
Rapid Development of Data Generators
Using Meta Generators in PDGF

Tilmann Rabl1, Meikel Poess2, Manuel Danisch3, Hans-Arno Jacobsen1

1Middleware Systems Research Group, University of Toronto
2Oracle Corporation, Redwood Shores, CA-94404

3Faculty of Computer Science and Mathematics, University of Passau

ABSTRACT
Generating data sets for the performance testing of database sys-
tems on a particular hardware configuration and application domain
is a very time consuming and tedious process. It is time consum-
ing, because of the large amount of data that needs to be generated
and tedious, because new data generators might need to be devel-
oped or existing once adjusted. The difficulty in generating this
data is amplified by constant advances in hardware and software
that allow the testing of ever larger and more complicated systems.
In this paper, we present an approach for rapidly developing cus-
tomized data generators. Our approach, which is based on the Par-
allel Data Generator Framework (PDGF), deploys a new concept of
so called meta generators. Meta generators extend the concept of
column-based generators in PDGF. Deploying meta generators in
PDGF significantly reduces the development effort of customized
data generators, it facilitates their debugging and eases their main-
tenance.

Categories and Subject Descriptors
K.6.2 [Management of Computing and Information Systems]:
Installation Management—Benchmarks

General Terms
Measurement, Performance

Keywords
PDGF; data generation; meta generators

1. INTRODUCTION
In benchmarking database management systems (DBMS) a time

consuming and highly repetitive task is the development of data
generators and the generation of test data. For the testing of com-
mercial DBMS industry standard benchmarks may be used. How-
ever, new features, not anticipated by the developers of standard-
benchmarks, often require specialized data to cover all aspects of
the feature, especially to cover important border cases. This is am-
plified by constant advances in hardware that allow the deployment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBtest ’13, June 24 2013, New York, NY, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

of ever larger and more complicated systems involving exabytes of
data and thousands of computer systems. Before purchasing new
DBMS, standard benchmarks may be used. However, in an increas-
ing number of cases customers are demanding tests that use data
more similar to theirs. Database administrators often face similar
issues when provisioning systems. They need to scale their existing
data sets to assure that their production systems can handle future
load even during peak business times. As a consequence, there
has been quite a lot of research conducted on data generation for
DBMS testing. An important milestone was the paper by Gray et
al. [7], the authors showed how to generate data sets with differ-
ent distributions and dense unique sequences in linear time and in
parallel.

Most existing data generators are special purpose implementa-
tions for a single data set, like those developed for industry stan-
dard or scientific benchmarks. Examples for special purpose data
generators developed for industry standard benchmarks are, Dbgen
for TPC-H [13], DsDgen (aka MUDD) for TPC-DS [20], Egen for
TPC-E, and Workload Generator for Storage Performance Coun-
cil Benchmarks [19]. Examples of special purpose scientific data
generators are the generators for SetQuery [12], YCSB [4], and the
Wisconsin database benchmark [2]. However, all of these data gen-
erators are special purpose implementations that can only generate
one type of data set, usually in varying size.

In many cases existing special purpose data generators cannot
be used for the testing of DBMS. They cannot be used when inno-
vative features are tested, a new schema design is tested, arbitrary
data scaling is needed, or when the data must follow a very specific
distribution. Developing new data generators from scratch is often
not an option because it is very time and resource intensive. Using
general purpose data generators seems to be a feasible alternative.
In [3] Bruno and Chaudhuri present a data generation framework
that largely relies on scanning a given database to generate vari-
ous distributions and interdependencies. Two other tools that offer
similar capabilities are MUDD [20] and PSDG [9]. Both feature
description languages for the definition of the data layout and ad-
vanced distributions. Another common approach are graph based
models as presented by Houkjær et al. [10] and Lin et al. [11]. The
active demand for these generic data generation tools also feeds a
lively industry in this niche, such as Red Gate SQL Data Generator
[18], DTM Data Generator [5], and GS DataGenerator [8].

