
Grand Challenge: Incremental StreamQuery Analytics
Pedro Silva, Wang Yue, Tilmann Rabl

{firstname.lastname}@hpi.de
Hasso Plattner Institute, University of Potsdam

Potsdam, Germany

ABSTRACT
Applications in the Internet of Things (IoT) create many data pro-
cessing challenges because they have to deal with massive amounts
of data and low latency constraints. The DEBS Grand Challenge
2020 specifies an IoT problem whose objective is to identify special
type of events in a stream of electricity smart meters data.

In this work, we present the Sequential Incremental DBSCAN-
based Event Detection Algorithm (SINBAD), a solution based on
an incremental version of the clustering algorithm DBSCAN and
scenario specific data processing optimizations. SINBAD manages
to calculate solutions up to 7 times faster and up to 26% more
accurate than the baseline provided by the DEBS Grand Challenge.

CCS CONCEPTS
• Information systems→ Data streaming; Clustering.

KEYWORDS
DEBS Grand Challenge, stream processing, event detection, clus-
tering

ACM Reference Format:
Pedro Silva, Wang Yue, Tilmann Rabl. 2020. Grand Challenge: Incremental
Stream Query Analytics. In The 14th ACM International Conference on Dis-
tributed and Event-based Systems (DEBS ’20), July 13–17, 2020, Virtual Event,
QC, Canada. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3401025.3401756

1 INTRODUCTION
The proliferation of the Internet of Things (IoT) is changing the
way people interact with devices, services and institutions. The
amount of connected devices and the data they generate creates new
challenges in terms of data processing: in 2020, it is expected that
more than 30 billion devices will be sending data over a network 1.
Many IoT applications, such as Industry 4.0, smart home, and health
care applications have real-time constraints, adding another layer
of complexity to those challenges.

The DEBS Grand Challenge 2020 [4] specifies an IoT use-case in
which data produced by electricity smart meters are processed with

1https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-
forecast-of-50-billion-devices-by-2020-is-outdated

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8028-7/20/07. . . $15.00
https://doi.org/10.1145/3401025.3401756

the purpose of identifying special type of events. The quality of
the challenge solutions is tied to the amount of correctly identified
events and the time taken to identify them.

In this paper, we present the Sequential Incremental DBSCAN-
based Event Detection Algorithm (SINBAD). It is based on the Incre-
mental DBSCAN (iDS) [2], a re-implementation of the the density-
based spatial clustering of applications with noise (DBSCAN), and two
additional strategies, Quick Result Calculation, and Noise Buffering
which speeds up the data processing on specific scenarios. SINBAD
is up to 7 times faster and more than 26% more precise than the
baselines we used, including an example implementation made
available by the DEBS Grand Challenge 2020.

We state the problem and discuss background concepts in Sec-
tion 2. We present SINBAD in Section 3 and its evaluation in Sec-
tions 4 and 5. We present related work on similar approaches from
the state-of-the-art in Section 6 and conclude this work in Section 7.

2 THE EVENT DETECTION PROBLEM
The Grand Challenge [4] states the problem of inferring energy con-
sumption profiles based on data available in a stream of smart meter
measurements. The main challenge is to identify special events re-
lated to abrupt changes of consumption which characterize a profile
change of the monitored appliances[1]. The Grand Challenge also
introduces a solution, to which we refer as Grand Challenge baseline
(GCB), and a straightforward Python implementation2.

The GCB consists of (i) aggregating smart meter data in batches,
(ii) generating features from each batch, (iii) clustering those fea-
tures using DBSCAN and, (iv) analyzing those clusters for events.

In the next sub-sections we present more details about the GCB
and the scenarios deployed for testing it.

2.1 Datasets and scenarios
A smart meter measurement is a tuple < i,v, c > containing an
id i , a voltage measurement v and a current measurement c . The
identifier i is a sequential integer indicating the order in which a
tuple was produced.

