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Abstract—The need for scalable and efficient stream analysis
has led to the development of many open-source streaming data
processing systems (SDPSs) with highly diverging capabilities and
performance characteristics. While first initiatives try to compare
the systems for simple workloads, there is a clear gap of detailed
analyses of the systems’ performance characteristics. In this
paper, we propose a framework for benchmarking distributed
stream processing engines. We use our suite to evaluate the
performance of three widely used SDPSs in detail, namely
Apache Storm, Apache Spark, and Apache Flink. Our evaluation
focuses in particular on measuring the throughput and latency
of windowed operations, which are the basic type of operations
in stream analytics. For this benchmark, we design workloads
based on real-life, industrial use-cases inspired by the online
gaming industry. The contribution of our work is threefold.
First, we give a definition of latency and throughput for stateful
operators. Second, we carefully separate the system under test
and driver, in order to correctly represent the open world model
of typical stream processing deployments and can, therefore,
measure system performance under realistic conditions. Third,
we build the first benchmarking framework to define and test
the sustainable performance of streaming systems. Our detailed
evaluation highlights the individual characteristics and use-cases
of each system.

I. INTRODUCTION

Processing large volumes of data in batch is often not
sufficient in cases where new data has to be processed fast to
quickly adapt and react to changes. For that reason, stream data
processing has gained significant attention. The most popular
streaming engines, with large-scale adoption in industry and
the research community, are Apache Storm [1], Apache Spark
[2], and Apache Flink [3]. As a measure for popularity, we
consider the engines’ community size, pull requests, number of
contributors, commit frequency at the source repositories, and
the size of the industrial community adopting the respective
systems in their production environment.

An important application area of stream data processing
is online video games. These require the fast processing of
large scale online data feeds from different sources. Windowed
aggregations and windowed joins are two main operations that
are used to monitor user feeds. A typical use-case is track-
ing the in-application-purchases per application, distribution
channel, or product item (in-app products). Another typical
use-case is the monitoring of advertising: making sure that
all campaigns and advertisement networks work flawlessly,
and comparing different user feeds by joining them. For
example, monitoring the in-application-purchases of the same
game downloaded from different distribution channels and

comparing users’ actions are essential in online video game
monitoring.

In this work, we propose a benchmarking framework to
accurately measure the performance of SDPSs. For our experi-
mental evaluation, we test three publicly available open source
engines: Apache Storm, Apache Spark, and Apache Flink.
We use latency and throughput as the two major performance
indicators. Latency, in SDPS, is the time difference between
the moment of data production at the source (e.g., the mobile
device) and the moment that the tuple has produced an
output. Throughput, in this scenario, determines the number
of ingested and processed records per time unit.

Even though there have been several comparisons of the
performance of SDPS recently, they did not measure the
latency and throughput that can be achieved in a production
setting. One of the repeating issues in previous works is the
missing definition and inaccurate measurement of latency in
stateful operators (e.g., joins). Moreover, previous works do
not clearly separate the system under test (SUT) and the
benchmark driver. Frequently, the performance metrics are
measured and calculated within the SUT resulting in incorrect
measurements.

In this paper, we address the above mentioned challenges.
Our proposed benchmarking framework is generic with a clear
design and well defined metrics, which can be applied to
a number of different stream execution engines. The main
contributions of this paper are as follows:

• We introduce a mechanism to accurately measure the
latency of stateful operators in SDPSs. We apply the
proposed method to various use-cases.

• We accomplish the complete separation of the test driver
from the system under test.

• We measure the maximum sustainable throughput of a
SDPSs. Our benchmarking framework handles system
specific features like backpressure to measure the maxi-
mum sustainable throughput of a system.

• We use the proposed benchmarking system for an exten-
sive evaluation of Storm, Spark, and Flink with practical
use-cases.

II. RELATED WORK

Benchmarking parallel data processing systems has been
an active area of research. Early benchmarking efforts have
focused on batch processing and later on extended to stream
processing.



Batch Processing. HiBench [4] was the first benchmark suite
to evaluate and characterize the performance of Hadoop and it
was later extended with a streaming component [5]. HiBench
includes a wide range of experiments ranging from micro-
benchmarks to machine learning algorithms. SparkBench,
features machine learning, graph computation, SQL queries,
and streaming applications on top of Apache Spark [6].
BigBench [7] built an end-to-end benchmark with all major
characteristics in the lifecycle of big data systems. The Big-
DataBench [8] suite contains 19 scenarios covering a broad
range of applications and diverse data sets. Marcu et al. [9]
performed an extensive analysis of the differences between
Apache Spark and Apache Flink on iterative workloads. The
above benchmarks either adopt batch processing systems and
metrics used in batch processing systems or apply the batch-
based metrics on SDPSs. We, on the other hand, analyze
streaming systems with a new definition of metrics and show
that adopting batch processing metrics for SDPSs leads to
biased benchmark results.

Stream Processing. Recently, a team from Yahoo! conducted
an informal series of experiments on three Apache projects,
namely Storm, Flink, and Spark and measured their latency
and throughput [10]. They used Apache Kafka [11] and
Redis [12] for data retrieval and storage respectively. Perera
et al. used the Yahoo Streaming Benchmark and Karamel
[13] to provide reproducible batch and streaming benchmarks
of Apache Spark and Apache Flink in a cloud environment
[14]. Later on, it was shown [15] that Kafka and Redis were
the bottleneck in the experiments of the Yahoo! Streaming
Benchmark [10] and transitively to [14]. In this paper, we
overcome those bottlenecks by i) generating the data on the fly
with a scalable data generator (Section III) instead of ingesting
data from Kafka and ii) not storing data in a key-value store.

