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ABSTRACT
Historically, performance and price-performance of computer sys-
tems have been the key purchasing arguments for customers. How-
ever, with rising energy costs and increasing power consumption
due to the ever-growing demand for compute power (servers, stor-
age, networks), electricity bills have become a significant expense
for today’s data centers. In order to measure energy consumption
in standardized ways, the Standard Performance Evaluation Corpo-
ration (SPEC) has developed a benchmark dedicated to measuring
the power consumption of single servers (SPECpower_ssj2008),
while the Transaction Processing Performance Council (TPC) and
the Storage Performance Council (SPC) have developed general
specifications that govern how energy is measured for any of its
benchmarks. Energy reporting is optional in TPC and SPC results.
While there are close to 600 SPECpower_ssj2008 results, there have
been only three TPC and no SPC benchmark results published that
report energy consumption. In this paper, we argue that the low
number of TPC publications is due to the large setups required in
TPC benchmarks and the, subsequently, complicated measurement
setup. Running on a typical big data setup we evaluate two alter-
native methods to quantify energy consumption during TPC-H’s
multi-user runs, namely by taking measurements of on-chip power
sensors controlled through Intelligent Platform Management In-
terface and by estimating power consumption via the nameplate
power consumption method. We compare these later two methods
with power measurements taken from external power meters as
required by SPEC and TPC benchmarks.

CCS CONCEPTS
• Information systems→Database performance evaluation;

KEYWORDS
Data Warehouse, Benchmarking, Energy Consumption Estimation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04. . . $15.00
https://doi.org/10.1145/3184407.3184429

ACM Reference Format:
Meikel Poess, Da Qi Ren, Tilmann Rabl, and Hans-Arno Jacobsen. 2018.
Methods for Quantifying Energy Consumption in TPC-H. In ICPE ’18:
ACM/SPEC International Conference on Performance Engineering, April 9–
13, 2018, Berlin, Germany. ACM, New York, NY, USA, Article 4, 12 pages.
https://doi.org/10.1145/3184407.3184429

1 INTRODUCTION
In light of the increasing power consumption of data centers in-
dustry standard organizations such as the Transaction Process-
ing Performance Council (TPC) [12], the Standard Performance
Evaluation Corporation (SPEC) [10] and the Storage Performance
Council (SPC) [9] have developed methodologies to measure energy
consumption of computer systems. All of these consortia aim at
standardizing power consumption measurement for performance
benchmarks to aid IT departments in their purchase decision pro-
cess. Their approaches, however, differ. Some organizations de-
veloped specialized benchmarks (SPEC [11]) while others added
energy metrics to existing benchmarks (TPC,SPC [8]).

SPEC has been the front-runner by announcing the first indus-
try standard benchmark, SPECpower_ssj2008, to measure power
consumption in relation to performance for server-class computers
in 2007. SPECpower_ssj2008 measures the performance of a Java
based middle tier emulating client and database tiers. By emulat-
ing many components, that would otherwise be painful to setup,
SPECpower_ssj2008 can be run on a single server without large
hardware installations. It measures processor and memory per-
formance, ignoring disk and network I/O. On the software side it
measures the performance of the Java Virtual Machine, just-in-time
compilation, garbage collection, user threads and some aspects of
the operating system.

SPC, on the other hand, published two optional energy exten-
sions to its existing benchmarks, SPC-1C and SPC-1. They were
released in June 2009 and October 2009, respectively. The under-
lying performance tests for SPC-1C/E and SPC-1/E are identical
to those used in their parent benchmarks. The energy extensions
focus on defining appropriate enhancements to these core bench-
mark components, such as approving power meters to measure
power consumption, defining disclosure requirements and define
appropriate power metrics.

TPC took a similar approach to measuring energy consumption.
Since it already has a large suite of benchmarks modeled after
real-life scenarios such as TPC-C and TPC-E for online transaction
processing, TPC-H for data warehousing, TPC-DS, TPCx-BB, and
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TPCx-HS for big data, TPCx-V and TPC-VMS for virtualization,
TPC-DI for data integration and TPCx-IoT for the Internet of Things,
the TPC developed the energy specification. The energy specification
is, similar to TPC’s pricing specification, a common specification.
Common specification are intended to supplement existing TPC
benchmarks by specifying the amendments necessary to measure
and report energy metrics in addition to the other metrics within
each of the individual benchmarks. Before the energy specification
can be used in conjunction with a benchmark, that benchmark
need to define energy specific terms in its specification. These
terms are necessary as each TPC benchmark defines its own metric
and time measurements. So far only the TPC-E specification has
been amended with these terms. The TPC provides a software
package, called the TPC-Energy Measurement System (EMS) to aid
in implementing the TPC Energy Specification. It includes modules
to interface with power instrumentation tools, to log and report
power and temperature.

While there are close to 600 SPECpower_ssj2008 results, there
have been only three TPC benchmark results published with the
optional energy consumption metric and no SPC benchmark re-
sults with the optional energy consumption metric. In this paper
we argue that the low number of TPC publications is due to the
large setups required in TPC benchmarks and the, subsequently,
complicated measurement setup.

Using a typical big data setup, an 6 node cluster running Cloud-
era’s Impala engine, we evaluate two alternative methods to quan-
tify energy consumption in large setups, namely by taking mea-
surements of on-chip power sensors controlled through Intelligent
Platform Management Interface (IPMI) and by estimating power
consumption via the nameplate power consumption method[2, 6, 7].
The nameplate value of computing equipment is the rated maxi-
mum power consumption of the equipment. It is a conservative
power consumption estimate. We compare these later two methods
with power measurements taken from external power meters as
required by SPEC and TPC benchmarks.

The main contributions of this paper are best summarized as
follows:

(1) We amend TPC-H [5] with energy specific terms so that the
energy specification can be used with TPC-H;

(2) We apply the nameplate power consumption model to our
hardware setup;

(3) We quantify energy consumption of a six node cluster run-
ning a 300G TPC-H database with three methodologies: ex-
ternal power meters, IPMI and power estimation using the
nameplate power model;

(4) And we analyze the the power results of the above methods.