The Grand Challenge defines two scenarios, Scenario 1 and Sce-
nario 2, which define the characteristics of the stream of smart
meter measurements. In Scenario 1, measurements in the stream
are ordered by i and, in Scenario 2, data is incomplete (e.g., tuples
with id 42 and 45 are present but not those with id 43 and 44) and
disordered (e.g., tuple with id 57 appears before tuple with id 56).
The Grand Challenge also defines that disordered tuples from Sce-
nario 2 may be at most 20000 positions away from their ordered
position. For example, the tuple with id 1 may be at most at position
20001 and tuple with id 42 may be at most at position 20042. This is

2https://github.com/dmpalyvos/debs-2020-challenge-local

https://doi.org/10.1145/3401025.3401756
https://doi.org/10.1145/3401025.3401756
https://doi.org/10.1145/3401025.3401756

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro Silva, Wang Yue, Tilmann Rabl

an important information that helps to differentiate missing from
late tuples in online use cases.

Finally, there is one test dataset for scenario Scenario 1 contain-
ing 15M measurements, and another one for Scenario 2 containing
14915533 measurements, i.e., it has 84467 fewer measurements than
the dataset of Scenario 1.

2.2 DBSCAN
In this section, we briefly describe the density-based spatial cluster-
ing of applications with noise (DBSCAN) [3], which is used in the
Grand Challenge for clustering events.

DBSCAN groups together points which are in a neighborhood
defined by a distance function and a given distance threshold. A
point qi is reachable from point qj if qi is within distance ϵ or
smaller. A path p(qi ,qj) = qi ,p1, . . . ,pn,qj , between points qi and
qj , is defined if each point in the path is reachable by its predecessor
and successor. A set of points q1,q2, ...,qk in IRn belong to a cluster
C if for every pair of points in C there is a path p(qi ,qj) of size
greater than or equal to λ. Points which do not belong to any clusters
are considered noise/outliers.

In the GCB, DBSCAN is used with the following parameters:
(i) the minimum size of a cluster is 2, i.e., λ = 2; (ii) the distance
function d is the euclidean distance; and (iii) outliers are stored in
cluster C0.

2.3 Grand Challenge Baseline
The Grand Challenge baseline (GCB) receives as input a stream
of smart meter measurements and outputs sets of points, which
characterize an event of interest.

The first step of the GCB is to aggregate measurements from the
stream in batches of size 1000 and calculate one pair of active (P)
and reactive (Q) powers per batch using the following functions
(vRMS and cRMS are the root-mean-square values of voltage and
current per period): P =

∑
(v×c)
1000 and Q =

√
(vRMS × cRMS)2 − P2.

Each tuple < P,Q, id > containing one pair of active and re-
active powers and an identifier is called a feature. The id of each
feature indicates its temporal order associated to the batches which
compose it. Those features are stored in a window, which we refer
to as the feature window, and are processed by an algorithm called
sequential clustering-based event detection algorithm (SECBED). It
uses DBSCAN for generating clusters from the data available in the
featuring window and analyzes those clusters for events.

2.3.1 SECBED. The SECBED has two main parts, the forward
search step and the backward search step.

In the forward search step, whenever a new feature is available
in the feature window, DBSCAN is applied to the entire data of the
window in order to arrange the features into clusters. Those clusters
are then used as input for validating an event model constraint –
model M3 available in [1] – which, when satisfied, result in an
event detection. In short, that event model constraint guarantees
that (i) there are at least two non empty non-noise clusters in the
set of clusters; (ii) C0, the set of noise clusters (cf. Section 2.2), is not
empty; and (iii) the two first clusters C1 and C2 do not overlap in the
time domain. This means that, if there is an event between clusters
C1 = {cu1 , . . . , c

v
1 } and C2 = {cn2 , . . . , c

z
2 }, where the superscripts

indicate the temporal order of the features, and u < v < n < z,

then no point cx1 ∈ C1 such that x > v exists. Likewise, no point
c
y
2 ∈ C2, such that y < n exists. Finally, event features must be in
the temporal interval between v and z. We refer to that interval as
the interval of the event. Once an event is detected, the algorithm
moves to the backward search step. Otherwise, it waits for the next
feature and restarts the forward step.