The Parallel Data Generation Framework (PDGF), developed at
the University of Passau, is a generic data generator. It was de-
signed to take advantage of today’s multi-core processors and large
clusters of computers to generate exabytes of synthetic benchmark
data. PDGF uses a fully computational approach and is a pure Java
implementation which makes it very portable. Version 1.0 [15] was
capable of generating data for complex schemas that contain inter

Figure 1: Schematic overview of the value generation steps in
PDGF

column and intra table dependencies [16], as used in TPC-H. It was
enhanced with features to generate update data (Version 2.0) [6].

While configuring PDGF for complex data generators, such as
those used in benchmarks of the Transaction Processing Perfor-
mance Council (TPC), it became apparent that many columns share
large portions of their data generation logic. For instance, consider
the following NULL feature. Assuming each nullable field of a
database table T{C1, C2, .., Cn} ought to be set to NULL with
a likelihood of L{PC1, PC2, ..., PCn}, then the code to generate
data for each nullable column needs to implement a NULL feature.
This results in the replication of the same or similar data generation
logic in various places.

In this paper, we introduce the concept of meta field value gen-
erators (meta-FVG), an extension to the concept of field value gen-
erators (FVG) of PDGF Version 1. FVGs are used to generate data
for table columns. meta-VFGs can be used to implement common
functionality across FVGs, to combine values of multiple FVGs,
and to implement logical dependencies between FVGs. The use
of meta-FVG dramatically reduces the number of FVGs needed to
configure PDGF for a particular data generator, thereby consider-
ably increasing the speed at which data generators can be created
and significantly easing the maintenance of the code base. Our
main contributions are: i) We present the principle of meta field
value generators (meta-FVG), a methodology that reduces the com-
plexity of implementing field value generators and increases the
flexibility of schema composition, while greatly increasing pro-
grammer’s productivity, ii) We identify a set of core FVGs and
meta-FVGs that allows for a wide range of data generation in-
cluding TPC-H, iii) We demonstrate the benefit of meta-FVGs in
three use cases, namely the PDGF TPC-H implementation [14],
the PDGF SSB implementation [17] and an data generator for an
ETL benchmark.

The remainder of this paper is organized as follows. In Section
2, we give a brief overview of the Parallel Data Generation Frame-
work. Section 3 gives a formal introduction to the concepts of field
value generators and meta field value generators. Section 4 briefly
recaps how FVG are defined in PDGF and which FVG are built into
the core of PDGF. Section 5 puts the concept of meta field value
generators in context of PDGF. Section 6 lists two use cases which
demonstrate the benefits of using meta-FVGs. Finally, Section 8
concludes with future work.

2. PARALLEL DATA GENERATION
FRAMEWORK

In this section we, will give a brief introduction to PDGF. De-
tailed descriptions of the architecture and functionality can be found
in previous publications [15, 6]. PDGF is a generic data generation
framework that was built around the principle of parallel pseudo
random number generation. PDGF exploits the inherent parallelism
of xorshift-based random number generators to generate every sin-
gle field value of a table independently. The random number gen-
erator in PDGF works like a hash function. Therefore, it is possible
to generate any number in a random number stream without calcu-
lating the complete stream. In order to achieve the same indepen-
dence in the value generation, it is constrained to deterministically

repeatable calculations. The abstract process of data generation in
PDGF can be seen in Figure 1. Starting from the ID of a value –
e.g. the row number – a random number is generated. The random
number generator (RNG) is seeded in a way that it generates a sep-
arate stream for every column in a database. The random number
is passed to a field value generator (FVG), which calls the random
number generator for a random number and uses it to generate de-
terministically a field value. A frequently used FVG is a dictionary
look up FVG. It is used to generate names, streets, colors, etc. The
generated value is written to a file by the output module. All of
these components are exchangeable and extendable by plugins in
PDGF. Nevertheless, PDGF has a set of versatile RNGs, a set of
most commonly used FVGs and flexible output modules built in.
We refer to them as core components.

