
CaSSanDra: An SSD Boosted Key-Value Store
Prashanth Menon #, Tilmann Rabl #, Mohammad Sadoghi ∗, Hans-Arno Jacobsen #

Middleware Systems Research Group, University of Toronto
∗ IBM T.J. Watson Research Center

Abstract—With the ever growing size and complexity of
enterprise systems there is a pressing need for more detailed
application performance management. Due to the high data
rates, traditional database technology cannot sustain the required
performance. Alternatives are the more lightweight and, thus,
more performant key-value stores. However, these systems tend
to sacrifice read performance in order to obtain the desired
write throughput by avoiding random disk access in favor of
fast sequential accesses.

With the advent of SSDs, built upon the philosophy of no
moving parts, the boundary between sequential vs. random access
is now becoming blurred. This provides a unique opportunity
to extend the storage memory hierarchy using SSDs in key-
value stores. In this paper, we extensively evaluate the benefits of
using SSDs in commercialized key-value stores. In particular, we
investigate the performance of hybrid SSD-HDD systems and
demonstrate the benefits of our SSD caching and our novel
dynamic schema model.

I. INTRODUCTION

Many big data challenges are characterized not only by
a very large volume of data that has to be processed but
also by a high data production rate, i.e., high velocity [1]. In
modern monitoring applications, many thousands of sensors
will produce a multitude of readings that have to be stored at
a high pace but have to also be readily available for continuous
query processing. Examples of such applications include traffic
monitoring, smart grid applications and application perfor-
mance management. In application performance management,
for example, hundreds to thousands of servers that are con-
nected in an enterprise system will be monitored in order to
determine the bottlenecks, sources of errors, and inefficiencies
that often stem from highly complex interactions of various
services [2]. This requires the collection of monitoring data to
enable the tracing of the path that individual transactions take
through the system. The common denominator among these
applications is the need for write-optimized data storage such
as key-value stores. Current storage approaches either try to
exploit the speed of memory-based solutions, thus, drastically
limiting the amount of data that can be stored or use disk-
based approaches and, thus, only allow sampling the required
information to cope with high velocity data.

Building on the success of key-value stores, in this paper,
new optimized storage approaches for high-velocity data will
be explored. The key point is the efficient use of modern
hardware, especially, modern storage technology such as solid-
state drives (SSDs). These new technologies have highly
improved performance in comparison to traditional hardware.
However, classical data structures and algorithms can not
directly be applied due to the different characteristics of these
devices. Also, the high cost of the new technology makes their

exclusive use uneconomical in many cases. Therefore, hybrid
storage approaches are being explored in both industry and
academia, in which modern and traditional technologies are
co-allocated to form a storage memory hierarchy (e.g., [3], [4],
[5]). In contrast, our proposed techniques are geared towards
key-value stores instead of relational database systems.

In this paper, traditional data structures and algorithms in
key-value store systems are revisited in the light of new
technology, especially, in the light of solid-state drives (SSDs).
Log-structured storage techniques – at the core of many key-
value stores – that have proven to work well for high insertion
rates are re-examined for efficient use with modern hardware
such as SSDs. Because of the different characteristics of
SSDs, such as fast random access, uneven write and delete
speed, high price, limited lifetime, compared to traditional
disk, hybrid approaches will be explored that highly improve
the performance in comparison to disk-only solutions while
leveling off the downsides of SSD technology.

In particular, we enhance the commercialized Cassandra
key-value store engine by expanding its storage memory
hierarchy. First, we extend Cassandra’s row cache with SSDs
in order to substantially improve the query performance by
serving the host set of data with at most a single SSD I/O,
which otherwise requires a number of random HDD I/Os to
construct the record by consolidating different versions of
records spread across many Cassandra tables (i.e., SSTables).
Second, we propose a novel dynamic schema model, also
SSD-resident for fast random I/O access, in order to decouple
data and meta-data (schema), a decoupling that is well estab-
lished in relational database, but ignored in key-value store
systems. This decoupling avoids redundantly storing meta-
data information on disk, which also results in noise when
compressing data, while by using SSDs, provides a fast access
for persisting and retrieving schema information from SSDs.