Lopez et al. [16] propose a benchmarking framework to
assess the throughput performance of Apache Storm, Spark,
and Flink under node failures. The key finding of their work is
that Spark is more robust to node failures but it performs up to
an order of magnitude worse than Storm and Flink. Compared
to this work, we observed a large difference with respect to
the throughput achieved by the same systems. The paper in
question allows the systems to ingest data at maximum rate.
Instead, we introduce the concept of sustainable throughput: in
our experiments we control the data ingestion rate (throughput)
of a system, in order to avoid large latency fluctuations. We
argue that sustainable throughput is a more representative
metric which takes into account the latency of a system.

Shukla et al. [17] perform common IoT tasks with differ-
ent SDPSs, evaluating their performance. The authors define
latency as the interval between the source operator’s inges-
tion time and the sink operator’s result emission time. As
we discuss in Section IV, this approach leads to inaccurate
measurements as the effects of backpressure and other effects
are not visible in the results. The same issue is also present
in the LinearRoad benchmark [18]. To alleviate this problem,
we perform experiments measuring event-time latency. Addi-

tionally, Shukla et al. define throughput as the rate of output
messages emitted from the output operators in a unit time.
However, since the number of result-tuples can differ from
the input-tuples (e.g., in an aggregation query) we measure
the throughput of data ingestion and introduce the concept of
sustainable throughput.

StreamBench [19], proposes a method to measure the
throughput and latency of a SDPS with the use of a mediator
system between the data source and the SUT. In this work,
we explain that such a mediator system is a bottleneck and/or
affect the measurements’ accuracy. Finally, several stream pro-
cessing systems implement their own benchmarks to measure
the system performance without comparing them with any
other system [20], [21], [2].

In summary, our benchmark framework is the first to i) sep-
arate the SUT and driver, ii) use a scalable data generator and
to iii) define metrics for system-, and event-time, as well as
to iv) introduce and use the concept of sustainable throughput
throughout experiments.

III. BENCHMARK DESIGN DECISIONS

In this section, we discuss the main design decisions of our
benchmarking framework. We choose to generate data on-the-
fly, rather than reading the data from a message broker or the
filesystem and we use queues between the data generators and
the streaming systems.

A. On-the-fly Data Generation vs. Message Brokers

Streaming systems nowadays typically pull the data from
message brokers, such as Apache Kafka [11], instead of
directly connecting to push-based data sources. The message
broker persists data coming from various sources [22], al-
lowing for data replication and making it available for other
systems to use. The data exchange between the message broker
and the streaming system may easily become the bottleneck of
a benchmark deployment for a number of reasons. First, if the
message broker’s data partitioning is not chosen wisely, data
re-partitioning may occur before the data reaches the sources
of the streaming system. This can happen when data resides in
a different machine in the cluster or the data is partitioned in
a different way than the streaming system requires it. Finally,
the data needs to persist on disk before going through a
de-/serialization layer between the streaming system and the
message broker. In our benchmark design, we choose to not
use a message broker, but rather, use a distributed in-memory
data generator with configurable data generation rate. Before
each experiment we benchmarked and distributed our data
generator such that the data generation rate is faster than
the data ingestion rate of the fastest system. This way, the
communication between the data generator and the SUT is
bounded only by the network bandwidth and the speed of the
data ingestion by the SUT.

B. Queues Between Data Generators and SUT Sources

It is quite common that the data ingestion rate or throughput
of a streaming system is not constant throughout the duration



of an experiment. The fluctuations in the ingestion rate can be
due to transient network issues, garbage collection in JVM-
based engines, etc. To alleviate this problem, we add a queue
between each data generator and the SUT’s source operators in
order to even out the difference in the rates of data generation
and data ingestion.

C. Separation of Driver and the SUT

We choose to isolate the benchmark driver, i.e., the data
generator, queues, and measurements from the SUT. In previ-
ous works, the throughput was either measured inside the SUT
or the benchmark used internal statistics of the SUT. However,
different systems can have very diverse definitions of latency
and throughput leading. In our benchmarking framework,
we choose to separate the driver and the SUT, to perform
measurements out of the SUT. More specifically, we measure
throughput at the queues between the data generator and the
SUT and measure latency at the sink operator of the SUT.
Each pair of data generator and queue resides on the same
machine to avoid any network overhead and to ensure data
locality, while the queue data is always kept in memory to
avoid disk write/read overhead.

The data generator timestamps each event at generation
time. It performs so, with constant speed throughout the
experiment. The event’s latency is calculated from the time
instance that it is generated, i.e., the longer an event stays in
a queue, the higher its latency. We make sure that no driver
instance runs on the same machines as the SUT to affect its
performance.

IV. METRICS

Streaming systems are typically evaluated using two main
metrics: throughput and latency. In this section, we make
a distinction between two types of latency, namely event-
time latency and processing-time latency. We then describe
two types of throughput, namely maximum throughput and
sustainable throughput.

A. Latency

Modern streaming systems [23], [3], [24] distinguish two
notions of time: event-time and processing-time. The event-
time is the time when an event is captured while processing-
time is the time when an operator processes a tuple. Similar to
the nomenclature of these two notions of time, we distinguish
between event- and processing-time latency.