PDGF is easily configurable by using two configuration files,
the schema config and the generation config. As explained above,
the actual data for each column of a database table is generated
in FVGs. FVGs can be parametrized. The mapping of database
columns to FVGs is specified in the schema config. PDGF con-
tains a set of core FVGs that cover commonly used value genera-
tions, such as number, string and date. We will give more details
on the core FVGs in Section 4. To generate custom data, PDGF
allows for custom written FVGs in Java that can be plugged in via
an API. This makes PDGF easy to use, yet very powerful. The
generation configuration file describes the output and scheduling.
That allows for a partial generation or different kinds of output for-
mats of the same logical data. PDGF combined with a specific set
of configuration files and optional plug-in FVGs is referred to as a
specific data generator. During the implementation of various data
generators, we found that for a certain data set we needed addi-
tional properties for a certain FVG such as the optional generation
of NULL values. Some of these properties, like number formatting,
are necessary for multiple FVGs but applicable only for a subset of
our core FVGs and sometimes only applicable for certain configu-
rations of the FVGs, e.g. a numeric date format. Instead of imple-
menting such generic properties in multiple FVGs, we introduced
the principle of meta field value generators to encapsulate generic
properties. In the next section, we will give a formal description of
the idea of meta-FVGs.

3. FORMAL DESCRIPTION OF VALUE
GENERATION

Figure 1 shows how values are generated for each field of a
database table. Each field is given an identification (id). The id
is calculated by the framework from the row number. This id is
converted into a random number (rn) by the random number gener-
ator (rng), which is then used by the column’s field value generator
to generate a field value, e.g. number, string, or date. The random
number generator is a function:

rng(id) = rn (1)

More specifically, the parallel random number generator (prng)
is seeded to generate a specific sequence for each series of values
(i.e. a column in a table):

rng(ID) = prng(ID + seed) = rn (2)

The seed is provided by the framework. PDGF’s internal seeding
strategy ensures a deterministic seed for every series of values (cf.
[6]). The resulting random number is then passed to the field value
generator. The FVG in turn is also a function that maps the random

number to a field value. The most simple FVG is a constant func-
tion that assigns the same value to each random number. Below is
an example for a number FVG that generates a number between 0
and 100, e.g. for a person’s age field:

ageGen(rn) = rn% 101 (3)

where % denotes the modulo operation. Due to its limited re-
usability, this ageGen is not a separate FVG in PDGF instead there
is a more generic number FVG where the range constraint (r) and
offset (o) are parameters to the function:

numberGen(rn, r, o) = rn% r + o (4)

For some columns it might be desirable to generate NULL values
with a specific probability p. This can be implemented using a
conditional statement:

numNull(rn, r, o, p) =

{
rn% r

1−p
+ o, if rn% r

1−p
< r

NULL, else
(5)

The definition of the numNull generating function in Equation
5 increases the range of the number generator by the probability of
NULL values and assigns NULL whenever the value is out of the
original range. However, defining the NULL logic in each FVG is
impractical. Therefore, we make use of the principle of higher or-
der functions. Consider the following higher order function which
makes a case distinction based on probability p (in percent):

case(rn, p, f, g) =

{
f(rn), if rn% 100 < p
g(rn), else (6)

Using this case function, we can build the numNull function
from the case and numberGen functions and a nullGen function
without changing their original definition. The nullGen function
generates only NULL values. In this context, we call numberGen
and nullGen sub-FVGs of case. We call these higher order func-
tions meta field value generators. This approach makes it possible
to build many different complex FVGs with a small set of FVGs
and meta-FVGs. An obvious problem that remains are the range
requirements of the various FVGs. Prerequisite for every FVG is
that the all possible random numbers can occur with the same prob-
ability. Therefore, we change the input for the FVG and meta-FVG
to random number generators instead of random numbers. This
way we do not have to worry about correlations in the ranges. A
meta-FVG simply uses as many random numbers as it needs and
passes a correctly seeded random number generator to the subse-
quent FVGs. To further increase the genericness of the approach it
is also possible to have meta-FVGs as sub-FVGs.

4. FIELD VALUE GENERATORS IN PDGF
To clarify how all of this is put together in PDGF, in the follow-

ing example we want to create a data generator to populate a simple
table that contains user information. The user table has two fields,
one for holding the name of the user and another for her/his age.