The remainder of our paper is organized as follows. Section 2
discusses the important characteristics of TPC-H, proposes changes
to the TPC-H specification that allows for energy measurements
and develops the comparison metrics that will be used to analyze
quantitative energy methods compared in this study. We also de-
scribe necessary modifications to queries so that they run in Impala.
Section 3 describes the hardware and software setup of the system
that we are using for our experiments. Section 4 describes the three
quantitative methods we use in our paper to determine energy
consumption during TPC-H runs: (i) power meters, (ii) IPMI and

(iii) analytical power consumption model using nameplate power
consumption. Section 5 we present our findings of measuring power
consumption using our three quantitative methods and we conclude
in Section 6.

2 WORKLOAD
This section provides an overview of TPC-H including a brief work-
load characterization that is useful to understand the following
sections.

2.1 Workload Characteristics
Generally, analytical workloads can be divided into parallel opera-
tions of four distinct types: initial load, queries, incremental load
and auxiliary data creation/maintenance operations. These types
can be executed in single and multi-user modes. The single-user
mode stresses a system’s ability to parallelize operations across all
available system resources to answer a given request in the least
amount of time. The multi-user mode stresses the system’s ability to
schedule requests from multiple concurrent users to optimally uti-
lize all system resources with the overall aim of increasing system
throughput.

TPC-H [5], developed by the Transaction Processing Perfor-
mance Council, covers both single- and multi-user runs. There are
other benchmarks like TPC-DS that also cover both single- and
multi-user runs. However, the software stack we are using does not
support all queries included in TPC-DS and using the well studied
TPC-H benchmark gives the reader an instant understanding of
our experiments. TPC-H is based on a relatively simple, yet power-
ful 3rd NF schema. It allows query execution of various execution
paths. The access paths in a 3rd NF analytical workload are often
dominated by large hash or sort-merge joins, but conventional in-
dex driven joins are also common. Large aggregations, which often
include large sort operations, are widespread in TPC-H. This diver-
sity imposes challenges both on hardware and software systems.
High sequential I/O-throughput (large I/O operations) is critical to
excel in large hash-join operations.

TPC-H’s execution rules and main performance metric give
equal importance to the single- and multi-user runs, while ig-
noring load time. The main performance metric (QphH) is cal-
culated as the geometric mean of elapsed times collected during
the single- and multi-user tests with concurrent users (see Fig-
ure 2) and adjusted using the raw database size specified with the
Scale Factor SF . Scale factors allowed for publication are SF ∈

{1, 10, 30, 100, 300, 1000, 3000, 10000, 100000}. TPC-H mandates a
minimum number of concurrent streams (S), while it defines no
upper bound. The number of concurrent query and update streams
is identical. Each user in the multi-user executes the 22 queries in
a different permutation. The permutations are generated by the
query generator qgen.

S(SF ) =

{
loд10(SF ) ∗ 2 + 1 if SF ∈ {10, 100, 1000, 10000, 100000}

(loд10(
SF
3 ) + 1) ∗ 2 otherwise

(1)
Additionally, TPC-H’s execution rules allow for the deferral of

the update stream until all query streams are finished.



Figure 1: Oscillating resource utilization during a TPC-H throughput run

Each decision support query has its own hardware resource uti-
lization pattern, which is unique to the way it is executed on a
particular system. On a symmetrical multi processor (SMP) system
the resources that are considered most important, especially when
sizing a system for a particular workload, are processor (CPU),
reads/writes (I/O) from/to the disk storage subsystem, disks, con-
trollers, and memory. Big data workloads tend to be mostly read-
only; however, join operations of large tables, aggregations with a
large number of groups and sort operations of large data sets that
exceed the internally available amount of memory result in write
and read operations to temporary storage.

Except for Query 1 (CPU bound) and Query 6 (I/O bound) TPC-
H queries exhibit an oscillating system resource pattern. Many
queries join multiple tables and aggregate over a large data set.
For an in-depth analysis of TPC-H queries see [1]. Due to their
complex nature TPC-H queries do not exhaust all resources of a
system during the entire run time of the query. For instance, a
hash join is typically CPU bound during the build phase of its hash
table and I/O bound during its probe phase. Consequently, a system
consumes more power in the storage subsystem during some time
of the single-user test and more CPU power during other times
of the single-user test. To be able to apply the nameplate power
consumption model two key requirements have to be met. Firstly,
only workloads that observe steady state can be used. The second
requirement is system balance. Depending on the application and
system, an optimal component ratio has to be maintained to keep
all components (CPU, disks, controllers etc.) utilized during the
measurement interval. If a system does not have the optimal ratio
between these components, the power consumption model will not
produce accurate estimates for the same reason that the system
needs to be fully utilized.

The multi-user test alleviates this effect, because the simultane-
ous execution of different queries cause the overlapping of different
query execution phases. Because of many queries being executed
at the same time, each query is likely to be in a different execution
phase causing the resources of a system to be utilized in a more
balanced way. That is, low utilization of resource R1 in a query
execution of one user might overlap with high utilization of R1 in

another query of another user. Figure 1 shows a multi-user run
with 8 users against a SF=1000 TPC-H database. While there are
still phases where the system resources drop to 60% the average
CPU utilization during this run is 75%, the average IO utilization is
77% and the average memory utilization is 73%.

