Grand Challenge: High Performance Stream Queries
in Scala

Dantong Song, Kaiwen Zhang, Tilmann Rabl, Prashanth Menon, Hans-Arno Jacobsen
Middleware Systems Research Group (MSRG), University of Toronto

ABSTRACT

Traffic monitoring is an important stream processing application,
which is highly dynamic and requires aggregation of spatially col-
located data. Inspired by this, the DEBS 2015 Grand Challenge
uses publicly available taxi transportation information to compute
online the most frequent routes and most profitable areas. We de-
scribe our solution to the DEBS 2015 Grand Challenge, which can
process events at a 10 ms latency and at a throughput of 114,000
events per second.

1. INTRODUCTION

The Grand Challenge 2015 revolves around monitoring a feed of
taxi transactions. Each taxi event records the time, start and end
points, as well as the fare price. Location-based applications, in
particular traffic monitoring, are known to be highly dynamic due
to the mobile nature of the users and require efficient aggregation
of spatially collocated events [1]. The grand challenge provides
added semantics to the typical traffic application due to the struc-
tured nature of taxi fleets, as well as the pricing dimension of taxi
trips. These characteristics drive the queries of challenge which
represent analytics for the taxi industry.

We have created a highly optimized event processing engine (writ-
ten in Scala) to answer the challenge queries. Our primary contri-
butions are the optimization techniques we employed by leverag-
ing the nature and semantics of the addressed queries as well as the
nature of the provided workload. Our solution is highly efficient,
being able to process the full workload in 1500 seconds with 10 ms
latency.

2. ARCHITECTURE

The high-level architecture of our challenge solution is com-
prised of four major components. These components were incor-
porated in our final solution after several design modifications to
increase throughput by maximizing CPU usage.

The four major components are the Driver, Parser, Query 1 event
system and Query 2 event system. The components are connected
using the actor model to improve overall concurrency. Further-
more, each of the components has its own independent design strat-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

DEBS’15, June 29 - July 3, 2015, OSLO, Norway.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3286-6/15/06 ...$15.00.
http://dx.doi.org/10.1145/2675743.2776761.

Input

Raw Text (Batched)

v] ' v

Event Event Event
Parser Parser Parser
[| | |

l Events

Event
Accumulator

l Ordered Events
[|

Query 1

Sliding
Window

Drop Old Event | New Event

Taxi Status |l Area Profit
Logic

=
Proﬁtablg Area [N
Logic

Top-Route Logic

<__I

Top Routes

v
Top Profitable Areas

Figure 1: Event system architecture

egy, parallel processing strategy, storage strategy designed to opti-
mize the solution for best throughput. An overview of the architec-
ture can be seen in Figure 1. We will describe each subsystem in
more detail below.

Note that for the Query 1 and Query 2 event processing compo-
nents, we have implemented two different versions for each. One
version employs Apache Spark to achieve maximum scalability
while the other is a custom engine designed to maximize the per-
formance objectives required by the challenge. The remainder of
this paper will only describe the custom implementation as it is the
one submitted for consideration in the challenge competition.

2.1 Driver

The driver component is responsible for data collection and dis-
patching. The component continuously reads lines of raw data from
the provided input file and dispatch batch of inputs to correspond-
ing parsing component threads. The driver component is single-
threaded due to the nature of file I/O. The thread is bottlenecked
mainly by the I/O performance of the storage device.

2.2 Parser

In our solution, events are required to be parsed before being
sent to the event systems. Through profiling, we identified parsing
to be the computational bottleneck of the entire system. Therefore,
we decided to use a multi-threaded approach that can efficiently

use all of the remaining CPU power from other components. A
new thread will be pulled from a thread pool for each input batch
dispatched by the driver component. All threads will parse their
respective batches in parallel and send parsed events to the query
systems. A lock is used to eliminate any race conditions.

2.3 Query 1 Event System

The DEBS 2015 Grand Challenge requires the first query to out-
put the most favorite routes in the past 30 minute time frame. An
overview of Query 1’s architecture is displayed in Figure 1. The
query is carried out in multiple stages. However, due to the se-
quential nature of the query requirement, a single thread is used
to process all events. When an event enters the system, a distrib-
utor process that maintains a time window of previous events first
handles it. New incoming events enter together with older events
that dropped out from the 30-minute time window are sequentially
processed by functions accessing our customized storage model. In
order to optimize performance, a separate storage model is used to
only keep the top routes. Changes in the top routes are stored and
sent to file output.