4.1 Schema Configuration Files
The schema file (schema.xml) of a specific instantiation of PDGF,

i.e. a data generator, defines the basic structure and content of all
data to be generated by it. Following the relational model, data is
specified in terms of tables and columns. Each table T{C1, .., Cn}
of a schema S is defined by a table element. Each table element
includes at least one size element and one fields element. The fields

<table name="users">
<size>10000</size>
<fields>
<field name="name">
<type>java.sql.types.VARCHAR</type>
<size>100</size>
<gen_DictList>

<file>dicts/names.dict</file>
</gen_DictList>

</field>
<field name="age">
<type>java.sql.types.NUMERIC</type>
<gen_LongGenerator>
<min>0</min>
<max>120</max>

</gen_LongGenerator>
</field>

</fields>
</table>

Figure 2: Partial schema.xml for a minimal user table

element contains at least one field element, one for each table col-
umn {C1, C2, .., Cn}. The definition of each field element must
include the specification of a data type and the assignment of an
FVG that is used to generate its data. The assignment of FVGs
to columns is specified in the name attribute of the generator el-
ements. Column data types are specified with the type element
within the field element.

4.2 XML Element Parsing
Another important topic is the parsing of the XML elements. In

general, everything down to and including the generator element is
parsed by PDGF itself. Everything within the generator element is
parsed by the corresponding generator. The element parsing itself
is done by node parsers that are implemented as internal classes.
PDGF has common node parsers for parsing XML. FVGs can reuse
most of these node parsers, but they can also implement their own.
Every FVG must configure which node parsers it wants to use and
if they are mandatory or optional, because PDGF checks the XML
when the config file is loaded. If it finds an unknown element (not
configured in the corresponding FVG) or if a required element of a
FVG is missing, it rejects the config file and issues a comprehensive
error message indicating why the config file was rejected.

4.3 Example: User Table
Figure 2 shows an excerpt of the minimal schema file to generate

data for the user table. For a complete loadable config file, some
project specific xml elements like the project seed or the default
RNG must be added outside of the shown table element. The first
tag <table> defines the table name to be “users". It is followed
by a second tag <size> that defines the cardinality of the table to
be 10,000. The following two sections define two columns, named
name and age.

“name” is defined as a VARCHAR data type with a maximum
field width of 100 characters. The values for name are generated
using the DictList FVG. The DictList FVG picks random elements
from a list of strings. The list of strings is configurable and pre-
sented to DictList as a file name. We use the <file> tag to present
the file name to DictList, which is dicts/names.dict in our example.
If there was an optional disableRng-element, DictList used the cur-
rent line number for getting a value from the dictionary. Without
the disableRng-element, the DictList FVG chooses a random line
from the dictionary for every row of the table.

“age” is defined as a NUMERIC data type. It is assigned the
LongGenerator FVG for generating field values between 0 and

<field name="age">
<type>java.sql.types.NUMERIC</type>
<gen_NullGenerator>

<probability>0.05</probability>
<gen_LongGenerator>

<min>0</min>
<max>120</max>

</gen_LongGenerator>
</gen_NullGenerator>

</field>

Figure 3: Definition of field age with a probability of 5% for
NULL values

120. LongGenerator must be configured with a min and a max ele-
ment, limiting the lower and upper bound of the generated numeric
value. It can be configured with an optional distribution-element
for changing the distribution of the random numbers. The default
distribution is uniform.

4.4 Limitations of Field Value Generators
FVGs are a handy way to define the contents of table columns.

Since they are defined separately from the columns themselves and
since they can be parametrized, the same FVG can be used for the
generation of multiple columns. Despite their re-usability, very
large schemas with many similar but not equal columns and com-
plex relationships require the implementation of many FVGs. For
instance, consider NULL values of relational theory. A naive ap-
proach to injecting NULLs into the data for a column is to simply
change its FVG to generate NULL values with a certain likelihood.
However, this might conflict with other not nullable columns that
use the same FVG. Another approach is to create a copy of the FVG
and extend it to generate NULL values. However, this approach has
some disadvantages: if a schema contains many nullable columns,
many FVG need to be copied, renamed and extended to generate
NULL values leading to code duplication and a maintenance night-
mare. If each columns requires a different likelihood of NULL
values, each FVGs needs to define its own method of NULL injec-
tion with its own parameter. These additional parameters may lead
to a blown up schema configuration file. This problem worsens,
when additional features are added to the FVGs, because the num-
ber of parameters each generator defines increases. We found that
there should be a way of extracting common logic and functional-
ity out of FVGs to a higher level, a meta level. This led us to the
introduction of meta field value generators in PDGF.