The rest of the paper is organized as follows. In Section
II, we give an overview of the Cassandra key-value store and
the internal I/O processes. In Section III, we give details on
the internal architecture of SSDs and explore possibilities of
introducing SSDs in the key-value store hierarchy. In Section
IV, we introduce our extended row cache technique that
extends Cassandra’s row cache on SSD. Section V presents
the dynamic schema technique, which extracts the repeatedly
stored schema information from the rows and stores them
in a dynamic dictionary. Section VI presents our extensive
performance evaluation. In Section VII, we present related
work before concluding with future work in Section VIII.

Commit
Log

Memtable

SS Tables

Hash Ring

Key Range

Fig. 1. Cassandra Architecture

II. CASSANDRA

For this paper, we modify the Apache Cassandra engine
since it has proven to be highly performant under different
workloads [2]. Cassandra is a distributed key-value store
initially developed at Facebook [6]. It was designed to handle
large amounts of data spread across many commodity servers.
Cassandra provides high availability through a symmetric ar-
chitecture that contains no single point of failure and replicates
data across nodes.

Cassandra’s architecture is a combination of Google’s Big-
Table [7] and Amazon’s Dynamo [8]. Like in Dynamo’s
architecture, all Cassandra nodes form a ring that partitions
the key space using consistent hashing (see Figure 1). This
is know as distributed hash table (DHT). The data model and
single node architecture are mainly based on BigTable as is
its terminology. Cassandra can be classified as an extensible
row store since it can store a variable number of attributes per
row [9]. Each row is accessible through a globally unique key.
Although columns can differ per row, columns are grouped
into more static column families. These are treated like tables
in a relational database. Each column family will be stored
in separate files. In order to allow the level of flexibility of
a different schema per row, Cassandra stores metadata with
each value. The metadata contains the column name as well
as a timestamp for versioning.

Like BigTable, Cassandra has an in-memory storage struc-
ture that is called Memtable, one instance per column family.
The Memtable acts as a write cache that allows for fast
sequential writes to disk. Data on disk is stored in immutable
Sorted String Tables (SSTable). SSTables consist of three
structures, a key index, a bloom filter and a data file. The
key index points to the rows in the SSTable, the bloom filter
enables checking for the existence of keys in the table. Due to
the limited size of the bloom filter it is also cached in memory.
The data file is ordered for faster scanning and merging.

For consistency and fault tolerance, all updates are first
written to a sequential log after which they can be confirmed.
An overview of the read and write path is given in Figure 2.
In addition to the Memtable, Cassandra provides optional row
caches and key cache (not shown in the figure). The row cache
stores a consolidated, up-to-date version of a row, while the
key cache acts as an index to the SSTables. If these are used,
write operations have to keep them updated. It has to be noted
that only previously accessed rows are cached in Cassandra in
both caches. As a result, new rows will only be written to the
Memtable but not the cache.

The read path starts by looking up the caches, first the row

cache then the key cache. Rows that reside in the row cache
can be completely served from memory since they are always
complete and up-to-date. Rows are added to the row cache
whenever a row is accessed and replaced in LRU fashion.
For workloads with small sets of hot data that is frequently
accessed, the row cache can improve the systems performance
considerably. Rows that do not reside in the row cache can
be distributed across multiple SSTables and Memtables, thus
creating multiple disk accesses for a single read. In fact,
all versions of a row have to be considered because of the
flexible schema. This is because an older version might have
an additional column that does not exist in later versions. Also,
deletes are stored as tombstones and have to be read from the
SSTables as well.