2.4 Query 2 Event System

The second query of the challenge concerns monitoring the change
in the most profitable areas. To optimize concurrency, the Query
2 event system is separately implemented and independent from
the first query. The architecture of the second query is similar to
Query 1 with minor differences. The events follow the same stages
with the distributor, storage handling functions, query requirement
check, and output. The difference is that Query 2 performs prof-
itability calculation: the system tracks profit and empty taxis in
separate time-based event distributors and storage models.

Optimizations — Each storage component has a different perfor-
mance characteristic, and so we were very careful in our design to
use the appropriate data structures where necessary. Our solution
expended extra memory to boost the performance in our storage
model design. Using large arrays is not always the most efficient
storage option, but it can considerably reduce access time to each
item in the storage. Additionally, arrays can be very cache friendly,
more so than their linked-list of hash-table counterparts. We in-
crease the size of the main array to occupy a large amount of mem-
ory to a point where increasing memory usage no longer results in
improved performance.

3. EVALUATION

We experimentally evaluated the performance of the solution in
terms of throughput and latency (i.e., the time it takes from read-
ing the event to when corresponding output is sent to system 1/O).
The experiments were conducted using multiple machines hitting
different bottlenecks. The best performance is achieved with our
workstation with 17 4770K CPU, 8GB of memory and solid-state
disk drive.

With our multi-threaded solution, we measured a minimum time
of 1523 seconds to finish processing the entire 173 million events
with an average throughput at 8.8 microsecond/event and an aver-
age latency of 14 ms and 13 ms in Query 1 and Query2, respec-
tively. The queries require events to be processed again when leav-
ing the 30 and 15 minutes time frame. Therefore, the system ac-
tually handled input lines with 2x event count in Query 1 and 4x
event count in Query 2, effectively having an average throughput
of 4.4 microsecond/event and 2.2 microsecond/event in Query 1
and Query 2.

By adopting the actor model we effectively increased the through-
put, but suffered a non-negligible latency setback. With our single-

\ ’ /‘“’W\J;\g/ \ff\\\
. ‘T\ﬁ

v VNS AT AAA R

Event Count

Queryl Process Time ——Query2 Process Time

Figure 2: Query Processing Time

threaded experiment, we were only able to reduce the latency of
Query 1 and 2 to 3 ms and 14 ms, respectively, which is still more
than 1000x slower than our optimized solution.

3.1 Performance Bottlenecks

In workstations that do not use a solid-state disk drive, file I/O
could be the bottleneck. Since the file is read in lines instead of
memory blocks, traditional hard disks will be the bottleneck in this
case as our event system processes events at a rate of < 10 mi-
crosecond/event.

In workstations that have fewer than four CPU cores or do not
adopt hyper-threading technology, event parsing will be the bottle-
neck of the entire system. With a traditional quad-core system that
only execute four threads; the three major components will each oc-
cupy a single core. The most calculation-intensive parsing threads
will only be able to obtain one core, slowing down the entire sys-
tem. With hyper-threading, which allows two running threads on
each core, the problem can be effectively eliminated. The following
table compares the time spent in each query relative to the overall
time.

Total | Query 1 | Query 2
Hyper-threading 15235 | 1414 s 1320 s
No hyper-threading | 3456 s | 1596 s 1480 s

3.2 Storage system training

Event throughput is largely dependent on the performance of the
storage structure. Our storage system requires proper training to
reach its maximum throughput. Graph 2 shows the event process-
ing time for Query 1 and Query 2 over an 2 million event range.
After approximately 2000 events, the processing time of both query
stabilizes at 10 microsecond/event for meaningful events over the
output.

4. CONCLUSIONS

As a solution to the DEBS 2015 Grand Challenge we designed a
highly specialized system that is able to process events in microsec-
onds and can achieve a throughput of more than 100,000 events per
second on standard hardware. To achieve this performance, we
individually profiled every part of the processing system and op-
timized each of them using parallelization, cache-conscious data
organization, and reduction of overhead, such as value formatting.

5. REFERENCES

[1] A. Hinze, K. Sachs, and A. Buchmann. Event-based
applications and enabling technologies. In Proceedings of the
Third ACM International Conference on Distributed
Event-Based Systems, DEBS °09, pages 1:1-1:15, 2009.