Definition 1 (Event-time Latency). We define event-time
latency to be the interval between a tuple’s event-time and
its emission time from the SUT output operator.

For instance in an ATM transaction, the event-time is the
moment of a user’s action at the terminal, and the event-time
latency is the time interval between the moment that the user’s
action took place and the moment that the event has been fully
processed by the streaming system.

Definition 2 (Processing-time Latency). We define
processing-time latency to be the interval between a

tuple’s ingestion time (i.e., the time that the event has reached
the input operator of the streaming system) and its emission
time from the SUT output operator.

Event- vs. processing-time latency. Event- and processing-
time latencies are equally important metrics. The event-time
latency includes the time that a given event has spent in a
queue, waiting to be processed, while processing-time latency
is used to measure the time it took for the event to be processed
by the streaming system. In practical scenarios, event-time
latency is very important as it defines the time in which the
user interacts with a given system and should be minimized.
Clearly, processing-time latency makes part of the event-
time latency. We use both metrics to characterize a system’s
performance. Not clearly differentiating the two metrics leads
to the coordinated omission problem. In coordinated omission
service time (i.e., processing time) is measured at the SUT
and any increasing queuing time, which is part of the response
time (i.e., event time), is ignored [25]. Friedrich et al. show
that coordinated omission leads to significant underestimation
of latencies [26].

Event-time Latency in Windowed Operators. Stateful op-
erators such as window aggregates (a sum aggregate over
an hour’s worth of data), retain state and return results after
having seen a number of tuples over some time. Measuring
latency in such cases is non-trivial. The reason is that the
latency of a given windowed operator is affected by the tuples’
waiting time until the window is formed completely.

Figure 1 depicts the data generator, and a set of events in
three queues. The events are timestamped with their event-
time when they are generated. The events are then grouped by
their key and are put in a 10-minute window.

Take, for example, the window containing the red events
with key=US. The timestamps of these three events are of
580, 590, and 600. When these events are aggregated into a
new event (the sum of their values with a total of value=42)
we need to assign an event-time to that output. That event-time
is then used to calculate the event-time latency on the operator
output (in this case, latency=10). The main intuition is that
in this way, we exclude the tuples’ waiting time while the
window is still buffering data. The event-time is defined more
formally below.

Definition 3 (Event-time of Windowed Events). The event-
time of a windowed operator’s output event, is the maximum
event-time of all events that contributed to that output.

In a windowed join operation, the containing tuples’ event-
time is set of be the maximum event-time of their window.
Afterwards, each join output is assigned the maximum event-
time of its matching tuples. As described in our example, in
order to calculate the event-time latency of an output tuple, all
we have to do is subtract the event-time of that tuple from the
current system time. Figure 2 shows the main intuition behind
this idea. We join ads (yellow) and purchases (green) streams
in a 10-minute window.
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Fig. 1: End-to-end example of an aggregation query. The data generator produces tuples on a given event-time (before
time=600), a second later the events enter the streaming system where they are grouped by their key, and finally aggregated
(SUM). The event-time latency of the output tuple equals to the maximum event-time latency of elements in each window.
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Fig. 2: End-to-end join of two streams. The generator creates events, which are then read by the streaming system and form a
10-minute window. The events are joined and the event-time of the result-tuples equals to the maximum event-time of tuples
in their corresponding windows.

Processing-time Latency in Windowed Operators. Apart
from event-time latency, we need to calculate the processing-
time latency of tuples as well. We define the processing-time
of a windowed event similarly to the event-time.

Definition 4 (Processing-time of Windowed Events). The
processing-time of a windowed operator’s output event, is the
maximum processing-time of all events that contributed to that
output.

The processing-time latency is calculated in exactly the
same way as for event-time, with a small difference. Every
tuple is enriched with an extra, processing-time field at its
ingestion time (when it reached the first operator of the stream-
ing system). In our example in Figure 1, this happens right
after time=601. To calculate the processing-time latency,
we simply subtract the processing-time of that tuple from the

current system time.

B. Throughput
The throughput of a data processing system is defined as

the number of events that the system can process in a given
amount of time. Throughput and event-time latency often do
not correlate. For instance, a streaming system that batches
tuples together before processing them, can generally achieve
higher throughput. However, the time spent batching events
affects the events’ event-time latency.

In practice, the deployment of a streaming system has to
take into account the arrival rate of data. When the data arrival
rate increases, the system has to adapt (e.g., by scaling out)
in order to handle the increased arrival rate and process tuples
without exhibiting backpressure. To reflect this, we define the
concept of sustainable throughput and discuss how we attain
it in our experiments.
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Sustainable Throughput. When given more data than it can
handle, a system starts to build up backpressure, i.e., the
system queues up new events in order to process the events
that have already been ingested. As a result, from the moment
that backpressure mechanism is started, the event-time latency
of all queued events increases. As we can see from Figure 3,
backpressure can be transient: as soon as the system catches
up again with the events’ arrival rate, the event-time latency
will stabilize. When the system’s throughput is larger than the
events’ arrival rate, the event-time latency will decrease to the
minimum (i.e., the processing-time).

Definition 5 (Sustainable Throughput). Sustainable through-
put is the highest load of event traffic that a system can
handle without exhibiting prolonged backpressure, i.e., without
a continuously increasing event-time latency.