In the backward search step, the objective is to find the smallest
set of features that still characterize an event. To achieve this while
the model constraint is still satisfied, it keeps removing the oldest
feature added to the window and uses DBSCAN on the resulting
window. The result of the algorithm is the set of noise features
located between the two first clusters. It is expected that each
feature has a result associated with it: a tuple < s,d, e >, where s is
the id of the feature, d a boolean indicating if the feature is part of
an event, and e , the median of the ids of the features describing an
event, if any.

3 SOLUTION: SINBAD
The sequential incremental DBSCAN based event detection (SINBAD)
is the algorithm proposed to solve the Grand Challenge.

3.1 Overview
SINBAD also batches smart measurements from the input and
transform them into features < P,Q, id >, which feed the forward
and backward search steps. Similarly to the GCB, both steps employ
a clustering algorithm for processing a feature window, however,
SINBAD replaces DBSCAN by the incremental DBSCAN (iDS) [2].

In the forward search step, iDS is executed whenever a feature is
added to the feature window.When an event is found, the backward
search step starts and the oldest features are removed from the
feature window, one by one, until the smallest set of features that
still characterize an event is found.

SINBAD uses two additional strategies for the Scenario 2, in
which data may be missing or disordered, called quick result calcu-
lation and noise buffering.

We explain in detail each of SINBAD’s building blocks in the
following sections.

3.2 Incremental DBSCAN
One of the main components of SINBAD is the Incremental DB-
SCAN [2] (iDS). It replaces DBSCAN as the algorithm responsible
for continuously clustering data arriving from a stream of features.
The core of iDS relies on its state management, which allows clus-
ter updates to be performed in O(n) while the standard DBSCAN
requires Θ(n2), where n is the number of features in the feature
window. In the following sections, we present iDS and its role in
the feature stream processing step.

3.2.1 Overview. The forward and backward steps from SINBAD
are similar to those from GCB. The iDS will be executed at every
iteration of the forward step, i.e., whenever a new feature is added
to the feature window. Likewise, it will also be executed at every
iteration of the backward step, i.e., whenever a feature is removed
from the feature window after an event is found. Clusters calculated
by iDS are identical to DBSCAN’s, however, the former is faster:
while DBSCAN reprocesses the entire feature window whenever

Grand Challenge: Incremental StreamQuery Analytics DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

a feature is added to it or removed from it, iDS only processes
part of it. This is possible thanks to the state it maintains, which is
composed of the clusters that are currently being processed.

3.2.2 Forward search step. In the forward search step (cf. Sec-
tion 2.3.1), new features are added, one by one, to the feature win-
dow and are afterwards processed by iDS.

Clustering decisions made by iDS depend on the characteristics
of its state, which contains the mappings between features in the
feature window and clusters. Whenever a new feature is available,
iDS first analyzes its state before defining how to cluster it.

In the next paragraphs, we describe all possible state configura-
tions that can be found in iDS when a new feature is available in
the processing window and the triggered actions.

Let C be the set of all clusters in iDS’ state, C0 ⊂ C, the cluster
containing noise features,W the set of all features in the feature
window, f a new feature, and d(f1, f2) the euclidean distance be-
tween features f1 ∈ W and f2 ∈ W.
Case 1) If the windowW is empty, there are no clusters and a new
feature f is considered noise. Consequently, f will be part of C0.

When C = ∅ :
then C := C0 := { f }

Case 2) If there are previously detected clusters but no noise, i.e.,
C0 = ∅, then, depending on the distance between f and other
features present in existing clusters, either f will be considered
noise and added to C0 or it will be added to at least one cluster Ci . If
f has a distance smaller than ϵ to at least one feature ci ∈ Ci , then
f is added to Ci . Similarly, if f , at the same time, has a distance
smaller than ϵ to features contained in other clusters, they must
all be merged together with Ci . Finally, if the distance between f
and all other features inW is greater than ϵ , then f is classified as
noise and must be added to C0.

When C0 = ∅ and |C| > 0 :
if ∀c ∈ W : d(c, f) > ϵ, then C0 := { f }

else Ci := { f } ∪ {Ci | ci ∈ Ci , d(ci , f) ≤ ϵ} and

Ci := Ci ∪ {Cj | Cj ⊂ C,d(w, f) ≤ ϵ,w ∈ W, w ∈ Cj }.