Traditionally the single-user mode has been mostly used in ded-
icated batch windows, for example, for data cleansing and the cre-
ation of auxiliary data structures. This batch window is becoming
less important in today’s big data deployments. Big data systems,
many of which are based on the Hadoop ecosystem, trade data
ownership with flexibility and availability. Traditionally, only one
system had control over a given data set, namely the DBMS. This
control enabled the DBMS to use techniques and algorithms to
implement performance enhancements and to enforce data cor-
rectness that rely on persistent auxiliary data structures. Big data
systems, on the other hand, follow an open data approach, in which
all products in its ecosystem are able to access and modify the same
full-fidelity data sets. This approach eliminates the costly process
of copying and converting data into different formats and allows
for immediate data availability, while rendering traditional DBMS
concepts, such as auxiliary data structures, impractical because the
big data system is not able to invalidate and, therefore, not able to
guarantee correctness.

2.2 Modifications to the TPC-H queries for
Impala

In order to run the TPC-H queries on the version of Impala that ships
with Cloudera 5, we had to make several modifications to almost
all queries. A summary of our changes is listed in Table 1. Most
changes were related to the handling of date arithmetic, string and
other arithmetic functions. However, we needed to rewrite Query
15, Query 18 and Query 21.

2.2.1 Query 15. The changes to Query 15 are summarized in
Listing 2. Impala was not able to execute the original query (see
Listing 1) because of the sub-query that returns the maximum
total_revenue. Because of this being an uncorrelated sub-query, it
only needs to be executed once. Hence, rewriting it as a create table
as select statement (CTAS) is a reasonable approach. It does not



Table 1: Modifications to TPC-H queries to run on Impala

Qry Original Modifications

1 l_shipdate<=date ’1998-12-01’ - interval ’:1’ day l_shipdate<=date_add(cast(’1998-12-01’ as timestamp),interval -:1 days)
2 r_name = ’:3’ r_name like ’:3%’
3 c_mktsegment = ’:1’ c_mktsegment like ’:1%’

o_orderdate < date ’:2’ o_orderdate < cast(’:2’ as timestamp)
l_shipdate > date ’:2’ l_shipdate > cast(’:2’ as timestamp)

4 o_orderdate >= date ’:1’ o_orderdate >= cast(’:1’ as timestamp)
o_orderdate < date ’:1’ + interval ’3’ month o_orderdate < date_add(cast(’:1’ as timestamp),interval 3 months)

5 r_name = ’:1’ r_name like ’:1%’
o_orderdate >= date ’:2’ o_orderdate >= cast(’:2’ as timestamp)
o_orderdate < date ’:2’ + interval ’1’ year and o_orderdate < date_add(cast(’:2’ as timestamp), interval 12 months)

6 l_shipdate >= date ’:1’ l_shipdate >= cast(’:1’ as timestamp)
l_shipdate < date ’:1’ + interval ’1’ year l_shipdate < date_add(cast(’:1’ as timestamp),interval 24 months)

7 (n1.n_name = ’:1’ and n2.n_name = ’:2’) (n1.n_name like ’:1%’ and n2.n_name like ’:2%’)
(n1.n_name = ’:2’ and n2.n_name = ’:1’) (n1.n_name like ’:2%’ and n2.n_name like ’:1%’)
l_shipdate between date ’1995-01-01’ and l_shipdate between cast(’1995-01-01’ as timestamp) and
date ’1996-12-31’ cast(’1996-12-31’ as timestamp)

8 r_name = ’:2’ and r_name like ’:2%’
o_orderdate between date ’1995-01-01’ and o_orderdate between cast(’1995-01-01’ as timestamp) and
date ’1996-12-31’ cast(’1996-12-31’ as timestamp)
p_type = ’:3’ p_type like ’:3%’

10 o_orderdate >= date ’:1’ o_orderdate >= cast(’:1’ as timestamp)
o_orderdate < date ’:1’ + interval ’3’ month o_orderdate < date_add(cast(’:1’ as timestamp),interval 3 months)
l_returnflag = ’R’ l_returnflag like ’R%’

11 n_name = ’:1’ n_name like ’:1%’
12 when o_orderpriority = ’1-URGENT’ when o_orderpriority like ’1-URGENT%’

or o_orderpriority = ’2-HIGH’ or o_orderpriority like ’2-HIGH%’
when o_orderpriority <> ’1-URGENT’ when o_orderpriority not like ’1-URGENT%’
and o_orderpriority <> ’2-HIGH’ and o_orderpriority not like ’2-HIGH%’
and l_shipmode in (’:1’, ’:2’) and (l_shipmode like ’:1%’ or l_shipmode like ’:2%’)
and l_receiptdate >= date ’:3’ and l_receiptdate >= cast(’:3’ as timestamp)
and l_receiptdate < date ’:3’ + interval ’1’ year and l_receiptdate < date_add(cast(’:3’ as timestamp) , interval 24 months)

13 count(*) as custdist cast(c_count as int), cast(count(1) as int) as custdist
count(o_orderkey) count(o_orderkey) as c_count
customer left outer join orders on customer left outer join orders o on
c_custkey = o_custkey c.c_custkey = o.o_custkey
and o_comment not like ’%:1%:2%’ and not o.o_comment like ’%:1%:2%’
) as c_orders (c_custkey, c_count) ) c_orders

14 and l_shipdate >= date ’:1’ and l_shipdate >= cast(’:1’ as timestamp)
and l_shipdate < date ’:1’ + interval ’1’ month; and l_shipdate < date_add(cast(’:1’ as timestamp),interval 1 months);

15 create view revenue:s (supplier_no, total_revenue) as create table revenue:s as
l_shipdate < date ’:1’ + interval ’3’ month l_shipdate < date_add(cast(’:1’ as timestamp),interval 3 months)

17 and p_brand = ’:1’ and p_brand like ’:1%’
and p_container = ’:2’ and p_container like ’:2%’

19 sum(l_extendedprice* (1 - l_discount)) as revenue sum(l_extendedprice* (1 - l_discount)) as revenue
and l_shipdate >= date ’:2’ and l_shipdate >= cast(’:2’ as timestamp
and l_shipdate < date ’:2’ + interval ’1’ year and l_shipdate < date_add(cast(’:2’ as timestamp),interval 24 months)
and n_name = ’:3’ and n_name like ’:3%’

21 substring(c_phone from 1 for 2) as cntrycode, substr(c_phone,1,2) as cntrycode,
substring(c_phone from 1 for 2) in substr(c_phone,1,2) in
and substring(c_phone from 1 for 2) in and substr(c_phone,1,2) in



alter the performance characteristic of the main query. We also
rewrote the revenue view from the original as CTAS.