In our experiments, we make sure that the data generation
rate matches the sustainable throughput of a given deployment.
To find the sustainable throughput of a given deployment we
run each of the systems with a very high generation rate and
we decrease it until the system can sustain that data generation
rate. We allow for some fluctuation, i.e., we allow a maximum
number of events to be queued, as soon as the queue does not
continuously increase.

V. WORKLOAD DESIGN

The workload for our benchmark is derived from an online
video game application at Rovio1. Rovio continuously moni-
tors the user actions of a given a game to ensure that their
services work as expected. For instance, they continuously
monitor the number of active users and generate alerts when
this number has large drops. Moreover, once a game has an up-
date or receives a new feature, Rovio monitors incoming events
to check whether the newly added feature is working without
issues. Rovio also tracks the in-app purchases per game, and
distribution channel (e.g., Apple’s AppStore, Google Play),
and per in-app purchased item (e.g., a gem pack) and proposes
gem packs to users as their game progresses.

Dataset. We focus on the advertisements of gem packs.
As seen in Listing 1, we have two data streams i) the
purchases stream, which contains tuples of purchased gem
packs along with the purchase time, the user that made the
purchase and the gem pack that was bought and ii) the ads

1Creator of the Angry Birds game: http://www.rovio.com/.

# S t r eams
PURCHASES( user ID , gemPackID , p r i c e , t ime )
ADS( user ID , gemPackID , t ime )

# Windowed A g g r e g a t i o n Query
SELECT SUM( p r i c e )
FROM PURCHASES [ Range r , S l i d e s ]
GROUP BY gemPackID

# Windowed Join Query
SELECT p . user ID , p . gemPackID , p . p r i c e
FROM PURCHASES [ Range r , S l i d e s ] as p ,

ADS [ Range r , S l i d e s ] as a ,
WHERE p . u s e r ID = a . u s e r ID AND

p . gemPackID = a . gemPackID

Listing 1: Query templates used by our workloads.

stream which contains a stream of proposals of gem packs to
users, at given time instants. We used synthetic data, which
we generate with our data generator.

Queries. The first query that we use is an aggregation query.
More specifically, we need to have a sliding window of
revenue made from each gem pack. The template we use to
generate such queries can be found in Listing 1.

The second query that we use is a typical use-case of
correlating advertisements with their revenue. As we can see in
the bottom of Listing 1, each user is presented with a specified
proposal to buy a gem pack at a given time instant. We join
this stream with the stream of purchases in order to find which
of the proposed gems has been bought, as a result of proposing
the gem to users.

VI. EVALUATION

In this section, we evaluate the performance of three stream-
ing systems, namely Storm 1.0.2, Spark 2.0.1, and Flink 1.1.3.
Due to the large number of parameters and variables, it is not
possible not include all the experimental results in this paper.
Instead, we present the most interesting results.

A. System setup

Our cluster consists of 20 nodes, each equipped with
2.40GHz Intel(R) Xeon(R) CPU E5620 with 16 cores and
16GB RAM. The network bandwidth is 1Gb/s. We use a
dedicated master for the streaming systems and an equal
number of workers and driver nodes (2, 4, and 8). All nodes’
system clocks in the cluster are synchronized via a local
NTP server. Each data generator generates 100M events with
constant speed using 16 parallel instances. We generate events
with normal distribution on key field.

We use 25% of the input data as a warmup. We enable back-
pressure in all systems, that is, we do not allow the systems
to ingest more input than they can process and crash during
the experiment. If the SUT drops one or more connections to
the data generator queue, then the driver halts the experiment
with the conclusion that the SUT cannot sustain the given
throughput. Similarly, in real-life if the system cannot sustain



2-node 4-node 8-node

Storm 0.4 M/s 0.69 M/s 0.99 M/s
Spark 0.38 M/s 0.64 M/s 0.91 M/s
Flink 1.2 M/s 1.2 M/s 1.2 M/s

TABLE I: Sustainable throughput for windowed aggregations

the user feed and drops connection, this is considered as a
failure.

Throughout the experiments, if the behavior of the system
is similar with different parameters, we select the most inter-
esting figures or features due to the limited space.

Tuning the systems. Tuning the engines’ configuration pa-
rameters is important to get a good performance for every
system. We adjust the buffer size to ensure a good balance
between throughput and latency. Although selecting low buffer
size can result in a low processing-time latency, the event-
time latency of tuples may increase as they will be queued in
the driver queues instead of the buffers inside the streaming
system. Moreover, we adjust the block interval for partitioning
the RDDs in Spark. The number of RDD partitions a single
mini-batch is bounded by batch Interval

block Interval
. As the cluster size

increases, decreasing the block interval can increase the par-
allelism. One of the main reasons that Spark scales up very
well is the partitioning of RDDs. However, depending on the
use-case, the optimal number of RDD partitions can change.
In Storm the number of workers, executors, and buffer size
are the configurations (among many other) that need to be
tuned to get the best performance. For all systems, choosing
the right level or parallelism is essential to balance between
good resource utilization and network or resource exhaustion.

Storm introduced the backpressure feature in recent re-
leases; however, it is not mature yet. With high workloads,
it is possible that the backpressure stalls the topology, causing
spouts to stop emitting tuples. Moreover, we notice that Storm
drops some connections to the data queue when tested with
high workloads with backpressure disabled, which is not
acceptable according to the real world use-cases. Dropping
connections due to high throughput is considered a system
failure.