Case 3) If the only available cluster in windowW is C0, then either
f will be added to C0, in case it is classified as noise or it will be
added to a new cluster C1 together with features from C0 whose
distances to f are smaller than or equal to ϵ .

When C = {C0} and C0 , ∅ :
if ∀c0 ∈ C0 : d(c0, f) > ϵ , then C0 := C0 ∪ { f }.

else C1 := { f } ∪ {c0 | c0 ∈ C0,d(c0, f) ≤ ϵ} and

C0 := C0 \ C1.

Case 4) If there are at least C0 and C1 inW, then either (i) f will
be classified as noise, (ii) f will compose a new cluster with at least
one element of C0, (iii) clusters having elements with a distance to
f less than or equal to ϵ will be merged together and will contain
f , or (iv) f creates a cluster as in (ii) and thus combines clusters as
in (iii).

When C , ∅ and |C| > 1 :
(i) if ∀w ∈W : d(w, f) > ϵ then C0 = C0 ∪ { f }

(ii) else if ∃c0 ∈ C0 : d(c0, f) ≤ ϵ and ∀ci ∈

|C |−1⋃
i=1

Ci : d(ci , f) > ϵ

then Cn := { f } ∪ {c0 | d(c0, f) ≤ ϵ, c0 ∈ C0} and

C0 := C0 \ Cn and C := C ∪ Cn .

(iii) else if ∀c0 ∈ C0 : d(c0, f) > ϵ and ∃ci ∈ Ci : d(ci , f) ≤ ϵ

then Ci := { f } ∪ Ci ∪ {Cj | d(f , c j) ≤ ϵ, c j ∈ Cj , Cj ⊂ C}

(iv) else if ∃c0 ∈ C0 : d(c0, f) ≤ ϵ and ∃ci ∈ Ci : d(ci , f) ≤ ϵ

then Cn := { f } ∪ {c0 | d(c0, f) ≤ ϵ, c0 ∈ C0},

C0 := C0 \ Cn and C := C ∪ Cn and

Ci := { f } ∪ Ci ∪ {Cj | d(f , c j) ≤ ϵ, c j ∈ Cj , Cj ⊂ C}.

3.2.3 Backward search step. During the backward search step (cf.
Section 2.3.1), the oldest features from the feature window are re-
moved, one by one. While the standard DBSCAN re-calculates all
clusters every time a feature is removed, iDS only updates the clus-
ters affected by the feature removal. During the backward stage iDS
has a O(n) time complexity against Θ(n2) from standard DBSCAN.

Similarly to the forward stage of iDS, we analyze all possible
state configurations at the moment a feature is removed.

Case 1) If f is noise, i.e., f ∈ C0, then removing f will not affect
any other clusters.

When f ∈ C0

then C0 := C0 \ { f }.

Case 2) If f ∈ Ci is not noise, then it is necessary to verify that
Ci \ { f } is still a valid cluster, i.e., whether it has at least 2 features
left, and that all of the remaining elements are reachable, i.e., there is
a path p(a,b) from every a ∈ Ci to b ∈ Ci , such that the distance be-
tween every consecutive feature in the path is smaller than a given
ϵ (cf. Section 2.2). Finally, in case f is a bridge in the path p(a,b),
removing it may break Ci into multiple smaller clusters and/or
generate noise features. This situation is solved by regenerating
the clusters using only the remaining features from Ci \ { f }.

When f ∈ Ci , Ci , C0 :
if |Ci \ { f }| < 2

then Ci := Ci \ { f } and C0 := C0 ∪ Ci

else if ∃a ∈ Ci , ∀b ∈ {ci | ci ∈ Ci , d(f , ci) ≤ ϵ},b , a : d(b,a) ≤ ϵ

then Ci := Ci \ { f }.

else if a ∈ Ci \ { f },b ∈ Ci \ { f } : ∄p(a,b)
then perform Case 4 from forward step on each element of Ci

added to an initially empty window. The non-noise
clusters found, if any, will replace Ci and all noise will
be added to C0.