Listing 1: Original Query 15
create view revenue : s ( s u p p l i e r _ n o , t o t a l _ r e v e n u e ) as

s e l e c t l_suppkey , sum ( l _ e x t e n d e d p r i c e ∗ ( 1 − l _ d i s c o u n t ) )
from l i n e i t e m
where l _ s h i p d a t e >= date ' : 1 '

and l _ s h i p d a t e < date ' : 1 ' + in t e rva l ' 3 ' month
group by l _ suppkey ;

s e l e c t s_suppkey , s_name , s _ a d d r e s s , s_phone , t o t a l _ r e v e n u e
from s u p p l i e r , revenue : s
where s_suppkey = s u p p l i e r _ n o

and t o t a l _ r e v e n u e = ( s e l e c t max ( t o t a l _ r e v e n u e )
from revenue : s )

order by s_suppkey ;
drop view revenue : s ;

Listing 2: Modified Query 15
create tab le revenue : s as
s e l e c t l _ suppkey as s u p p l i e r _ n o ,

sum ( l _ e x t e n d e d p r i c e ∗ ( 1 − l _ d i s c o u n t ) ) as t o t a l _ r e v e n u e
from l i n e i t e m
where l _ s h i p d a t e >= ' 1996−01−01 ' and l _ s h i p d a t e < ' 1996−04−01 '
group by l _ suppkey ;
create tab le t e m p _ t a b l e _ q 1 5 : s as
s e l e c t max ( t o t a l _ r e v e n u e ) as max_revenue
from revenue : s ;
s e l e c t s_suppkey , s_name , s _ a d d r e s s , s_phone , t o t a l _ r e v e n u e
from s u p p l i e r jo in revenue : s on

s_suppkey = s u p p l i e r _ n o
jo in max_revenue : s on

tab le t e m p _ t a b l e _ q 1 5 =max_revenue
order by s_suppkey ;
drop tab le revenue : s ;
drop t a b l e t a b l e t e m p _ t a b l e _ q 1 5 : s ;

2.2.2 Query 18. The changes to Query 18 are summarized in
Listing lst:ModifiedQuery18. Impala was not able to execute the
original query (see Listing lst:OriginalQuery18) because of the join
condition o_orderkey IN sub-query. Similarly to Query 15, the sub-
query being uncorrelated, we rewrote it as a CTAS.

Listing 3: Original Query 18
s e l e c t c_name , c_cus tkey , o_orderkey , o _ o r d e r d a t e ,

o _ t o t a l p r i c e , sum ( l _ q u a n t i t y )
from customer , o r d e r s , l i n e i t e m
where o_orderkey in ( s e l e c t l _ o r d e r k e y

from l i n e i t e m
group by l _ o r d e r k e y
having sum ( l _ q u a n t i t y ) > : 1 0 )

and c _ c u s t k e y = o _ c u s t k e y
and o_orderkey = l _ o r d e r k e y

group by c_name , c_cus tkey , o_orderkey ,
o _ o r d e r d a t e , o _ t o t a l p r i c e

order by o _ t o t a l p r i c e desc , o _ o r d e r d a t e ;

Listing 4: Modified Query 18
create tab le t e m p _ t a b l e _ q 1 8 _ : s as
s e l e c t l _ o r d e r k e y , sum ( l _ q u a n t i t y ) as t emp_sum_of_quant i ty
from l i n e i t e m
group by l _ o r d e r k e y ;
s e l e c t c_name , c_cus tkey , o_orderkey , o _ o r d e r d a t e ,

cas t ( o _ t o t a l p r i c e ∗1 0 0 0 as int ) / 1 0 0 0 , sum ( l _ q u a n t i t y )
from cus tomer jo in o r d e r s on c _ c u s t k e y = o _ c u s t k e y

jo in t e m p _ t a b l e _ q 1 8 _ : s t t q 1 8 on o_orderkey = t t q 1 8 . l _ o r d e r k e y
and t t q 1 8 . t emp_sum_of_quant i ty > : 1

jo in l i n e i t e m l on o . o_orderkey = l . l _ o r d e r k e y
group by c_name , c_cus tkey , o_orderkey ,
o _ o r d e r d a t e , cas t ( o _ t o t a l p r i c e ∗1 0 0 0 as int )
order by cas t ( o _ t o t a l p r i c e ∗1 0 0 0 as int ) desc , o _ o r d e r d a t e ;
drop tab le t e m p _ t a b l e _ q 1 8 _ : s ;

Listing 5: Original Query 21
s e l e c t s_name , count ( ∗ ) as numwait
from s u p p l i e r , l i n e i t e m l1 , o r d e r s , n a t i o n
where s_suppkey = l 1 . l _ suppkey

and o_orderkey = l 1 . l _ o r d e r k e y
and o _ o r d e r s t a t u s = ' F '
and l 1 . l _ r e c e i p t d a t e > l 1 . l _ commi tda t e
and ex i s t s ( s e l e c t ∗

from l i n e i t e m l 2
where l 2 . l _ o r d e r k e y = l 1 . l _ o r d e r k e y

and l 2 . l _ suppkey <> l 1 . l _ suppkey )
and not ex i s t s ( s e l e c t ∗

from l i n e i t e m l 3
where l 3 . l _ o r d e r k e y = l 1 . l _ o r d e r k e y
and l 3 . l _ suppkey <> l 1 . l _ suppkey
and l 3 . l _ r e c e i p t d a t e > l 3 . l _ commi tda t e )

and s _ n a t i o n k e y = n_na t ionkey
and n_name = ' : 1 '

group by s_name
order by numwait desc , s_name ;

2.2.3 Query 21. The changes to Query 21 are summarized in
Listing lst:ModifiedQuery21. Impala was not able to execute the
original query (see Listing lst:OriginalQuery21) because of the exists
and not exists join conditions. We rewrote the these join conditions
as series of outer joins.