B. Performance Evaluation

Experiment 1: Windowed Aggregations. We use an aggre-
gation query (8s, 4s), 8 seconds window length and 4 seconds
window slide, for our first evaluations. Table I shows the
sustainable throughput of the SDPSs. We use a four second
batch-size for Spark, as it can sustain the maximum throughput
with this configuration. We identify that Flink’s performance is
bounded by network bandwidth with 4- or more node cluster
configuration. Storm’s and Spark’s performance in terms of
throughput are comparable, with Storm outperforming Spark
by approximately 8% in all configurations.

Table II shows the latency measurements of windowed
aggregations. We conduct experiments with maximum and
90%-workloads. The latencies shown in this table correspond
to the workloads given in Table I. In most cases, where
the network bandwidth is not a bottleneck, we can see a

significant decrease in latency when lowering the throughput
by 10%. This shows that the sustainable throughput saturates
the system.

As we see from Table II, Spark has a higher latency than
Storm and Flink but it exhibits less variation in avg, min,
and max latency measurements. Because Spark processes
tuples in mini-batches, the tuples within the same batch
have similar latencies and, therefore, there is little difference
among the measurements. Moreover, transferring data from
Spark’s block manager to DStream by creating RDDs adds
additional overhead that results in higher avg latencies for
Spark compared to Flink and Storm.

The avg and max latencies increase in Storm with increas-
ing workload and cluster size, while in Spark we see the
opposite behavior, which means Spark can partition the data
(RDDs) better in a bigger distributed environments. However,
from the quantile values we can conclude that the max
latencies of Storm can be considered as outliers.

Figure 4 shows the windowed aggregation latency distribu-
tions over time. In all cases, we can see that the fluctuations
are lowered when decreasing the throughput by 10%. While
in Storm and in Flink it is hard to detect the lower bounds
of latency as they are close to zero, in Spark the upper and
lower boundaries are more stable and clearly noticeable. The
reason is that a Spark job’s characteristics are highly dependent
on the batch size and this determines the clear upper and
lower boundaries for the latency. The smaller the batch size,
the lower the latency and throughput. To have a stable and
efficient configuration in Spark, the mini-batch processing time
should be less than the batch interval. We determine the most
fluctuating system to be Flink in 2-node setup and Storm in 8-
node setup as shown in Figures 4g and 4k. Those fluctuations
show the behaviour of backpressure.

Spark has a mini-batch based architecture and splits the
input query into multiple sub-queries, which get executed in
separate jobs. To analyze this from the logical query plan
perspective, each RDD has a transformation() method.
Each transformation() method produces one or more
RDDs of any type that can be expressed in Scala. More-
over, each transformation() may contain several sub-
transformations. As a result, coordination and pipelining
mini-batch jobs and their stages creates extra overhead for
Spark as the relationship between consequent RDDs in a job
pipeline is not necessarily one-to-one. For example, we use
reduceByKey() to parallelize the stages of the mini-batch
within a window. It is transformed into two subsequent RDDs:
first a ShuffledRDD and then a MapPartitionsRDD. In Flink
and Storm, on the other hand, this is just single step both in
logical and physical query plan.

Experiment 2: Windowed Joins. We use the windowed
join query from Listing 1 to benchmark Spark and Flink.
Storm provides a windowing capability but there is no built-
in windowed join operator. Initially, we tried Storm’s Trident
v2.0 abstraction, which has built-in windowed join features.
However, Trident computed incorrect results as we increased



2-node 4-node 8-node
avg min max quantiles (90,95,99) avg min max quantiles (90,95,99) avg min max quantiles (90,95,99)

Storm 1.4 0.07 5.7 (2.3, 2.7, 3.4) 2.1 0.1 12.2 (3.7, 5.8, 7.7) 2.2 0.2 17.7 (3.8, 6.4, 9.2)
Storm(90%) 1.1 0.08 5.7 (1.8, 2.1, 2.8) 1.6 0.04 9.2 (2.9, 4.1, 6.3) 1.9 0.2 11 (3.3, 5, 7.6)

Spark 3.6 2.5 8.5 (4.6, 4.9, 5.9) 3.3 1.9 6.9 (4.1, 4.3, 4.9) 3.1 1.2 6.9 (3.8, 4.1, 4.7)
Spark(90%) 3.4 2.3 8 (3.9, 4.5, 5.4) 2.8 1.6 6.9 (3.4, 3.7, 4.8) 2.7 1.7 5.9 (3.6, 3.9, 4.8)

Flink 0.5 0.004 12.3 (1.4, 2.2, 5.2) 0.2 0.004 5.1 (0.6, 1.2, 2.4) 0.2 0.004 5.4 (0.6, 1.2, 3.9)
Flink(90%) 0.3 0.003 5.8 (0.7, 1.1, 2) 0.2 0.004 5.1 (0.6, 1.3, 2.4) 0.2 0.002 5.4 (0.5, 0.8, 3.4)

TABLE II: Latency statistics, avg, min, max, and quantiles (90, 95, 99) in seconds for windowed aggregations

(a) Storm, 2-node, max throughput (b) Storm, 4-node, max throughput (c) Storm, 8-node, max throughput

(d) Spark, 2-node, max throughput (e) Spark, 4-node, max throughput (f) Spark, 8-node, max throughput

(g) Flink, 2-node, max throughput (h) Flink, 4-node, max throughput (i) Flink, 8-node, max throughput

(j) Storm, 2-node, 90%- throughput (k) Storm, 4-node, 90%- throughput (l) Storm, 8-node, 90%- throughput