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro Silva, Wang Yue, Tilmann Rabl

3.3 Optimizations for Scenario 2
The Scenario 2 is characterized by missing and disordered tuples
(cf. Section 2.1). As data is served in batches of 1000 tuples, the
processing algorithm cannot immediately differentiate between
missing and late tuples. The only mechanism available for that
is the guarantee that a missing tuple will not be more than 20000
positions away from its expected position, i.e., it is necessary to wait
for up to 20 batches of tuples in order to be sure that a measurement
tuple is missing or not.

As a consequence of that, there may be situations where missing
tuples are served after their corresponding feature is processed.
This leads to a loss of accuracy on detected events, since incomplete
features, i.e., features calculated with incomplete data, may be added
to clusters that differ from those to which they would be added if
they were definitive features, i.e., built with complete data. GCB’s so-
lution for that issue is to calculate results using incomplete features
despite the accuracy loss. Another solution is to stop the execution
of the algorithm and wait for up to 20 batches of data whenever
there are missing tuples. However, such an approach would delay
the processing of solutions associated to the incomplete feature
and subsequent ones.

In the next paragraphs we propose two approaches, noise buffer-
ing and quick result calculation, to avoid halting the entire execution
of the algorithm when incomplete features are present.

3.3.1 Noise buffering. Incomplete features directly affect the event
detection as they may be clustered to noise features present in the
event solution set or be part of the solution set when their definitive
version is calculated. In those situations, in order to accurately
calculate the result associated to those missing and noise features,
it is necessary to wait for the missing tuples to be available.

Noise buffering (NB) keeps track of the points considered noise
that depend on missing tuples. It buffers the data inW so, once the
missing tuples are available, the results associated with the points
considered noise in the solution set or the incomplete features can
be calculated.

3.3.2 Quick result calculation. The quick result calculation (QRC)
approach targets at calculating results for definitive or incomplete
features that can be answered immediately or after a few iterations
of the forward search step. For the latter case, QRC is used with NB
so the algorithm is not halted while waiting for more features.

A first case where QRC can be applied is when a definitive feature
has a distance smaller than or equal to ϵ to another definitive
feature. In that situation, both features will never be part of an
event, independently of any incomplete features in W, because
neither of them will be updated. For those features, it is always
possible to immediately associate a negative result to them.

QRC can also take advantage of temporal constraints and quickly
calculate the result of noise or incomplete features having their
ids in the temporal interval of a cluster (cf. Section 2.3.1). Let f
be a feature having its id in the temporal interval of a cluster. If
f is not noise, then it is be part of a cluster and consequently
cannot be an event. If f is noise, then it also cannot be an event
because it is “surrounded” temporally-wise by the same cluster and,
consequently, cannot be situated between two non overlapping
clusters. Hence, when the id of f is in the temporal interval of a

cluster, it is enough to determine if f is part of an event or not.
We can assert that any feature, incomplete or not, having its id in
the temporal interval of a cluster is not an event. Notice, however,
that it is necessary to wait for the features around the incomplete
features to form a cluster before being able to output a negative
result.

4 EVALUATION METHODOLOGY
In this section, we discuss the implementation of SINBAD and the
environment of the experiments used to analyze its performance.

4.1 Evaluation server
The evaluation server interacts with a client, which encapsulates
a solution implementation defined by a competitor, through an
HTTP API. The main responsibilities of the server are (i) answering
requests for smart meter tuples from a client, (ii) receiving results
calculated by a client, and (iii) sending a performance summary of
the results sent by a client.

The HTTP API specifies two calls: a GET request for a batch of
data, and a POST request for sending the results of a calculation.
Whenever a client issues a GET request, it specifies the context
scenario, which can be Scenario 1 or 2. The server answers with a
batch of smart meter measurements containing up to 1000 tuples
wrapped in JSON. The server does not process parallel requests.

When a client finishes calculating the result associated to a
feature, it must send it to the server using a POST request where
it defines the id of the feature, a boolean indicating whether the
feature is an event or not and the median of the interval of the
event (cf. Section 2.3.1).

Finally, when a client requests for data after all batches of the
dataset were sent, the server answers with a summary of the exe-
cution in terms of percentage of true positives and timeliness.

