructions per cycle [67].
The difference between the two SUTs lays in the more complex

partitioning logic of RDMAUpPar, which needs more instructions
per record. Thus, the limiting factor for RDMAUpPar is partitioning,
which slows down the receiver. As a result, the consumer essentially
waits for inbound data to process, and is thus core-bound. In con-
trast, Slash executes a simple processing logic on a record basis, yet
relies on a more complex logic upon state synchronization. With
this trade-off, Slash attains fast execution on the common code path
and induces negligible overhead upon synchronization.
Data Locality Analysis. We observe in the rightmost part of

Tab. 1 that the execution of Slash induces about 1.5misses per record
on each cache level. In contrast, the producer of RDMA UpPar ex-
hibits about 1.3 misses on each cache level, whereas its receiver
minimally suffers from LLCmisses. Additionally, Slash induces an
aggregated memory throughput of 70.2 GB/s, which is about 52%
of the aggregated memory bandwidth of the two nodes. In contrast,
RDMAUpPar has a memory access rate of 4.1 (sender) and 4.2 (re-
ceiver) GB/s. The LLCmisses for RDMAUpPar’s sender are due to
data dependent writes in RDMA fan-out buffers. Slash is affected by
cache misses due to the updates of the SSB, which rely on atomic



IPC Instr./
Rec.

Cyc./
Rec.

L1d Miss/
Rec.

L2d Miss/
Rec.

LLCMiss/
Rec.

Aggr. Mem.
Bw (GB/s)

RDMA
UpPar

0.6 166 274 1.36 1.31 1.2 4.1
0.4 78 276 1.74 1.42 0.4 4.2

Slash 0.9 42 53 1.75 1.52 1.3 70.2
Table 1: Resource utilization of RDMA UpPar (sender and
receiver) and Slash on YSB using two nodes.

operations. Partitioning throughput induces a lowmemory access
rate for RDMAUpPar, whereas Slash is mainly memory-bound.

Discussion. This experiment sheds light on the different perfor-
mance of both Slash SUTs when executing stateful computations.
This is due to the more efficient resource utilization of the SSB of
Slash versus the data-partitioning approach of RDMAUpPar. In sum,
RDMAUpPar is bound by partitioning throughput and ultimately by
network bandwidth, whereas Slash is primarily limited by memory
performance. This validates that our processing model based on
eager computation of partial results and on their lazy merging is an
alternative strategy to data re-partitioning of state-of-the-art SPEs.

8.4 Summary
In sum, the findings of our experiments validate our design choices.
Basedonthem,wederive the followingguidelines for systembuilders
who seek to accelerate their streamprocessingworkloads via RDMA.

1. Apply native RDMA acceleration.Native RDMA accelera-
tionenables a systemdesign that scaleswith thenumberofnodes and
achieves higher throughput on common streaming workloads than
partitioning-based approaches. In particular, our Slash prototype
achieves up to 25x and 8x higher throughput than the strongest scale-
out baseline on windowed aggregations and joins, respectively. Fur-
thermore, Slash outperforms a state-of-the-art scale-up SPE called
LightSaber by a factor of 11.6 on windowed aggregations.
2. Avoid data re-partitioning.Data re-partitioning induces a

performance regression, as it makes SPEs be limited by partitioning
throughput. To understand this performance regression, we run a
performance drill-down of Slash and RDMAUpPar. We show that
Slash achieves full line rate on RO benchmark using RDMA andmin-
imal CPU resources. In contrast, RDMAUpPar needs a higher degree
of parallelism to reach high throughput, as it is primarily CPU bound
due to costly data re-partitioning. Furthermore, we demonstrate that
Slash does not suffer from skewed data distributions.

3. Use lazymerging.We show that a processing model based on
lazy merging of eagerly computed partial results attains the high-
est throughput in our evaluation. However, lazy merging requires
careful synchronization among nodes to avoid overhead and in-
consistency. We demonstrate that our SSB achieves lazy merging, is
skew-agnostic, and inducesminimumoverhead onquery processing.

9 RELATEDWORK
In the following, we discuss the application of RDMA to database
systems and the differences between our approach and existing SPEs.
RDMA for database systems. The database community has

adopted RDMA to speed up OLAP and OLTP workloads. We iden-
tify three areas of adoption: distributed transactions, batch analyt-
ical query processing, and key-value stores. Distributed transac-
tions techniques [8] profit from RDMA to scale out on large deploy-
ments [69]. Systems that use RDMA for OLTP are Oracle RAC [1],

IBM pureScale [2], NAMDB [9, 69], and FaRM [18, 19]. OLAP op-
erators, especially joins, benefit from RDMA to speed up partition-
ing [7, 9, 20, 21, 57]. Big data frameworks accelerate batchworkloads
via RDMA [28, 41, 62], while key-value stores use RDMA to increase
throughput and reduce latency of value access [31, 51].
Our work is orthogonal to above research, as stream process-

ing has different requirements than traditional database systems or
key-value stores [29, 55]. SPEs require fast, stateful processing of
inbound data streams. Their key requirement deals with the state
management component that must support fast, concurrent point
updates and range scans for analytics readiness over windows. An
RDMA-based key-value store, such as FaRM, is not suitable to store
state, as it targets transactional workloads with point lookups and
updates. As a result, system designers need to devise algorithms and
protocols to natively accelerate an SPE using RDMA. With Slash,
we fill this gap as we provide SPE components that address RDMA
acceleration by design.

Stream processing engines.We distinguish two classes of SPEs.
Scale-out SPEs focus on scalability and rely on socket-based commu-
nication to distribute query execution on a large cluster of nodes [11,
12, 47, 58, 68]. A recent prototype provides lightweight RDMA in-
tegration for Apache Storm [73] and is thus equivalent to RDMA
UpPar. Scale-up SPEs target single-node performance but neglect
network-related aspects [23, 34, 56, 70, 72]. With Slash, we combine
the best of bothworlds. Our goal is scale-out streamprocessing using
RDMA acceleration, while considering recent scale-up techniques
for SPEs to achieve maximum performance and at rack-scale. To
this end, we propose a system design that profits from scale-up tech-
niques, such as omitting partitioning, late merge, shared mutable
state, and a hardware-conscious execution. However, we rethink the
above techniques to apply them to distributed stateful computation
using RDMA and scale processing over multiple nodes. Thus, we
devise the RDMA acceleration of late merging and enable consis-
tent shared mutable state among the nodes. Overall, our approach
attains higher performance than RDMA-based data re-partitioning
approaches, such as RDMAUpPar, and almost linear weak scaling
in comparison to a scale-up SPEs, such as LightSaber.

10 CONCLUSION
In this paper, we propose Slash, our novel SPEwith native RDMA ac-
celeration,which paves theway to anewclass of SPEs for high-speed
networks. Slash enables a processingmodel based on eager computa-
tion of distributed, partial state and its lazymerging into a consistent
global state. We validate our prototype against RDMAUpPar that
uses RDMA-based data re-partitioning, IPoIB-enabled Apache Flink,
and a scale-up SPE called LightSaber [56]. Overall, we show that our
approach achieves on common streamingworkloads higher through-
put than RDMAUpPar (up to a factor of 22), thanApache Flink (up to
two orders ofmagnitude), and than LightSaber (up to a factor of 11.6).
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