Listing 6: Modified Query 21
create tab le t e m p _ t a b l e 1 _ q 2 1 : s as
s e l e c t l _ o r d e r k e y , cas t ( count ( d i s t i n c t l _ suppkey ) as int )

,max ( l _ suppkey ) as max_suppkey
from l i n e i t e m
group by l _ o r d e r k e y ;
create tab le tab le t e m p _ t a b l e 2 _ q 2 1 : s as

s e l e c t l _ o r d e r k e y , cas t ( count ( d i s t i n c t l _ suppkey ) as int )
, max ( l _ suppkey ) as max_suppkey

from l i n e i t e m
where l _ r e c e i p t d a t e > l_commi tda t e
group by l _ o r d e r k e y ;
s e l e c t s_name , cas t ( count ( 1 ) as int ) as numwait
from ( s e l e c t s_name from

( s e l e c t s_name , t 2 . l _ o r d e r k e y , l _ suppkey
, count_suppkey , max_suppkey

from tab le t e m p _ t a b l e 2 _ q 2 1 : s t 2 r ight outer jo in
( s e l e c t s_name , l _ o r d e r k e y , l _ suppkey
from ( s e l e c t s_name , t 1 . l _ o r d e r k e y , l _ suppkey

, count_suppkey , max_suppkey
from tab le t e m p _ t a b l e 1 _ q 2 1 : s t 1 jo in

( s e l e c t s_name , l _ o r d e r k e y , l _ suppkey
from o r d e r s o jo in

( s e l e c t s_name , l _ o r d e r k e y , l _ suppkey
from n a t i o n n jo in s u p p l i e r s on

s . s _ n a t i o n k e y = n . n_na t ionkey
and n . n_name l ike ' SAUDI ␣ ARABIA% '
jo in l i n e i t e m l on
s . s_suppkey = l . l _ suppkey

where l . l _ r e c e i p t d a t e > l . l _ commi tda t e
) l 1 on o . o_orderkey = l 1 . l _ o r d e r k e y

and o . o _ o r d e r s t a t u s = ' F '
) l 2 on l 2 . l _ o r d e r k e y = t 1 . l _ o r d e r k e y

) a
where ( count_suppkey > 1 ) or ( ( count_suppkey =1 )

and ( l _ suppkey <> max_suppkey ) )
) l 3 on l 3 . l _ o r d e r k e y = t 2 . l _ o r d e r k e y

) b
where ( count_suppkey i s null ) or ( ( count_suppkey =1 )

and ( l _ suppkey = max_suppkey ) )
) c

group by s_name
order by numwait desc , s_name ;
drop tab le tab le t e m p _ t a b l e 1 _ q 2 1 ;
drop tab le tab le t e m p _ t a b l e 2 _ q 2 1 ;



Figure 2: Execution rules of the TPC-H benchmark

2.3 Comparison Metrics
TPC-H defines one main performance metrics, the composite perfor-
mance, which is calculated as the geometric mean of the single-user
metric (Power@Size) and the multi-user metric (Throughput@size).
Size is the scale factor (SF ), which is a dimensionless quantity. It
roughly represents the raw data set size in GB. Power@Size is com-
puted as the geometric mean of the elapsed times for all queries
and both refresh functions obtained during the single-user run. Its
unit is queries per hour. For a given scale-factor (SF ), individual
query elapsed times (QIq ) q ∈ 1..22 and update functions (RI1,RI2),
the single-user metric is computed as:

Power@Size =
3600 ∗ SF

24
√∏22

q=1QIq
∏2

q=1 RIq
(2)

With S being the number of concurrent users during the multi-
user run and Ts being the elapsed time multi-user test, the multi-
user metric is computed as:

Throuдhput@Size =
3600 ∗ S ∗ 22 ∗ SF

Ts
(3)

The composite performance metric is then calculated as the
geometric mean of the single- and multi-user metrics as follows:

QphH@Size =
√
Power@Size ∗Throuдhput@Size (4)

2.4 Incorporating TPC-Energy into TPC-H
The TPC-Energy specification [13] is designed to augment any
TPC benchmark by allowing for the reporting of an energy metric
alongside its performance metrics. While a benchmark’s perfor-
mance metrics measures the amount of work completed per unit
of time, the TPC-Energy metric measures the energy consumption
corresponding to the amount of work completed. TPC-Energy’s
metric is the ratio of the energy consumed by the entire system Watt
Seconds [Ws] to work completed (number of transactions, queries,
transformations) during the benchmark interval BInterval [s]. Af-
ter moving the time element to the denominator, the TPC-Energy
metric is plainly represented as Watts/Performance.

TPC benchmarks measure the performance of different types
of workloads, some of which are time-based, other are task-based.
They use different types of metrics and, because they are technology
agnostic, the systems being measured are very diverse in terms of
type of system components, architecture and number of tiers.