5. META FIELD VALUE GENERATORS
A meta-field value generator is a generator that extracts common

logic of multiple FVGs. Formally, meta-FVG can be considered as
a higher-order function, i.e. a function that takes other functions as
parameters (see Section 3). In PDGF, a meta-FVG takes FVGs and
parameters as arguments.

5.1 User Table With NULL Values
Consider the example in Figure 2. Assume that in 5% of all rows

the “age” field should contain a NULL value. This is analog to the
examples in Section 3. Using only the concept of FVGs requires
copying the LongGenerator to a NullLongGenerator and introduc-
ing a new parameter “probability” along with the corresponding
code to manage the NULL generation. With the new meta-FVG
concept introducing NULL values can be done without changing
the LongGenerator. First we define a meta-FVG, e.g. NullGener-
ator, with the LongGenerator as generator subnode. This way the
NULL generation code is encapsulated in the NullGenerator, while

the code for simply generating numeric values is encapsulated in
the LongGenerator. The field definition of “age” has to be altered
to the XML code shown in figure 3. With the altered field, about
500 lines of “users” have NULL values in the “age” column, while
the other lines have a number between 0 and 120.

In contrast to the age field definition in figure 2, the new one
in figure 3 defines the NullGenerator as primary FVG. The Null-
Generator is no FVG but a meta-FVG, however, this makes no dif-
ference to PDGF. Whenever a FVG is expected, a meta-FVG can
be used as well. The NullGenerator has a mandatory probability-
element which configures the likelihood of generating NULL as
value. If it decides to not generate NULL, it uses the FVG defined
in its generator element to generate a value for this field. The defi-
nition of the inner FVG is the same as in Figure 2. So we achieved
our goal: the NullGenerator generates NULL with a likelihood of
5% and numeric values between 0 and 10 in 95% of all lines.

5.2 Meta Field Value Generators in PDGF
There are several meta-FVGs built into PDGF. In general, these

core meta-FVGs can be split into two groups: post-processing meta-
FVGs and flow control meta-FVGs. A post-processing meta-FVG
uses its assigned FVG(s) to generate a basic field value and post
processes this value in a defined way. It does not choose which
FVG(s) to run, it simply executes the FVG(s) and post processes
the generated data. A flow control meta-FVG does not alter the data
generated by its FVG(s), but chooses which FVG to run. So flow
control meta-FVGs contain pure structural decision logic, while
post processing meta-FVGs contain strict data alteration logic. Al-
though a meta-FVG could mix post-processing and flow control
code, we decided to differentiate between those two types, because
doing so greatly enhances the re-usability of meta-FVGs. Using
these types complex field values can be generated without writing
a single line of java code.

5.2.1 Post-Processing Meta Field Value Generators
FormattedNumberGenerator takes a FVG producing numbers

and a format-element string. It formats the output of its FVG num-
ber according to the text in the format-element. Figure 4 shows an
example, which is explained below.

PaddingGenerator left or right pads a string value, generated
by a FVG, to a fixed field width using the character indicated in
the character-element parameter, e.g. WHITESPACE. If this meta-
FVG pads to left or right is determined by the padToLeft-element,
which accepts a boolean value (true, false)

UpperLowerCaseGenerator modifies string values, generated
by its FVG, either into uppercase characters or lowercase charac-
ters. Depending on the content in the mode-element parameter, it
modifies the entire string into uppercase, lowercase or first charac-
ter uppercase, remaining string lowercase

FormulaGenerator makes it possible to use the output of other
FVGs in mathematical and logical formulas. This generator is, for
example, used when prices before and after tax or discount have to
be computed.

5.2.2 Flow Control Meta Field Value Generators
ProbabilityGenerator has a list of probability-elements, each

containing a FVG. Each probability-element also has a value-attri-
bute defining the likelihood of running the corresponding FVG. So
in fact this meta-FVG chooses which of the containing FVGs to run
with the given likelihood. The value- attribute is a double, and the
value-attributes of all listed probability-elements must add to 1.0.
Figure 5 shows an example usage of this meta-FVG.