In Cassandra, updates and inserts are processed using the
same operation. Both are written to the log and the Memtable.
If an inserted or updated records key exists in the Memtable,
the value will be updated. Also the row and key cache will
be updated. Whenever a Memtable is full, it is converted
and flushed to disk as an SSTable. Rows can have arbitrary
schemas and new attributes can be added at any time, which
means that parts of a single row can be stored in multiple
SSTables and Memtables. To reduce the number of SSTables
that have to be considered if a row is retrieved a periodic
compaction process merges the SSTables. In this process
multiple versions of rows are consolidated and rows that are
marked as deleted are completely removed.

III. INTRODUCING SSDS IN CASSANDRA

Today’s SSDs are mostly built from NAND flash memory
[10]. This type of memory has some specific characteristics
that have to be considered in order to get the best performance
and durability [11]. In the following discussion, we use Flash
and NAND interchangeably and will only consider NAND-
based SSDs. NAND chips have an asymmetric read and write
performance, which is due to the more complex implementa-
tion of write operations. In contrast to disk, NAND memory
cannot be overwritten, but has to be erased before it can be
written again. While read and write operations are performed
on 4 KB - 8 KB pages, erase operations are done in so-called
erase blocks, which contain up to 256 pages.

NAND chips, especially the cheaper and higher density
multilevel cell chips (MLC) have a very limited number of
write-erase cycles, which is in the order of 3000 cycles per
block for MLC flash. At the same time, flash cells loose data
over time, which means that data has to be rewritten in order
not to get lost.

To overcome these issues, the embedded controller in a
flash drive tries to evenly distribute the data across the blocks
to level the wearing of the blocks and reduce the amount
of erase operations. To overcome the high rate of failures it
implements error correction codes. These techniques make the
write operations more involved than read operations and can
lead to the write amplification effect, where a write operation
causes a series of erase and write operations effectively
reducing throughput to a fraction of the baseline throughput.

SSD

DISKLOG SSTable

MEMORY
MemtableUpdate

Read

2nd Level Row Cache

Hash-Index

1st Level Row
Cache

SSTable

Fig. 2. Row Cache Read and Write Path (Extensions Highlighted)

The controller or flash transition layer (FTL) hides all
this effort from the OS and the application layer. However,
a conscious use of the SSD can ease the pressure on the
controller. While random writes increase the frequency of
write amplification events, block size-aligned sequential writes
yield higher performance and reduce wearing of cells [11].

Due to its scalable architecture, Cassandra’s performance
can be adapted by adding new nodes [2]. Adding SSDs to
nodes or replacing HDDs with SSDs is complementary to
this. If throughput is the major concern and the stored data
is relatively small, using SSDs will be most efficient due to
the smaller unit size. Other than replacing HDD completely
by SSD, it is also possible to use it as an additional cache
layer [12]. This enables a hybrid architecture, where some data
resides on HDD and some on SSD. The benefit of this solution
is a more flexible trade-off between performance and cost,
and an architecture that can take advantage of the different
characteristics of HDD and SSD. In the following, we present
two strategies that efficiently make use of SSDs in a hybrid
storage architecture.

IV. EXTENDING THE ROW CACHE ON SSDS

Cassandra’s row cache stores fully compacted rows in mem-
ory. This improves performance dramatically, if the workload
features a hot data set that fits into memory. Storing only
compacted rows is not possible using disk, since it will result
in random I/Os for all write requests. If the hot set does not
fit in memory the performance benefit of the row cache is
quickly consumed by the cost of much slower disk accesses.
In order to introduce SSDs into Cassandra’s storage hierarchy,
we extend the row cache beyond memory onto the SSD.