TheGrandChallenge organizersmade available a Docker 3 image
containing an implementation of the server.

4.2 SINBAD’s implementation
SINBAD4 is implemented in C++14 5 and uses libcurl 6 to access
the evaluation server’s API and RapidJSON 7 to parse incoming
data and wrap output data. SINBAD is encapsulated by Docker.

We opt to implement SINBAD from scratch instead of using a
general purpose stream processing engine such as Apache Flink 8

because (i) such implementation would not benefit from Flink’s
parallelism since the evaluation server does not process multiple
requests at the same time; and (ii) as the algorithms are straightfor-
ward, the overhead for developing an efficient and straight-to-the
point tailored solution is small. The evaluation server’s lack of
support for parallel requests is also the reason why SINBAD is
essentially sequential. As network access for downloading batches
and uploading results is SINBAD’s bottleneck (more details in Sec-
tion 5), there would be almost no performance improvement by

3https://www.docker.com
4https://github.com/hpi-des-debs2020/hpi-des-debs2020-grand-challenge
5https://isocpp.org/wiki/faq/cpp14-language
6https://curl.haxx.se/libcurl/
7https://rapidjson.org/
8https://flink.apache.org/

Grand Challenge: Incremental StreamQuery Analytics DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada

processing many batches in parallel. Additionally, the code would
have to be more complex to manage a parallel SECBED algorithm.

In SINBAD’s implementation, we consider a feature to be in-
complete when there are more than 100 missing points associated
to it. That threshold was chosen after observing that the value of
features calculated with 100 or less points where in average only
1.6% smaller or greater than the original value.

4.3 Baselines
We use 3 baselines to analyze the performance of SINBAD: GCB-
Python, GCB-C++, and SINBAD-NoQRC.

GCB-Python is the original implementation of GCB made avail-
able to all competitors by the organizers of the Grand Challenge.
It is implemented in Python and uses DBSCAN from scikit-learn9
and library requests 10 for dealing with JSON parsing and HTTP
requests. GCB-Python does not have a mechanism such as NB (cf.
Section 3.3) for buffering data while waiting for missing tuples in
Scenario 2. Hence, it always calculates results based only on the
available information.

GCB-C++ is our implementation of GCB. It operates exactly as
GCB-Python but was developed in C++14 and uses RapidJSON
and libcurl. DBSCAN was also implemented in C++14. Similarly to
GCB-Python, GCB-C++ cannot wait for missing tuples.

SINBAD-NoQRC is an implementation of SINBAD without the
optimization QRC for Scenario 2. It still has implemented NB and
consequently can wait for missing tuples before calculating results.

4.4 Metrics
In order to understand the performance of SINBAD, we analyze
three metrics: accuracy, runtime, and latency.

Accuracy measures the number of true positives available in the
set of solutions sent by a client.

Runtime is the time taken by a client to process all data sent by
the evaluation server. It measures the time interval between the
moment that the first batch is sent to the client and the moment
that the last solution is received by the server.

Latency is the average of individual latencies. An individual la-
tency is the time taken by a client to output a result associated
to a feature. Each individual latency measures the time interval
between the moment that the first batch having tuples associated
to a feature is sent and the moment that the result associated to
that feature is received.

4.5 Experiment
In our experiments, we evaluate each algorithm, i.e., SINBAD, GCB-
Python, GCB-C++, and SINBAD-NoQRC on Scenarios 1 and 2.

Every experiment involves executing an algorithm implemen-
tation three times in the context of a scenario and calculating the
averages of the metrics, i.e., accuracy, runtime and latency. Each
execution starts when the evaluation server is ready to receive
requests and ends when the evaluation server acknowledges the
reception of all results from the algorithm implementation.

The algorithm implementations are encapsulated in Docker con-
tainers. Client and server containers are deployed on the same
9https://scikit-learn.org
10https://requests.readthedocs.io/en/master/

machine, which is equipped with an Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz having 2 threads per core and 32G RAM.

5 PERFORMANCE ANALYSIS
We split the performance analysis of SINBAD in three parts. We
analyze the results of the experiments in the context of Scenarios 1
and 2, and, then, we profile SINBAD’s processing times.