SequentialGenerator contains FVGs or meta-FVGs. They are

<field name="phonenumber">
<type>java.sql.types.VARCHAR</type>
<size>30</size>
<generator name="FormattedNumberGenerator">

<generator name="LongGenerator">
<min>10010001</min>
<max>9999999999</max>

</generator>
<format>(%d%d%d) %d%d%d-%d%d%d%d</format>
</generator>

</field>

Figure 4: Definition of a new field containing a phone number

simply run one after another. For this to work as desired, most
meta-FVGs are defining their generator-element as optional. So if
a meta-FVG is run without any FVG definition, it works not on
a FVG output, but on the current field value. This enables us to
use a FVG at the beginning of a sequence to generate the basic
field value followed by any number of meta-FVGs to change the
generated value. Figure 5 shows a usage example.

SwitchGenerator is the equivalent to the java switch statement.
It has one generator-element which gets the field value to check,
and multiple case-elements, each with a value-attribute and a FVG.
The fetched field value from the first FVG is checked against the
value-attributes of the case-elements, and if they match, the cor-
responding FVG is run. There is also a default-element contain-
ing a FVG, which is run when no value-attribute of a case-element
matched the fetched field value.

ReferenceGenerator is the main tool to solve inter-table and
inter-table dependencies. Although the generator differs in the con-
figuration and the referenced generator is implicitly specified it is
technically a metaFVG. With this generator fields in other tables
or in the same table can be referenced and are recomputed. If the
other field is in the same row the referenced value is cached instead
to save the cost of re-computation. In order to make it possible
to achieve consistency over multiple references to the same tuple
(e.g. reference to first and last name), a "sameRowAs" flag can be
specified.

5.2.3 Examples
Consider a new column with a phone number should be added

to the example table in Figure 2. Figure 4 shows a field defini-
tion for this case. The LongGenerator generates a number between
10010001 and 9999999999, and the FormattedNumberGenerator
maps the generated digits according to the format string, from right
to left. If there is no digit left, it inserts a “0”. So the resulting
values in this field are phone numbers between (001) 001-0001 and
(999) 999-9999.

Now for a more complex example, assume that the schema needs
about as many female names as male ones, the names should be up-
percase, and the field has to padded to the maximum field size. In
this case, the tree-like structure with generator elements shown ear-
lier, or we could use the SequentialGenerator to get a more readable
XML definition can be used. Figure 5 is showing the XML code
for the modified name field. The SequentialGenerator just runs all
containing (meta-) FVGs one after another. The first meta-FVG
in the sequence is the ProbabilityGenerator, so this one must gen-
erate a value. It does this by defining two possible choices, each
with a likelihood of 50% and each running DictList as FVG. They
read names either from a dictionary file “female_names” or from
“male_names”. After one of the two DictList FVGs created a value,
UpperLowerCaseGenerator is next. It has a mode element, which
configures it to set the string to uppercase. As this meta-FVG is

<field name="name">
<type>java.sql.types.VARCHAR</type>
<size>100</size>
<generator name="SequentialGenerator">
<generator name="ProbabilityGenerator">
<probability value="0.5">
<generator name="DictList">

<file>dicts/female_names.dict</file>
</generator>

</probability>
<probability value="0.5">
<generator name="DictList">

<file>dicts/male_names.dict</file>
</generator>

</probability>
</generator>
<generator name="UpperLowerCaseGenerator">
<mode>uppercase</mode>

</generator>
<generator name="PaddingGenerator">
<character> </character>
<padToLeft>true</padToLeft>

</generator>
</generator>

</field>

Figure 5: New definition of the name field differencing between
male and female names

the second in the sequence, it does not need to define a FVG to
generate a value. It simply reads and modifies the value generated
by the DictList FVG, so that the value is uppercase after the Up-
perLowerCaseGenerator run. The last meta-FVG in the sequence
is the PaddingGenerator. It reads the uppercase string from the pre-
viously executed (meta-) FVGs and pads it using the character “ ”
(whitespace) to the left up to the field size (100).

6. USE CASES
In this section we will discuss two actual use cases of PDGF.

We will show how the introduction of meta-FVGs has reduced the
number of different FVGs needed to generate a specific data set and
explain the positive impact on the complexity of describing a data
set.