The extended row cache is modelled as an append-only
cache file with an associated hash-based index that is memory
resident. The index maps row keys to 64 bit offsets into a
logical cache file. A query into the SSD cache is executed
by first consulting the index to determine the position of the
compacted row in the cache file, followed by a single SSD
seek to retrieve the row. An important observation here is that
concurrent reads never block one another except inevitably
in I/O access to the SSD itself. Append-only operation is
achieved by enforcing a sequential order to write requests.
We eliminate the potential bottleneck of using a single-writer
policy by buffering writes into a 16KB in-memory buffer that
is flushed to SSD only when full. Having a write buffer also

affords us the opportunity to optimize certain read queries by
directly accessing the write-buffer rather than reaching into
the SSD. Deletes from the row cache are handled by simply
removing the row’s key from the hash-index. A background
garbage-collection task is executed periodically to remove
deleted entries from the SSD cache files. This design takes
advantage of the peculiar behaviour of SSDs discussed above.

We now describe the physical implementation in detail. The
logical cache file described above is actually composed of a
collection of contiguous segment files, each of a configurable
size and preallocated on creation. The most recently created
segment is termed active and is the only segment that accepts
writes, whereas any segment can service reads. Segment files
are created as part of a write if the write operation overflows
the currently active segment. A 64-bit offset in this model
is analogous to a virtual address; given a 64-bit offset, we
use the the higher-order 32 bits to determine which segment
file the row’s data resides and the lower-order 32 bits as the
offset into the segment. We perform this segmentation for
practical purposes, but more importantly because it makes the
task of garbage-collecting deleted rows a relatively simple one.
We track the amount of garbage in each segment file, where
garbage is defined as the percentage of the segment file that
contains deleted rows. The garbage-collection task uses this
metric to select segments to compact that will yield the largest
reclamation of space.

The row cache in Cassandra has been modified to chain
together the in-memory cache and the SSD cache as shown in
Figure 2. Read requests against the row cache flow along the
chain, first querying the in-memory cache then the SSD cache.
A read request stops along the chain at the first point its request
is successful. The in-memory row cache is implemented as a
size-bounded LRU cache, where the oldest and largest entries
are ejected when a capacity threshold is reached. With the
modified row cache chain, ejected entries from the in-memory
cache cascade into the SSD cache asynchronously, thereby
incurring zero additional latency during cache-writes.

V. DYNAMIC SCHEMA ON SSDS

Every row in the data component of Cassandra’s SSTable
is made up of a row key, an optional column index, and a
series of column name, column value and timestamp tuples.
This provides a schema-less data model that is flexible and
easy to work with. For many use cases, however, column
names rarely differ among rows in a table and are therefore
duplicated unnecessarily. This duplication not only increases
latency at read-time, since more data needs to be read from
disk, but also wastes space on disk. This overhead can be
reduced by extracting the schema from the rows and storing
them separately in a schema catalogue. If the catalogue is
on disk, however, it will introduce random I/Os and, thus,
deteriorate performance. Storing the catalogue only in memory
is not an option because of the potential size of the catalogue
and data loss in cases of failures. Since SSDs provide fast
random access and stable storage, it is the ideal medium to
store frequently used and updated metadata. We can therefore

Metric Name HostA/AgentX/AVGResponse Timestamp 1332988833 Value 4 Max 6 Min 1

Metric Name HostA/AgentX/AVGResponse Timestamp 1332988848 Value 5 Max 7 Min 1

Metric Name HostA/AgentX/Failures Timestamp 1332988849 All 4 Warn 3 Error 1

S1

S2

Metric Name Timestamp Value Max Min

Metric Name Timestamp All Warn Error

HostA/AgentX/AVGResponse 1332988833 S1 4 6 1

HostA/AgentX/AVGResponse 1332988848

HostA/AgentX/Failures 1332988849

S1

S2

5 7 1

4 3 1

New Disk Format

Old Disk Format

Schema Catalogue

Fig. 3. Redundant vs. dynamic schema

maintain the flexibility of a schema-less data model with the
benefits of a schema-ed one, along with reduced disk footprint.