TPC-C and TPC-E follow a time based benchmark model. They
report performance as the transaction throughput during steady
state condition. TPC-H, on the other hand, follows a static task
benchmark model, which is divided into three distinct measurement
t tests: (i) load test, (ii) single-user test, and (iii) multi-user test. All
three tests exhibit an oscillating system utilization behavior. To
deal with such scenarios, the TPC-Energy specification requires
measuring power Pi [W ] i ∈ 1, 2, ..n of the entire system for each
interval in addition to the performance measurements Ti , and then
independently determining the combined value for power P[W ]

and performance for all intervals using weights corresponding to
the duration of each interval:

P =
OverallWork

OverallEnerдy
=

∑n
i=1Ti ∗ Si∑n
i=1 Pi ∗ Si

(5)

The primary metric, reported by TPC-Energy, is in the form of
Watts per Performance for the overall System Under Test (SUT) 1

where the performance units are particular to each TPC Bench-
mark. For TPC-H it would be Watts/QphH. The energy consump-
tion is measured for all subsystems active for the duration of the
benchmark run. This includes servers, storage, clients, network
switches. The TPC-Energy Specification also defines optional sec-
ondary metrics. The purpose of these secondary metrics is to allow
more detailed comparisons and analysis of the result for system
components such as server chassis, storage system, network gear
etc. The secondary metrics are represented in similar units as the
primary metric, that is, Watts/Performance, and the summation of
all individual secondary metrics equals the primary metric. This is
because both the primary and secondary metrics share a common
value for the denominator —the performance value. This was done
by design when developing the benchmark specification to allow
end-users to see the contribution of the subsystems (represented by

1The system under test is a TPC defined term for system being tested by a benchmark



the secondary metrics) to the overall system results (represented
by the primary metric).

In addition to these primary and secondary metrics, the TPC-
Energy specification also calls for reporting the idle power, which is
defined as the energy consumption of the SUT within 30 minutes
of the completion of the benchmark run. The intent is to represent
the amount of energy consumption of a measured system in a
state “ready to accept work”. This is useful to customers who have
systems that have periods of idle but require the system to respond
to a request for work at any time.

In order to enable the reporting of energy numbers in TPC-H
the following three clauses need to be amended:

(1) Clause 0.1 has to be amended with the following wording:
To be compliant with the optional TPC-Energy standard, the
additional primary metric, expressed as watts-per-QphH, must
be reported. The requirements of the TPC-Energy Specification
can be found at www.tpc.org.

(2) Clause 5.4 has to be amended with the following wording:
When the optional TPC-Energy standard is used, the additional
primary metric, expressed as watts

QphH , must be reported. In addi-
tion, the requirements of the TPC-Energy Specification, located
at www.tpc.org, must be met.

(3) Clause 8.3.7 must be amended with When the optional TPC-
Energy standard is used, the additional requirements and for-
matting of TPC-Energy related items in the executive summary
must be reported and used. In addition, the requirements of
the TPC- Energy Specification, located at www.tpc.org, must
be met.

3 EXPERIMENTAL SETUP
For our experiments we use six HUAWEI Tecal RH2288 V2 Rack
servers, each with 2 Intel Xeon Processor E5-2680 (Sandy Bridge-EP)
running at 2.7 GHz. Each processor has 8 cores (16 hyperthreaded)
with an 20MB L3 cache. They are connected through two QuickPath
(QPI) links, each providing a unidirectional transmission rate of
up to 8.0 GB/s. Each server has 24 8GB double data rate 3 (DDR3)
at 1066Mhz dimms of main memory with a total ot 192GB. Each
server is configured with eight 2.5” SAS HDDs with 7.2TB capacity.
One SAS disk hosts the OS and the remaining 7 are configured
for HDFS. The server provides four onboard gigabit Ethernet (GE)
ports, of which two were bonded to doube bandwidth.

Our system runs Cloudera’s CDH 5 on CentOS 6.5. It is config-
ured as one master node and five worker nodes. Each of the nodes
has 189.1 GBytes of memory.

4 POWER MEASUREMENT METHODS
This sections gives a brief overview of the measurement methods
we are using: (i) Analytical power consumption model (ii) IPMI
(iii) Power meter

4.1 Analytical Power Consumption Model
The analytical power consumption models for online transaction
processing and analytical workloads, presented in [7], are based
on the assumption that the peak power consumption of an en-
tire system can be derived from the aggregate of the nameplate
power consumptions of its individual components [2]. Each model

Figure 3: Generalized power consumption model: source [7]

follows the same general approach: The nameplate power informa-
tion of major system components (see Table 2), such as processor
(CPU), volatile storage, internal non-volatile storage devices, that
is, rotational disks and solid state memory, and external storage
sub-systems, that is, enclosures with non-volatile storage devices,
are aggregated discounting the nameplate overhead. Additional
power of supporting components, such as motherboards and fans,
is calculated with a combination of a fixed overhead and a percent-
age of the power consumption of the components they support.
The models do not account for the power necessary for the air
conditioning systems of data centers.

Table 2: Major power consuming components

# Component Description

1 Power Supply 2 hot-swappable PSUs
2 Main Board GIGABYTE GA-EXX58-UD3R
3 CPU Intel Core i7 920 LA1366
4 Main Memory 24 DDR3 8GB PC3-10600
5 HDD Seagate, ST91000640NS
4 CPU FAN 4-hot-swappable

Figure 3 shows the hierarchy of the major system components
included in our power estimation models. Each component in this
hierarchy is abbreviated with up to three capital letters, as indi-
cated in parenthesis. TPC systems may consist of two types of
sub-systems, namely compute sub-systems (C) and storage sub-
systems (S). In case of a clustered system and systems that have
multi-tier architectures, there can be multiple compute sub-systems.
We also refer to the compute sub-systems as servers. Each server
consists of one or more compute units (CP ), that is, processors/C-
PUs, a number of storage controllers to connect to external storage
enclosures (CH ), some sort of volatile storage, usually memory
DRAM DIMMs (CM), some non-volatile memory (CS), traditionally
rotational devices (CSR), but recently also Solid State Devices (CSS)
and supporting components, such as the main board and cooling
fans. We also refer to the supporting devices of servers as chassis.
The storage sub-system (S), which is used to store data persistently,
consists of non- volatile storage devices, traditionally rotational



devices (SR), but recently also Solid State Devices (SS). We also
refer to the storage sub-systems as storage enclosures.