6.1 TPC-H and SSB
One of our first non-trivial data sets was the TPC-H data set

which we implemented to compare the performance of PDGF to
DBGen [15]. TPC-H is a data warehousing benchmark that is
widely used in industry and academia. The TPC-H data set con-
sists of 8 tables with a total of 61 columns. Many of these columns
are dense increasing numerical keys, dictionary based or random
strings, or uniformly distributed numbers. However, some data has
to be calculated based on other values or combines different types
of data. The data generation is not trivial and therefore the TPC
provides DBGen the data generation tool for TPC-H. For the first
implementation of the PDGF version of the data generator for TPC-
H meta-FVGs were not available yet. Therefore, separate FVGs
had to be implemented for every field that did not fit the generic
data generators. An example is O_Clerk, it is a string consisting
of the string "Clerk#" and a 9 digit number with leading zeros, e.g.
"Clerk#000095423". Although a FVG that could append a random
number on a static string was already implemented another one was
needed that would do the leading zeros as well. With meta-FVGs
we were able to replace this special FVG with a generic construct
of meta-FVGs. Overall, we could reduce the number of specialized
FVGs within by only editing the config file within 2 hours from

26 to 10. The remaining FVGs were used for constructing compli-
cated interrelationships between tables, which, however, can also
be solved with meta-FVGs. Subsequently, we implemented a data
generator for the Star Schema Benchmark [17], which uses a vari-
ation of the TPC-H data set. The basic configuration was done in
one day and does not use any specialized FVGs, but resolves all de-
pendencies and special generation requirements with meta-FVGs.
The same is possible for the TPC-H data set.

6.2 ETL Benchmark
Another project that uses PDGF is the TPC’s ETL benchmark

initiative TPC-DI [21]. The project is still ongoing but it was the
reason for the development of the concept of meta-FVGs in the
first place. So in contrast to the TPC-H benchmark, we utilized
meta-FVGs right from the start. The data set is much more com-
plex than TPC-H and contains history keeping relations and change
data captures. All of the tables contain references or are referenced
by another table. Overall the data set consists of 20 tables and over
200 columns. Nevertheless, we have only 19 custom written FVGs
for the implementation. Most of these again could be replaced but
cover some corner cases that make them much faster than an meta-
FVG based solution. The most used meta-FVG is the NullGenera-
tor with 56 occurrences followed by the ProbabilityGenerator with
32 occurrences.

One downside of our meta-FVG approach that became apparent
during the implementation of the ETL benchmark is the bigger and
less readable schema configuration file. For the ETL benchmark it
has over 1000 lines of XML, which was the reason for an improved,
highly reduced specification language. Furthermore, an extensive
error message system was implemented that points out errors in
the configuration files with line numbers, context, suggestions for
corrections as well as help. In future work, we will build graph-
ical tools to automate the generation of the config files as well as
imports and templates to further reduce the size and complexity of
these documents.

7. RELATED WORK
There are several generic data generators, deployed both in sci-

entific research and commercial products. Commercial generators
include Red Gate SQL Data Generator [18], DTM Data Generator
[5], and GS DataGenerator [8]. These are are to some extent con-
figurable, but do not support the concept of meta-FVGs. Some re-
search has gone into the direction of generating data from existing
databases and thus scaling these up, e.g., the framework by Bruno
and Chaudhuri [3]. Their approach resembles a framework for the
specification and generation of databases that can model data distri-
butions with rich intra- and inter-table correlations. Their concept
is orthogonal to meta-FVGs and not yet supported in PDGF. How-
ever, sampling existing databases does not give the same flexibility
and precision of data generation as meta-FVGs. Another example
is MUDD, a multi dimensional data generator that was developed
for the recently released TPC-DS benchmark. It is configurable
since it operates on distribution files that can manually be edited
[20]. A framework that uses a very similar data generation strat-
egy to PDGF is Myriad [1]. It is, however, in an early stage and
does not support the advanced features of PDGF. To the best of our
knowledge, there is no other generic data generator that supports
meta-FVGs and an equal set of features as PDGF.

8. CONCLUSION
In this paper, we presented the concept of meta field field value

generators (meta-FVG), an extension to the concept of field value

generators (FVG) of PDGF. The use of meta-FVGs eases the de-
velopment of data generators, increases the flexibility in data gen-
eration schema design, and reduces implementation overhead. We
formalized the relationship between FVG and meta-FVG and de-
scribed their implementation in PDGF. To showcase the actual ben-
efits of using meta-FVG, we present their use in three examples.