The schema catalogue is a global data structure within a
single running Cassandra instance. Conceptually, the catalogue
maintains a mapping between schema identifiers (IDs) and
schema definitions where IDs are monotonically increasing 32-
bit unsigned integer values and a schema definition is simply
a sorted set of column names each a string value. This is
illustrated in Figure 3. The implementation of the schema
catalogue resembles what was described for our SSD row
cache in the previous section. That is, the physical layout of
the schema file consist of a collection of segment files, each
storing a contiguous subset of schema ID and schema tuples,
along with an associated memory-resident hash-index.

The dynamic schema catalogue exposes operations for in-
sertion and retrieval of schema definitions. When Cassandra is
preparing to serialize a row to disk, it first consults the schema
catalogue to obtain a schema ID for the row by supplying the
sorted set of columns within the row. If the catalogue discovers
that the schema definition has already been assigned an ID,
this ID is returned immediately. Otherwise, a new schema ID
is generated, the schema ID and definition are persisted to SSD
and the ID is returned to the caller. Cassandra will serialize the
schema ID locally with the row and will exclude serialization
of the column index and any of the column names. During
a read operation, the schema ID will be deserialized first at
which point the schema catalogue will be queried to efficiently
retrieve the schema definition from SSD. With the schema
definition available prior to deserialization of the columns,
Cassandra knows precisely how the column values are laid
out on disk and can choose to retrieve either all or a subset
of the columns depending on the type of read operation.

If a table’s rows are expected to be largely homogeneous,
that is rows differ very little in the columns they use, then the
proposed schema extraction technique can yield substantial
savings in space and reduce the latency of read operations.
If, however, the table’s data is predicted to be highly variable
in the columns that are inserted, extracting the schema from
the table can be detrimental. For example, a table with 10
columns can have up to 210 possible unique schemas. It is
obvious that multiple high-variability tables all using a schema
catalogue can quickly exhaust available schema IDs. Note
that the current implementation makes no attempt to reclaim
schema IDs if their associated schemas are no longer in use.

Configuration # of # of Location of Location of
clients threads/client Data Commit Log

C1 1 2 RAID RAID
C2 1 2 RAID SSD
C3 1 2 SSD RAID
C4 1 2 SSD SSD
C5 4 16 RAID RAID
C6 4 16 SSD SSD

TABLE I
EXPERIMENT CONFIGURATIONS

VI. EVALUATION

For our evaluation, we used the Yahoo! Cloud Serving
Benchmark (YCSB) suite [13]. YCSB is composed of a data
generation component and a workload generation component.
For data generation, YCSB functions on records which are a
collection of columns where each column has a name and
value of fixed size. Each record is indexed by a 25 byte
key and the user can configure the number of columns in
the record along with the size of each column. The data
loading phase will insert a configurable number of records
into the data store. In the transactional phase, YCSB provides
parameters to control concurrency, maximum execution time,
statistical distributions of accessed keys and distributions for
operations. YCSB offers standard CRUD (create, read, update
delete) operations that makes it amenable to key-value stores.

In this section, we will compare the performance of a
Cassandra installation that uses HDD versus an installation
with SSD. For these experiments, we used a system that was
equipped with an Intel Xeon X5450 eight-core CPU running
at 3GHz, 16GB of RAM, four 1TB hard drives configured
to create two RAID0 2TB hard drives and two 240GB Intel
X520 SSDs. Since Cassandra uses two different basic disk-
stored entities (SSTables and the commit log), there are 4
different configurations with HDDs and SSDs. We tested all
configurations in a read-mostly environment (95% read, 5%
write). The dataset consisted of 100 million rows, totalling
50GB data. We used a distribution where the last inserted
row is accessed most frequently and all keys are accessed
according to a zipfian distribution; we shall henceforth refer
to this type of request distribution as a latest distribution.