(m) Spark, 2-node, 90%- throughput (n) Spark, 4-node, 90%- throughput (o) Spark, 8-node, 90%- throughput

(p) Flink, 2-node, 90%- throughput (q) Flink, 4-node, 90%- throughput (r) Flink, 8-node, 90% throughput

Fig. 4: Windowed aggregation latency distributions in time series



(a) Spark, 2-node, max throughput(b) Spark, 4-node, max throughput(c) Spark, 8-node, max throughput

(d) Flink, 2-node, max throughput (e) Flink, 4-node, max throughput (f) Flink, 8-node, max throughput

(g) Spark, 2-node, 90%-throughput(h) Spark, 4-node, 90%-throughput(i) Spark, 8-node, 90%-throughput

(j) Flink, 2-node, 90%-throughput (k) Flink, 4-node, 90%-throughput (l) Flink, 8-node, 90%-throughput

Fig. 5: Windowed join latency distributions in time series

2-node 4-node 8-node

Spark 0.36 M/s 0.63 M/s 0.94 M/s
Flink 0.85 M/s 1.12 M/s 1.19 M/s

TABLE III: Sustainable throughput for windowed joins.

the batch size. Moreover, there is a lack of support for Trident
in the Storm community. As an alternative, we implemented
a simple version of a windowed join in Storm. Comparing
it with Spark and Flink, which have advanced memory and
state management features, leads to unfair comparisons. We
implemented a naı̈ve join in Storm and examined the sus-
tainable throughput to be 0.14 million events per second and
measured an average latency of 2.3 seconds on a 2-node
cluster. However, we faced memory issues and topology stalls
on larger clusters. As a result, we focus on Flink and Spark
for the windowed join benchmarks.

First, depending on the selectivity of the input streams to
the join operator, vast amount of results can be produced. Sink
operators can be a bottleneck in this case. Second, the vast
amount of results of a join operator can cause the network
to be a bottleneck. To address this issue, we decreased the
selectivity of the input streams. In general, the experimental
results for windowed joins are similar to the experiments with
windowed aggregations.

Table III shows the sustainable throughput of the systems
under test. Flink’s throughput for an 8-node cluster con-

figuration is bounded by network bandwidth. The network
saturation limit was 1.2 million events per second in windowed
aggregations. The reason for the difference is that there is more
network traffic as the result size is larger in windowed joins
than in windowed aggregations. Table IV shows the latency
statistics for windowed joins. We can see that in all cases Flink
outperforms Spark in all parameters. To ensure the stability
of the system, the runtime of each mini-batch should be less
than batch size in Spark. Otherwise, the queued mini-batch
jobs will increase over time and the system will not be able to
sustain the throughput. However, we see from Table III that the
latency values for Spark are higher than mini-batch duration
(4 sec). The reason is that we are measuring the event-time
latency. So, the additional latency is due to tuples’ waiting in
the queue.

Figure 5 shows the windowed join latency distributions as
time-series. In contrast to windowed aggregations, we experi-
enced substantial fluctuations in Spark. Also we experienced
a significant latency increase in Flink when compared to win-
dowed aggregation experiments. The reason is that windowed
joins are more expensive than windowed aggregations. How-
ever, the spikes are significantly reduced with 90% workload.

Similar to windowed aggregations, in windowed joins
Spark’s major disadvantage is having blocking operators.
Another limitation is coordination and scheduling overhead
across different RDDs. For example, for windowed joins



2-node 4-node 8-node
avg min max quantiles (90,95,99) avg min max quantiles (90,95,99) avg min max quantiles (90,95,99)

Spark 7.7 1.3 21.6 (11.2, 12.4, 14.7) 6.7 2.1 23.6 (10.2, 11.7, 15.4) 6.2 1.8 19.9 (9.4, 10.4, 13.2)
Spark(90%) 7.1 2.1 17.9 (10.3, 11.1, 12.7) 5.8 1.8 13.9 (8.7, 9.5, 10.7) 5.7 1.7 14.1 (8.6, 9.4, 10.6)
Flink 4.3 0.01 18.2 (7.6, 8.5, 10.5) 3.6 0.02 13.8 (6.7, 7.5, 8.6) 3.2 0.02 14.9 (6.2, 7, 8.4)
Flink(90%) 3.8 0.02 13 (6.7, 7.5, 8.7) 3.2 0.02 12.7 (6.1, 6.9, 8) 3.2 0.02 14.9 (6.2, 6.9, 8.3)

TABLE IV: Latency statistics, avg, min, max and quantiles (90, 95, 99) in seconds for windowed joins

Spark produces CoGroupedRDD, MappedValuesRDD, and
FlatMappedValuesRDD in different stages of the job. Each
of these RDDs have to wait for the parent RDDs to be
complete before their initialization. Flink on the other hand,
performs operator chaining in query optimization part to avoid
unnecessary data migration.