5.1 Scenario 1
We summarize the metrics of experiments of the Scenario 1 in
Table 1. SINBAD’s runtime is more than 5 times shorter than GCB-
Python’s and its latency is more than 7 times smaller than GCB-
Python’s. On the other hand, the performance differences between
SINBAD and GCB-C++ are much smaller: 11 seconds for runtime
and around 500ms for latency.

The runtime and latency differences between SINBAD and GCB-
C++ are mainly explained by the performance of iDS against DB-
SCAN. The impact of our choice of libraries and programming
language causes the difference between GCB-C++ and GCB-Python
performances. As all solutions are based on SECBED and there are
no missing tuples in Scenario 1, the accuracy of all experiments
is 100%. For the same reason, SINBAD and SINBAD-NoQRC have
very similar metrics.

Table 1: Runtime, latency, and accuracy in Scenario 1.

runtime latency accuracy

SINBAD 572 s 22.90 ms 100%
SINBAD-NoQRC 572 s 22.87 ms 100%
GCB-C++ 581 s 23.44 ms 100%
GCB-Python 2953 s 165.32 ms 100%

5.2 Scenario 2
We show the experiment metrics of Scenario 2 in Table 2. The
runtimes of the experiments are similar to the results in the exper-
iments for the Scenario 1 shown in Table 1. However, there is a
substantial difference among the values of latency and accuracy.

Table 2: Runtime, latency, and accuracy in Scenario 2.

runtime latency accuracy

SINBAD 576 s 58.34 ms 81.4%
SINBAD-NoQRC 574 s 149.1 ms 81.4%
GCB-C++ 601 s 24.53 ms 64.5%
GCB-Python 21,930 s 1,231 ms 64.5%

SINBAD has a latency around 2.5 times smaller than SINBAD-
NoQRC and more than 21 times smaller than GCB-Python. The
difference between SINBAD and SINBAD-NoQRC describes the
impact of the QRC and NB optimizations on SINBAD. Notice that
SINBAD’s latency is around 2.3 times greater than GCB-C++’s. At
the same time, SINBAD’s accuracy is around 26% greater than GCB-
C++’s. That happens because of an accuracy vs. latency trade-off.

DEBS ’20, July 13–17, 2020, Virtual Event, QC, Canada Pedro Silva, Wang Yue, Tilmann Rabl

Whenever there are data missing, the event detection algorithm
must decide between calculating a result associated to an incom-
plete feature or waiting for up to 20 batches to have all necessary
data to calculate the result. That trade-off is illustrated in Figure 1,
where we variate the maximum number of batches to wait before
calculating a result associated to an incomplete feature. In order to
improve the accuracy from around 60% to up to around 70%, it is
necessary to increase the latency by a factor of more than two.

 50

 55

 60

 65

 70

 75

 80

 0 5 10 15 20 0
 10
 20
 30
 40
 50
 60
 70
 80

ac
cu

ra
cy

 (
%

)

la
te

nc
y

(m
s)

batch

accuracy
latency

Figure 1: Trade-off between accuracy and latency for a SIN-
BAD execution in Scenario 2.

While it is not evaluated in the Grand Challenge, SINBAD also
has a good performance for true negatives, as shown in Table 3.
Notice that SINBAD’s F1 score is 0.80, i.e., around 48% greater than
GCB-C++’s. We omit SINBAD-NoQRC and GCB-Python as their
accuracies are identical to SINBAD and GCB-C++, respectively.

Table 3: F1 score, precision, and recall for Scenario 2.

F1 score Precision Recall

SINBAD 0.80 0.81 0.78
GCB-C++ 0.54 0.64 0.46

5.3 SINBAD profiling
We divide the entire execution process of each experiment into four
steps and measure the amount of time spent in each one of them.
Step 1 refers to asking the server for data and downloading them;
Step 2 refers to parsing JSON data received from the server; Step 3
refers to the actual event-detection data processing using SINBAD
or one of the baselines; and Step 4 refers to uploading the results
back to the server. Figure 2 illustrates the execution time per step,
for Scenario 2. We choose to omit results from Scenario 1 because
they are similar to Scenario 2’s. As GCB-Python has a performance
one order of magnitude greater than other algorithms, we also omit
it for the benefit of readability.