In Figure 4(a), the throughput of all configurations outlined
in Table I can be seen. As expected, putting the data on SSD
has a dramatic performance benefit. The same trend can be
seen for the latency, as show in Figure 4(b). It is important
to note that configurations C1 through C4 use a YCSB
client setup that is suboptimal for SSDs. These configurations
were chosen because they saturate I/O access to our HDDs.
Configurations C5 and C6 are optimized to operate against
the SSD by using more clients each running a higher number
of threads to achieve a much higher throughput and a latency
that is average for the class of SSDs we used.

Figures 4(a) and 4(b) show that placing everything on SSD
does not make sense for Cassandra. Storing the commit log
to SSD (C2) offers a minimal boost to throughput and latency
versus writing the data to SSD (C3). Since not all data is
accessed with the same frequency, it is more efficient to
selectively store frequently accessed data on SSDs and rely

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

C1 C2 C3 C4 C5 C6

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Configuration

(a) HDD vs SSD Throughput

 0

 1

 2

 3

 4

 5

 6

 7

 8

C1 C2 C3 C4 C5 C6

L
a
te

n
c
y
 (

m
s
)

Configuration

(b) HDD vs SDD Latency

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

HDD SSD

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Data Location

Empty Disk
Full Disk

(c) 99% Fill HDD vs SDD Throughput

 0

 50

 100

 150

 200

 250

HDD SSD

L
a
te

n
c
y
 (

m
s
)

Data Location

Empty Disk
Full Disk

(d) 99% Fill HDD vs SDD Latency

Fig. 4. Throughput/Latency Results for HDD vs SSD and Disk Full vs Disk Empty

on HDD for the bulk of data that is infrequently accessed.
Another reason to do this is the fact that SSD performance
degrades with higher fill ratios. As seen in Figure 4(c), the
performance of a highly filled SSD degrades much worse than
the performance of a highly filled disk. It has to be noted that
the workload in this case is still read heavy, for write heavy
workloads even worse degradations will be experienced.

When evaluating our extended SSD row cache, the size
of the data set was 100 million records, where each record
had five columns having a size of 75 bytes. The total size
of the data on disk after load averaged 50GB. Our evaluation
process was broken down into four phases: data loading, data
fragmentation, Memtable flush, bufferpool warmup, and trans-
actional workload phases. The fragmentation phase attempts
to spread the columns of a row across multiple SSTables
to illustrate the effect of read amplification on LSM-based
storage systems. In the fragmentation phase, we used a latest
request distribution with 10% of operations being read and the
remaining 90% of operations updating anywhere between one
and all five columns. The warming phase also used a latest
request distribution with read operations accounting for 99%
of all operations. The warmup phase was run until either the
cache was full or stored at most 10% of the total dataset.
The transactional phase was run with a latest distribution (a
zipfian distribution where the most recently entered keys are
favoured). These experiments all used configuration C5 (refer
to Table I), the optimal configuration for HDDs to provide a
balanced evaluation.

When evaluating our dynamic schema model, we used a
dataset consisting of 40 million records where each record
consisted of between 5 and 10 columns, of 10 bytes. By
default, YCSB does not vary the number of columns in a
record during the loading phase. We modified YCSB to create
a new varying-size record generator, which we plugged into
the default data generator. Each run of the experiment created
a different amount of data on disk, but we observed that
the average total data size was between 6.5GB and 7GB. In
all runs, we varied the read percentage for the experiments
between 95%, 50% and 5% using configuration C6.

A. SSD Row Cache
In Figure 5(a), the throughput of the two Cassandra in-

stances can be seen for the three different workloads that
were tested. For the 95% read-heavy workload, we see that
the SSD-enabled row-cache provides an 85% improvement
in throughput growing from 384 reads/sec to 710 reads/sec.