Each of these components may occur multiple times in a system
and each occurrence may have different nameplate characteristics.
Hence, we enumerate them with an index on each level. For instance,
the second CPU in the first compute sub-system is labeled CP1,2.
The 5th rotational device in the second supporting component of
the first storage sub-system is labeled SSR1,2,5. We refer to the
quantities and power consumptions of these components with Q
and P respectively. For example, the number of CPUs in the first
compute sub-system is Q(CP) and the power consumption of the
second CPU in the first compute sub-system is P(CP1,2).

4.2 Power Meter Setup
For the power consumption measurements of our system we use the
industry standard power meter HIOKI 3360. It is a multi-channel
meter supporting clamps and voltage probes to measure power
on single- to three-phase lines. The 33 Family of power meters
is approved by TPC to be used in energy measurements for TPC
benchmarks. Power of the entire System was measured.

The Intel CPU is packaged in Intel’s LGA775 socket on the main
board. We measure the CPU input current and voltage at its 8-pin
power plug. The CPU is powered with one 4 pin fan-connector, its
measurement is relatively straightforward. A GPU card is plugged
into a PCI-Express slot on the main board, it is mainly powered by
+12V and +3.3V power from PCI- Express pins, and an additional
+12V power directly from the PSU. We measure the current through
auxiliary power line with a clamp probe, and measure the PCI power
at the main board power inputs. The memory power consumption is
dependent on the memory usage of the software running. We make
an approximation by measuring power changes on the main board.
We use National Instruments USB-6216 BNC data acquisition, Fluke
i30s / i310s current probes, and Yokogawa 700925 voltage probe.
The room temperature was kept constant at 23 degrees Celsius ± 0.5
degrees Celsius. We use LabView 8.5 as oscilloscopes and analyzer
for the results data analysis. By testing the power responses of
each component involved in a sample matrix multiplication, we
record the real time voltage and current from measurement readings.
The product of voltage and current is the instant power at each
sampling point during measurement. We aggregate all data into
a single power consumption number [W] and plot that data over
time.

4.3 Intelligent Platform Management Interface
The Intelligent Platform Management Interface (IPMI) provides
management and monitoring capabilities independent of its host
system’s CPU, firmware (FM) and operating system (OS). It is a
powerful framework that has been initiated by Intel in 1998 and
has since been adopted by many other system vendors to manage
their systems, including power management.

Motherboards that support IPMI 2.0 [4] are able to monitor the
power usage of various system components using a baseboard
management controller (BMC) and power sensors. The BMC is
a specialized microcontroller embedded on the motherboard. It
manages the interface between the system management software
and the platform hardware.

Figure 4: Architecture of IPMI and BMC

In general an IPMI system consists of one BMC and many satellite
controllers that are distributed among different system modules, as
shown in Figure 4. The satellite controllers within the same chassis
connect to the BMC through the IPMI bus or bridge.

The system can be managed with the Remote Management Con-
trol Protocol (RMCP). The sensor data record (SDR) repository
stores the readings of the individual sensors on the board, which
can be temperatures, fan speeds, and voltages.

5 EXPERIMENTAL RESULTS
This section summarizes the power consumption quantities ob-
tained with the three power measurement methods. Firstly, we
apply the analytical power consumption model to our hardware
setup. The analytical model, being the most conservative, will give
us an estimate for the upper bound of the amount of power our
system will use during the two types of tests:(i) single-user test, and
(ii) multi-user-test. Secondly, we obtain actual power measurements
using IPMI and power meters.

5.1 Results Using the Analytical Power
Consumption Model

We apply the analytical model to the compute units, the volatile
and non-volatile storage units and the supporting components of
the compute sub-system.

5.1.1 Power Consumption of Compute Unit. Our system has no
separate storage sub-system, hence we only need to consider the
compute subsystems without the storage controller, host bus adap-
tor (HBA), which are usualy Peripheral Component Interconnect
(PCI) cards. We obtain the peak power consumption of the compute
units (processors/CPUs), which are usually specified as thermal
design power (TDP) from the Intel specification [3]. According to
it the Intel Xeon E5-2600 series processors’s TDP is 130W. Hence,
the power consumption of both compute units on each compute
sub-system i ∈ 1..6 is:

P(CPi ) = 2 ∗ 130W = 260W (6)



Figure 5: IPMI and power meter readings during the execution of a TPC-H single-user run

5.1.2 Power Consumption of Volatile Storage. Similarly to the
compute node nameplate power consumption, we obtain the peak
power consumption of our volatile storage (DRAM memory DIMMs)
from the manufacturer’s website. The power consumption of the
entire volatile storage in one compute sub-system i (i ∈ 1..8) can,
therefore, be calculated as:

P(CMi ) = 24 ∗ 5.21W = 125.0W (7)

5.1.3 Power Consumption of Non-Volatile Storage. Each of our
compute sub-system contains only rotational storage devices (CSR),
that is, disk drives. Peak power consumption levels of disk drives
vary widely with the disk’s form factor (FF), size, and rotational
speed. FF refers to the form factor of the drive. Each of our com-
pute sub-systems holds eight disk drives, each with a peak power
consumption of 14.2W. The power consumption of the entire non-
volatile storage in each compute sub-system i (i ∈ 1..8) can be
estimated with:

P(CSRi ) = 8 ∗ 14.2W = 113.6W (8)

5.1.4 Power Consumption of Compute Sub-System (servers). In
addition to compute units, volatile and non-volatile memory, we
need to add the power consumption of the supporting components
of the compute sub-system to estimate their total power consump-
tion. Supporting components are the main board, cooling fans,
caches, etc. They are also referred to as the server chassis. Studies
[7] and [6] suggest that the power consumption of the server chas-
sis can be expressed as a percentage (30%) of the nameplate power
consumption of its main components plus a fixed overhead (100W).
Hence, we compute the power consumption of one of our compute
sub-system i ∈ 1..6 as:

P(Ci ) = (P(CPi ) + P(CMi ) + P(CSRi )) ∗ 1.3 + 100 (9)