In future work, we will further reduce the complexity of spec-
ifying data generators using PDGF by implementing a graphical
user interface for describing database schemas, their data content
and data distribution. Furthermore, we will implement an auto-
matic SQL generator that enables an easy database import of gen-
erated data. Finally, we will build a schema extractor that enables
bootstrapping a generation schema from an existing commercial
database with minimal interaction from the user.

A working version of PDGF with the SSB configuration is avail-
able at http:\\www.paralleldatageneration.org.

9. REFERENCES
[1] A. Alexandrov, K. Tzoumas, and V. Markl. Myriad: Scalable and

Expressive Data Generation. In VLDB’12, 2012.
[2] D. Bitton, D. J. DeWitt, and C. Turbyfill. Benchmarking Database

Systems: A Systematic Approach. In VLDB ’83, pages 8–19, 1983.
[3] N. Bruno and S. Chaudhuri. Flexible Database Generators. In VLDB

’05, pages 1097–1107, 2005.
[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking Cloud Serving Systems with YCSB. In SoCC ’10,
pages 143–154, 2010.

[5] DTM Database Tools. DTM Data Generator.
http://www.sqledit.com/dg/.

[6] M. Frank, M. Poess, and T. Rabl. Efficient Update Data Generation
for DBMS Benchmark. In ICPE ’12, 2012.

[7] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. J.
Weinberger. Quickly Generating Billion-Record Synthetic Databases.
In SIGMOD ’94, pages 243–252, 1994.

[8] GSApps. GS Data Generator.
http://www.gsapps.com/products/datagenerator/.

[9] J. E. Hoag and C. W. Thompson. A Parallel General-Purpose
Synthetic Data Generator. SIGMOD Record, 36(1):19–24, 2007.

[10] K. Houkjær, K. Torp, and R. Wind. Simple and Realistic Data
Generation. In VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pages 1243–1246. VLDB
Endowment, 2006.

[11] P. J. Lin, B. Samadi, A. Cipolone, D. R. Jeske, S. Cox, C. Rendón,
D. Holt, and R. Xiao. Development of a Synthetic Data Set Generator
for Building and Testing Information Discovery Systems. In ITNG
’06: Proceedings of the Third International Conference on
Information Technology: New Generations, pages 707–712,
Washington, DC, USA, 2006. IEEE Computer Society.

[12] P. E. O’Neil. The Set Query Benchmark. In J. Gray, editor, The
Benchmark Handbook for Database and Transaction Systems (2nd
Edition). 1993.

[13] M. Poess and C. Floyd. New TPC Benchmarks for Decision Support
and Web Commerce. SIGMOD Record, 29(4):64–71, 2000.

[14] M. Poess, T. Rabl, M. Frank, and M. Danisch. A PDGF
Implementation for TPC-H. In TPCTC ’11, 2011.

[15] T. Rabl, M. Frank, H. M. Sergieh, and H. Kosch. A Data Generator
for Cloud-Scale Benchmarking. In TPCTC ’10, pages 41–56, 2010.

[16] T. Rabl and M. Poess. Parallel data generation for performance
analysis of large, complex RDBMS. In DBTest ’11, page 5, 2011.

[17] T. Rabl, M. Poess, H.-A. Jacobsen, P. E. O’Neil, and E. O’Neil.
Variations of the Star Schema Benchmark to Test Data Skew in
Database Management Systems. In ICPE ’13, 2013.

[18] Red Gate. SQL Data Generator 2.0. http://www.red-
gate.com/products/sql-development/sql-data-generator/.

[19] SPC Benchmark 1TM Energy (SPC-1/E) Specification.
http://www.storageperformance.org/specs/SPC-1_SPC-
1E_v1.12.pdf.

[20] J. M. Stephens and M. Poess. MUDD: a multi-dimensional data
generator. In WOSP ’04, pages 104–109, 2004.

[21] L. Wyatt, B. Caufield, and D. Pol. Principles for an ETL Benchmark.
In TPC TC ’09, pages 183–198, 2009.