This is because a larger portion of the hot data is cached on
the SSD; in fact, our configuration enabled storing more than
twice the amount of data than when using an in-memory cache
alone, achieving a cache-hit ratio of more than 85%. When
a read operation reaches the server for a row that does not
reside in the off-heap memory cache, only a single SSD seek
is required to fulfill the request. In addition, cached data is
pre-compacted, meaning that at most one seek is required to
fetch the row. We see the same effect in the remaining two
workloads despite a lower proportion of reads. Cassandra is a
write-optimized system meaning that in write-heavy scenarios,
the efficacy of a cache is reduced. This is evidenced by the
reduction in the cache-hit ratio from 72% in the workload with
85% reads to 60% in the 75%-read workload.

As seen in Figure 5(b), in the 95% read workload, the
SSD-enabled row cache averaged a latency of 3ms while the
in-memory cache managed a read latency of 5.6ms, a 46%
improvement. As the proportion of reads is reduced from 85%
to 75%, the latency when using an SSD for the row-cache
remains roughly the same. This is because the latest request
distribution gives us a high probability that the reads for
the rows can be served directly from Cassandra’s Memtable,
which effectively acts as a write-back cache.

B. Dynamic Schema
Next, we illustrate that by extracting the metadata (i.e.,

schema) from the data on-disk we suffer no perceivable
performance penalty. The column names in our test were fixed
at 5 bytes and the number of columns varied between 5 and
10. This accounts to a minimum saving of 25 bytes from
being written on a per-row basis. Cassandra, not uncommon
from many commercial databases, performs buffered I/O;
all reads and writes are executed in 16 KB pages. In our
experiment configuration, one row fits well within a single
Cassandra page. This means that reading a row will incur no
additional overhead since the total size of a row with a co-
located schema is larger than a modified row with the schema
extracted out. When we extract out the metadata, we expected
no degradation in performance or latency and the results in
Figure 5(c) and Figure 5(d) confirm our assertion. Specifically,
we conclude that in the 95% and 50%-read workloads, the
latency and throughput were comparable with any difference
being attributed to the environment.

Throughput and latency are not major motivations for imple-
menting the dynamic schema. Fairly significant space savings
can be obtained by extracting redundant schema information

 0

 200

 400

 600

 800

 1000

95% 85% 75%

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Read Percentage

Disabled
RAM

RAM+SSD

(a) Row Cache (Throughput)

 0

 1

 2

 3

 4

 5

 6

 7

 8

95% 85% 75%

L
a
te

n
c
y
 (

m
s
)

Read Percentage

Disabled
RAM

RAM+SSD

(b) Row Cache (Latency)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

95% 50% 5%

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Read Percentage

Regular

Dynamic

(c) Dynamic Schema (Throughput)

 0

 20

 40

 60

 80

 100

 120

 140

95% 50% 5%

L
a
te

n
c
y
 (

m
s
)

Read Percentage

Regular

Dynamic

(d) Dynamic Schema (Latency)

Fig. 5. Throughput/Latency Results for Row Cache Extension and Dynamic Schema

and we find this to be much more compelling. In normal
operation, data sizes averaged 6.8GB compressed after the
initial load of 40 million keys. With a modified Cassandra,
data sizes averaged at 6.01GB of data, a savings of roughly
10%. This value will grow as the number of columns in the
table grow and as column names grow in length.

Another potential benefit for dynamic schema model (omit-
ted in the interest of space), is in executing column-slice
queries. When performing a read from Cassandra, it is possible
to read a slice of the row by specifying which columns to read.
Though Cassandra has an index per-row, it is only a sample;
not every column has an appropriate index entry. If we have
a schema on hand, we know precisely the layout of the row
on disk which we can use to optimize the read process and
avoid cache pollution.

Finally, it is important to note that we are not using high-end
enterprise PCIe-bus SSDs (e.g., FusionIO), yet we are getting a
substantial performance improvement. Therefore, we conclude
that even with inexpensive commodity SSDs, a considerable
throughput and latency improvement is achieved.