Experiment 3: Queries with large window. Window size
and window slide have a significant impact on the SUT’s per-
formance. One interesting observation is that with increasing
window size Spark’s throughput decreases significantly given
the same batch size. For example, for the aggregation query,
with window length and slide 60 seconds, Spark’s throughput
decreases by 2 times and avg latency increases by 10 times
given a 4-seconds batch size. However, with higher batch
sizes, Spark can handle higher workloads and big windows
sacrificing low latencies. We find that the main reason for
Spark’s decreasing performance is caching. We cache the
windowed operation results to be usable in later stages of
a job. However, especially with windowed join queries, the
cache operation consumes the memory aggressively. Internally
when a task gets a record for processing, it checks if the record
is marked for caching. If yes, all the following records of the
particular RDD will be sent to memory store of block manager.
Spark will spill the memory store to disk once it is full. As a
result, we disabled the caching. However, then we experienced
the performance decreased due to the repeated computation.
Finally, after implementing Inverse Reduce Function, to ac-
count for old data going out of window, we managed to
overcome this performance issues.

Storm, on the other hand, can handle the large window
operations if the user has advanced data structures that can
spill to disk when needed. Otherwise, we encountered mem-
ory exceptions. Flink (as well as Spark) has built-in data
structures that can spill to disk when needed. However, this
does not apply for the operations inside the UDFs, as Flink
treats UDFs as blackbox. Analyzing the implementation of
windowed aggregates in Flink we conclude that it cannot
share aggregate results among different sliding windows. As
Flink computes aggregates on-the-fly and not after window
closes, this limitation is not a dominating factor in overall
performance.

Experiment 4: Data skew. Data skew is yet another concern
to be addressed by SDPSs. We analyzed the systems under
test with extreme skew, namely their ability to handle data
of a single key. In Flink and Storm, the performance of the
system is bounded by the performance of a single slot of a
machine, meaning it does not scale. The reason lies under the

design option of a system. For aggregation query, we measured
the throughput 0.48 M/s for Flink and 0.2 M/s for Storm. As
we mentioned above, these measurements does not improve
when SUT scales.

Spark, on the other hand, can handle skewed data efficiently.
We experienced 0.53 M/s sustainable throughput for Spark
in a 4-node cluster. Spark outperforms both engines for the
aggregation query in a 4- or more node cluster. For the join
query, on the other hand, both Spark and Flink cannot handle
skewed data well. That is, Flink often becomes unresponsive in
this test. Spark, on the other hand, exhibits very high latencies.
The main reason is that the memory is consumed quite fast
and backpressure mechanism lacks to perform efficiently. In
these experiments, we decreased the join operator’s selectivity
to make sure that data transfer and I/O are not a bottleneck.

One reason for performance difference between Spark and
Flink with skewed data lies on how the systems compute ag-
gregations. Flink and Storm use one slot per operator instance.
So, if the input data is skewed, this architecture can cause
performance issues. Spark has a slightly different architecture.
In Spark, forcing all partitions to send their reduced value
to a specific computing slot can easily cause a network to
become a bottleneck when partition size is big. Therefore,
Spark adopts tree reduce and tree aggregate communication
pattern to minimize the communication and data shuffling.
This is the main reason that makes Spark perform better with
skewed input data.

Spark performs worse with less computing units (3- or less
node) than Flink or Storm because it has blocking operators.
As the system scales out, this limitation becomes no longer a
dominating factor. Flink avoids blocking operators. For exam-
ple, the reduce operation is a non-blocking operator in Flink.
As a result, the system sacrifices some use-cases which need
blocking reduce, to achieve a better performance. Internally,
Storm also has a similar architecture; however, the semantics
of an operator is highly dependent on its implementation. For
example, one implementation of window reduce operator can
output the results continuously, while another can chose to
perform so in bulk.

Experiment 5: Fluctuating workloads. We analyze the sys-
tems under test with fluctuating workloads. We simulate spikes
for all systems both for aggregation and join queries. We start
the benchmark with a workload of 0.84 M/s then decrease it
to 0.28 M/s and increase again after a while. As we can see
from Figure 6, Storm is most susceptible system for fluctuating
workloads. Spark and Flink have competitive behavior with
windowed aggregations. However, for windowed joins, Flink
can handle spikes better. One reason behind this behavior is



(a) Storm aggregation (b) Spark aggregation (c) Flink aggregation (d) Spark join (e) Flink join

Fig. 6: Event-time latency on workloads with fluctuating data arrival rate.

(a) Event time (b) Processing time

Fig. 7: Comparison between event and processing-time latency
of Spark with unsustainable throughput

the difference between the systems’ backpressure mechanism.
As we mentioned above, Spark can be thought as a chain of
jobs with multiple stages. Starting from the final RDD, each
stage checks its backwards to ensure lazy evaluation. As a
result, once the stage is overloaded passing this information
to upstream stages works in the order of job stage execution
time; however, this time is in the order of tuples in Flink. We
conduct experiments with different cluster and buffer sizes as
well. As we increase the buffer or cluster size the spikes get
smoother; however, the overall avg latency increases.

Experiment 6: Event-time vs processing-time latency. Fig-
ure 8 shows the comparison between the processing-time and
event-time latency. We conduct experiments with aggregation
query (8s,4s) on a 2-node cluster. Even with a small cluster
size, we can see from Figure 8 that there is a significant
difference between event and processing-time latencies. As a
result, we can see that with Spark, input tuples spend most of
the time in driver queues. We didn’t examine any significant
changes in results with different cluster configurations and
with join query.

To emphasize the necessity of our definition of latency, we
draw reader’s attention to Figure 7, which shows event time
and processing-time latencies for Spark when the system is
extremely overloaded. This is not a specific behavior for Spark
but we observed similar graphs for all systems. As we can see
from the figures, the processing-time latency is significantly
lower than event-time latency. The reason is that when the
SUT gets overloaded, it starts backpressure and lowers the
data ingestion rate to stabilize the end-to-end system latency.
We can see that the SUT accomplished this goal as the
latency stays stable. However, the event-time latency keeps
increasing as the input tuples wait in the queues. This is
just one scenario where we can draw unrealistic or incorrect
conclusions when using traditional processing-time latency for
streaming systems.