The first important characteristic to notice in Figure 2 is the
impact of networking on the time consumption of Steps 1 and 4,
which is slightly the same for all algorithms and is up to around
88% of the execution time. We also observe that the impact of the
JSON library on Step 2 of all implementations responds for around
11% of the execution time, leaving around 0.5% for Step 3.

In comparison to GCB-C++, in particular, Step 3 shows SINBAD’s
improvement in terms of execution time. It also shows that all
approaches are inefficient in terms of networking (cf. Steps 1 and
4). This happens, mainly, because the evaluation server does not
allow requests to be processed in parallel.

 0

 50

 100

 150

 200

 250

 300

 350

 400

STEP1 STEP2 STEP3 STEP4

32
9.

5
33

3.
5

33
2.

6

61
.0

63
.4

63
.7

0.
29

3
0.

34
5

3.
1

19
0.

7
18

3.
4

20
4.

9

se
co

nd
s

SINBAD
SINBAD-NoQRC

GCB-C++

Figure 2: Breakdown of execution time in Scenario 2.

6 RELATEDWORK
SINBAD, the proposed solution for the Grand Challenge, is built on
top of existing algorithms and approaches from the literature with
the objective of improving execution time, latency and accuracy
metrics of the GCB. SINBAD has mainly 3 building blocks, the event
detection algorithm SECBED, the clustering algorithm iDS and the
Scenario 2 optimizations QRC and NB.

We employ SECBED almost as it is defined in [1]. The only
important modification is the replacement of DBSCAN by iDS and
the incorporation of the optimizations for Scenario 2, QRC and NB.

We based iDS on the incremental version of DBSCAN defined
in [2] and only adapted it to fit SECBED characteristics and the
optimizations of Scenario 2.

The optimizations QRC and NB are very specific for solving
the Grand Challenge and use classic techniques of concurrent and
parallel processing.

7 CONCLUSION
In this work, we present SINBAD, an algorithm for detecting events
on streamings of smart meter measurements. Combining iDS, a
fast clustering algorithm, QRC and NB, two scenario specific opti-
mizations, and an efficient implementation, SINBAD manages to
outrun all baselines on the evaluated datasets. In the Scenario 1,
SINBAD has the same accuracy as the other baselines but is five
times faster than GCB-Python and 9 seconds faster than GCB-C++.
In Scenario 2, it has an accuracy of 81.4% and a F1 score of 0.80
which are 26% and 48% better than GCB-C++’s, respectively.

ACKNOWLEDGMENTS
This research was partially funded by the HPI Research School on
Data Science and Engineering.

REFERENCES
[1] Karim Said Barsim and Bin Yang. 2016. Sequential Clustering-Based Event De-

tection for Non-Intrusive Load Monitoring. Computer Science and Information
Technology.

[2] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Michael Wimmer, and Xiaowei Xu.
1998. Incremental Clustering for Mining in a Data Warehousing Environment. In
Proceedings of the 24rd International Conference on Very Large Data Bases.

[3] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.
In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining.

[4] Vincenzo Gulisano, Daniel Jorde, Ruben Mayer, Hannaneh Najdataei, and Dimitris
Palyvos-Giannas. 2020. The DEBS 2020 Grand Challenge. In Proceedings of the
14th ACM International Conference on Distributed and Event-Based Systems (DEBS
’20).

	Abstract
	1 Introduction
	2 The event detection problem
	2.1 Datasets and scenarios
	2.2 DBSCAN
	2.3 Grand Challenge Baseline

	3 Solution: SINBAD
	3.1 Overview
	3.2 Incremental DBSCAN
	3.3 Optimizations for Scenario 2

	4 Evaluation methodology
	4.1 Evaluation server
	4.2 SINBAD's implementation
	4.3 Baselines
	4.4 Metrics
	4.5 Experiment

	5 Performance analysis
	5.1 Scenario 1
	5.2 Scenario 2
	5.3 SINBAD profiling

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