VII. RELATED WORK

There exists a recent move in the database community to
exploit key SSD characteristics such fast random reads that
is orders of magnitude faster than magnetic physical drives
and using SSDs to make updates disk-I/O friendly, e.g., [3],
[4], [5]. One way to exploit SSDs is to introduce a storage
hierarchy in which SSDs are placed as a cache between main
memory and disks. This extends the database bufferpool to
span over both main memory and SSDs. A novel temperature-
based bufferpool replacement policy was introduced in [4],
which substantially improved both transactional and analytical
query processing in IBM DB2. In our work, we go beyond
a simply extension of the bufferpool with SSDs, instead we
develop specialized bufferpool enhancements that targets the
slow read path problem (incurring many random I/Os in order
to consolidate across many SSTables) of key-value stores in the
context of Cassandra. Furthermore, we introduce the concept
of dynamic schema (i.e., dynamic catalogue) that decouples
the commonly joint meta-data and data on key-value stores
(such as Cassandra [6] and BigTable [7]) by maintaining the
schema information on SSDs. Lastly, in [14], similar to our
framework, the use of SSDs as cache was also explored in
a proof-of-concept key-value store prototype. In contrast, we
introduce the storage hierarchy and our SSD caching tech-
niques within a commercialized key-value store. Furthermore,

we identify new avenues for exploiting the use of SSDs within
key-value stores, namely, our dynamic cataloguing technique.

VIII. CONCLUSION

In this paper, we investigated the performance benefits of
SSDs in key-value stores. We benchmarked different con-
figurations of SSD and HDD combinations. We proposed
and implemented two specific optimizations for SSD-HDD
hybrid systems and showed their effectiveness in detailed
benchmarks. Our extended row cache strategy transparently
stores hot data on SSD and thus extends the row cache in
Cassandra. Our benchmarking results show that this extension
can achieve improvements of 85% for realistic workloads. Our
second technique for SSD-HDD hybrid systems is a dynamic
schema catalogue. It reduces the disk impact of row-level
schema models and thus increases the performance of common
workloads and data sets.

For future work, we will adapt our methodology so it can
be directly run on SSD instead of going through the FTL. This
will increase the performance of the SSD operations and allow
for SSD optimized data structures and algorithms.

REFERENCES

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, “Big data: The Next Frontier for Innovation, Competition,
and Productivity,” McKinsey Global Institute, Tech. Rep., 2011.

[2] T. Rabl, M. Sadoghi, H.-A. Jacobsen, S. Gómez-Villamor, V. Muntés-
Mulero, and S. Mankowskii, “Solving Big Data Challenges for Enter-
prise Application Performance Management,” PVLDB, 2012.

[3] M. Canim, G. A. Mihaila, B. Bhattacharjee, K. A. Ross, and C. A.
Lang, “An object placement advisor for DB2 using solid state storage,”
PVLDB, 2009.

[4] ——, “SSD bufferpool extensions for database systems,” PVLDB, 2010.
[5] M. Sadoghi, K. A. Ross, M. Canim, and B. Bhattacharjee, “Making

updates disk-I/O friendly using SSDs,” PVLDB’13.
[6] A. Lakshman and P. Malik, “Cassandra: a decentralized structured

storage system,” SIGOPS Review, 2010.
[7] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” in OSDI, 2006.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-Value Store,” in SOSP, 2007.

[9] R. Cartell, “Scalable SQL and NoSQL data stores,” SIGMOD Record,
2010.

[10] M. Cornwell, “Anatomy of a solid-state drive,” Communications of the
ACM, 2012.

[11] L. Bouganim, B. r Jnsson, and P. Bonnet, “uFLIP: Understanding Flash
IO Patterns,” in CIDR ’09: Fourth Biennial Conference on Innovative
Data Systems Research.

[12] G. Graefe, “The Five-Minute Rule 20 Years Later: and How Flash
Memory Changes the Rules ,” Communications of the ACM, 2009.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in SoCC, 2010.

[14] B. Debnath, S. Sengupta, and J. Li, “FlashStore: high throughput
persistent key-value store,” PVLDB, 2010.