Experiment 7: Observing backpressure. Backpressure is

shown in Figures 5a, 5b, 5c, 5d, 5e, 5f, and 4g. Moreover,
our driver can also observe short-term spikes (Figures 4k, 6d)
and continuous fluctuations (Figure 5j). Furthermore, we can
observe a wide range of sustainable avg latencies from 0.2
to 6.2 seconds and from 0.003 seconds min latency to 19.9
seconds max latency.

Experiment 8: Throughput graphs. While analyzing the per-
formance of systems it is essential to inspect their throughput
over time. As we separate the throughput calculation clearly
from the SUT, we retrieve this metric from the driver. Figure
9 shows the sustainable throughput graphs for the aggregation
query (8s, 4s). We examined similar behavior in other window
settings and for the join query as long as the workload is
maximum sustainable. As we can see, Spark and Storm pulls
data from the source in a more fluctuating way than Flink.
Despite having a high data pull rate or throughput, Flink has
less fluctuations. When we lower the workload, both Flink and
Spark have stable data pull rates; however, Storm still exhibits
significant fluctuations.

The reason for highly fluctuating throughput for Storm is
that it lacks an efficient backpressure mechanism to find a near-
constant data ingestion rate. The main reason for fluctuation
in Spark is the deployment of several jobs at the same batch
interval. Spark has an action() method on each RDD; the
number of jobs at any time will be equal to the number
of action() method calls. Each job retrieves the data into
its input buffers and fires. Until a job is finished, its input
rate is limited. It is the DagScheduler’s job to coordinate
and schedule all running jobs. As a result, we can see a
highly fluctuating throughput for Spark. Flink, on the other
hand, benefits from its internally incremental computation
mechanism (like Spark), tuple at a time semantics and efficient
backpressure mechanism.

Resource usage statistics. Figure 10 shows the resource
usages of the SUTs. The below graphs in Figure 10 show the
CPU load during the experiment. The above graphs in Figure
10 show the network usage of the SUTs. Because the overall
result is similar, we show the systems’ resource utilization
graphs for the aggregation query in a 4-node cluster. Because
Flink’s performance is bounded by the network, we can see
that CPU load is least. Storm and Spark, on the other hand,
use approximately 50% more CPU clock cycles than Flink.
As we can see from Figure 11, the scheduler overhead is
one bottleneck for Spark’s performance. Initially, Spark ingests
more tuples than it can sustain. Because of the scheduler delay,
backpressure fires and limits the input rate. Whenever there is



(a) Storm (b) Spark (c) Flink

Fig. 8: Comparison between event (top row) and processing-time (bottom row) latency

(a) Storm (b) Spark (c) Flink

Fig. 9: Throughput graphs of systems under test
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Fig. 10: Network (top row) CPU (bottom row) usages of systems in a 4-node cluster.

(a) Throughput

(b) Scheduler delay

Fig. 11: Scheduler delay (top row) vs. throughput (bottom row)
in Spark.

even a short spike in the input rate, we can observe a similar
behavior in the scheduler delay.

C. Discussion

If a stream contains skewed data, then Spark is the best
choice (Experiment 4). Both Flink and Spark are very robust
to fluctuations in the data arrival rate in aggregation workloads
(Experiment 5). For fluctuations in the data arrival rate on join
queries, on the other hand, Flink behaves better (Experiment
5). In general, if the average latency is a priority, then Flink is
the best choice (Experiments 1 and 2). On the other hand, even
with higher average latency, Spark manages to bound latency
better than others (Experiments 1 and 2). If a use-case contains
large windows, Flink can have higher throughput with a low
latency (Experiment 3). Overall, we observe that Flink has a



better overall throughput both for aggregation and join queries.
We give a definition of event and processing time latency and
show the significant difference them (Experiment 6).

D. Future work

We plan to extend our framework along the lines of TPC
database benchmarks. The main intuition is to define both
a workload of queries that should be concurrently executed
and then base the benchmark on a small number of operators
that are part of that workload. In addition, we are developing
a generic interface that users can plug into any stream data
processing system, such as Apache Samza, Heron, and Apache
Apex, in order to facilitate and simplify benchmark SDPSs.
Moreover, in depth analysis of trading SUT’s increased func-
tionality, like exactly once processing or out-of-order and late
arriving data management, over better throughput/latency is
another open challenge to explore.

VII. CONCLUSIONS

Responding to an increasing need for real-time data pro-
cessing in industry, we build a novel framework for bench-
marking streaming engines with online video game scenarios.
We identify current challenges in this area and build our
benchmark to evaluate them. First, we give the definition of
latency of a stateful operator and a methodology to measure
it. The solution is lightweight and does not require the use of
additional systems. Second, we completely separate the sys-
tems under test from the driver. Third, we introduce a simple
and novel technique to conduct experiments with the highest
sustainable workloads. We conduct extensive experiments with
the three major distributed, open source stream processing
engines - Apache Storm, Apache Spark, and Apache Flink.
In the experiments, we can see that each system has specific
advantages and challenges. We provide a set of rules in our
discussion part that can be used as a guideline to determine
the requirements for a use-case.
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