P(Ci ) = 498.6 ∗ 1.3 + 100 = 748.2W (10)

5.1.5 Power Consumption of the Entire System. The power con-
sumption of the entire system is the aggregate of the power con-
sumption of all six nodes: 6 ∗ 748.2 = 4489.1W . Using the elapsed
times for the single- and multi- user runs of 58.3s and 208.8s respec-
tively, the system wide power consumption of our system using the
nameplate power consumption estimation model during the single-
user run is is 58.3 ∗ 748.2W = 43, 620.1Ws = 12.2kWh. During the
multi-user run the system wide power consumption of our system
is 208.8 ∗ 748.2W = 156224.2Ws = 43.4kWh. The power consump-
tion of our system during the entire measured interval as it would
be used during a TPC-H publication is (58.3 + 208.8) ∗ 748.2W =
199, 844.2Ws = 55.6kWh. It is understood that using nameplate
power consumption is a very conservative estimate.

5.2 IPMI and Power Meter Measurement
Results

With the power consumption estimate from our analytical model we
have established an upper bound for the total power consumption.
Results from the IPMI and the power meter setups will be more
accurate. The following sections summarize results obtained from
IPMI and actual power meters. Firstly, we present the results from
the single-user run.

5.2.1 Single-User Power Measurement. Figure 5 plots the power
consumption of the entire system as measured by IPMI and power
meters during a single-user run of TPC-H. We obtained both the
IPMI and power meter power consumption readings from the same
single-user run. IPMI reports a minimum power consumption of
188.0 W, a maximum power consumption of 388.1 W, and an aver-
age power consumption of 241.3 W. The total power consumption
during the measurement interval is 12172.0Ws=3.4kWh.

The power meter reports a minimum power consumption of
211.5 W, a maximum power consumption of 407.1 W and an aver-
age power consumption of 241.7 W. The total power consumption



Figure 6: IPMI and power meter readings readings during the execution of a TPC-H multi-user run

during the measurement interval is 13999.8Ws=3.9kWh. On aver-
age the power meter reports measurement that are 11.7% higher
compared to the numbers reported by the IPMI tool. The total
power consumption reported by IPMI is 72% lower compared to the
estimate of the analytical model and the total power consumption
reported by the power meter is 68% compared to the estimate of
the analytical model.

The graphs in Figure 5 show that the IPMI readings follow the
power meter readings. 30% of the IPMI readings are within 10% of
the power meter readings and 88% of the IPMI readings are within
20% of the power meter readings. There are, however, some outliers
that are -65% and +52% off from the power meter readings.

5.2.2 Multi-User Power Measurement. Figure 6 shows the power
consumption of the entire system as measured by IPMI and power
meters during a multi-user run of TPC-H (four concurrent user). As
in the single-user case we obtained both the IPMI and power meter
power consumption readings from the same multi-user run. IPMI
reports a minimum power consumption of 188.0 W, a maximum
power consumption of 320.0 W, and an average power consumption
of 241.3 W. The total power consumption during the measurement
interval is 50264.1Ws=14.0kWh.

The power meter reports a minimum power consumption of
208.9 W, a maximum power consumption of 365.0 W and an aver-
age power consumption of 274.2 W. The total power consumption
during the multi-user run is 55493.0Ws=15.4kWh. During the multi-
user run the power consumption numbers reported by the power
meter 9.4% higher compared to the numbers reported by the IPMI
tool. This is slightly lower than during the single-user run (11.7%).
The total power consumption during the multi-user run as reported
by IPMI is 68% lower compared to the estimate of the analytical
model and the total power consumption reported by the power me-
ter is 64% compared to the estimate of the analytical model. These
numbers are slightly lower compared to the single-user run (72%
and 68%).

Similar to the single-user run the IPMI readings follow the power
meter readings very closely. 37% of the IPMI readings are within
10% of the power meter readings and 78% are within 20%. Contrary
to the single-user run the outliers in the IPMI readings are smaller.
They vary between -20% and +30%.

Figures 7 and 8 graph the percent difference between the IPMI
and power meter reading for each sample taken during the single-
and multi-user runs. The graphs display the difference in ascending
order to show the distribution of the differences.

6 CONCLUSION
With rising energy costs and increasing power consumption due
to the ever-growing demand for compute power (servers, storage,
networks), energy efficiency is a top priory for system vendors and
customers. Measuring energy in a benchmark environment can be
very laborious and complicated if the system is very large, which
TPC benchmark systems tend to be. As of today, there have been
only three TPC benchmark results published that report energy
consumption non of which are TPC-H results . In this paper, we
have argued that the low number of TPC publications is due to the
large setups required in TPC benchmarks and the, subsequently,
complicated measurement setup.

We have amended TPC-H to include power measurements and
have analyzed three approaches in measuring energy consumption:
(i) power meters, (ii) IPMI and (iii) analytical power consumption
model using nameplate power consumption.

Analytical power consumption mode using nameplate power
consumption delivers an upper bound for energy consumption
and is not very accurate. However, our results show that IPMI
provides an alternative to gathering power consumption numbers
on a system, especially because IPMI is readily available and can
be configured very easily.

The following table summarizes the results of the three different
quantitative approaches, discussed in this paper.



Figure 7: Sorted percent differences of IPMI vs. power meters readings during a single-user run

Figure 8: Sorted percent differences of IPMI vs. power meters readings during a multi-user run

Table 3: Power readings using different methods during
TPC-H Runs

Test Nameplate Power Meter IPMI
Single-User 12.2 kWh 3.4 kWh 3.9 kWh

Multi-User 43.4 kWh 14.0 kWh 15.4 kWh

The nameplate power consumption model overestimates the
power consumption by more than 3x, while the difference between
the IPMI and the external power meters is about 10%. It is up to
benchmark consortia to allow the use of IPMI as an alternative to

traditional power meters in order to increase adaptability of IPMI.
It is clearly a trade off between effort/money and accuracy.
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