Evaluating Multi-GPU Sorting with Modern Interconnects

Tobias Maltenberger®, Ivan Ilic*, Ilin Tolovski, Tilmann Rabl
Hasso Plattner Institute, University of Potsdam
{tobias.maltenberger,ivan.ilic}@student.hpi.de,{ilin.tolovski, tilmann.rabl}@hpi.de

ABSTRACT

GPUs have become a mainstream accelerator for database oper-
ations such as sorting. Most GPU sorting algorithms are single-
GPU approaches. They neither harness the full computational
power nor exploit the high-bandwidth P2P interconnects of modern
multi-GPU platforms. The latest NVLink 2.0 and NVLink 3.0-based
NVSwitch interconnects promise unparalleled multi-GPU accelera-
tion. So far, multi-GPU sorting has only been evaluated on systems
with PCle 3.0. In this paper, we analyze serial, parallel, and bidi-
rectional data transfer rates to, from, and between multiple GPUs
on systems with PCle 3.0/4.0, NVLink 2.0/3.0, and NVSwitch. We
measure up to 35x higher parallel P2P throughput with NVLink 3.0-
based NVSwitch over PCle 3.0. To study GPU-accelerated sorting on
today’s hardware, we implement a P2P-based GPU-only (P2P sort)
and a heterogeneous (HET sort) multi-GPU sorting algorithm and
evaluate them on three modern platforms. We observe speedups
over state-of-the-art parallel CPU radix sort of up to 14X for P2P
sort and 9% for HET sort. On systems with fast P2P interconnects,
P2P sort outperforms HET sort up to 1.65X. Finally, we show that
overlapping GPU copy/compute operations does not mitigate the
transfer bottleneck when sorting large out-of-core data.

CCS CONCEPTS

« Information systems — Main memory engines.

KEYWORDS
multi-GPU sorting, high-speed interconnects, database acceleration

ACM Reference Format:

Tobias Maltenberger, Ivan Ilic, Ilin Tolovski, Tilmann Rabl. 2022. Evaluating
Multi-GPU Sorting with Modern Interconnects. In Proceedings of the 2022
International Conference on Management of Data (SIGMOD °22), June 12-17,
2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3514221.3517842

1 INTRODUCTION

Unprecedented amounts of data make it increasingly challenging
to keep the response times of database systems low [12, 23, 30, 32,
73]. Therefore, researchers and engineers continuously adapt the
systems to modern hardware technology [2, 8, 9, 15, 25, 28, 75].

“Both authors contributed equally.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD 22, June 12-17, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9249-5/22/06...$15.00
https://doi.org/10.1145/3514221.3517842

PARADIS (CPU)
Thrust (1 GPU)

P2P sort (2 GPUs)
/2 P2P sort (4 GPUs)
HET sort (2 GPUs)
HET sort (4 GPUs)

4
Number of keys [1e9]
Figure 1: Sorting 16 GB on the DGX A100: CPU vs. GPUs

Steadily decreasing memory costs have led to the rise of in-memory
database systems [22, 34, 68]. Their performance bottlenecks are
often not I/O operations anymore, but memory bandwidth and
compute power [71]. Recent hardware trends in concurrent data
processing (e.g., multi-core architectures and massively-parallel
accelerators) offer unparalleled performance. Featuring thousands
of cores, graphics processing units (GPUs) provide remarkably
high instruction throughput and memory bandwidth [4, 45, 50].
Especially in combination with high-bandwidth interconnects that
promise to mitigate the data transfer bottleneck, GPUs have become
suitable for accelerating essential database operations [38].

One such operation is sorting, with applications ranging from in-
dex creation and duplicate detection to merge-joins [20]. Numerous
GPU-based sorting algorithms have been proposed [10, 33, 40, 43,
57,59, 64, 65, 71]. However, the vast majority of these algorithms
are single-GPU approaches that leave the potential performance
gain of sorting across multiple GPUs entirely untapped.

Multi-GPU sorting algorithms employ either a GPU-only ap-
proach, utilizing the high-speed peer-to-peer (P2P) interconnects
between the GPUs, or a heterogeneous strategy that exploits the
computational power of both CPU and GPUs [19, 58, 72, 76]. Tana-
sic et al. propose, to the best of our knowledge, the only P2P-based
multi-GPU sorting algorithm that performs both sorting and merg-
ing on the GPUs [72]. Gowanlock and Karsin describe the latest het-
erogeneous multi-GPU sorting approach in which the CPU merges
chunks of data that have been sorted on the GPUs [19]. However,
both authors conducted their experiments when PCle 3.0 was the
state-of-the-art interconnect, and multi-GPU platforms were still
emerging. Since then, high-speed interconnects such as NVLink
2.0 and NVLink 3.0-powered NVSwitch have become available in
systems such as the IBM Power System AC922 or the NVIDIA DGX
A100 [26, 52]. Besides, Gowanlock and Karsin show that their al-
gorithm’s final CPU merge phase becomes a bottleneck, which
high-bandwidth interconnects might exacerbate. Thus, it is neces-
sary to re-evaluate sorting on modern multi-GPU systems.

In this paper, we conduct an in-depth analysis of PCle 3.0, PCle
4.0, NVLink 2.0, and NVLink 3.0-based NVSwitch interconnects on
three modern multi-GPU systems. Our interconnect analysis covers
serial, parallel, and bidirectional data transfers for multiple GPUs.
Based on an evaluation of state-of-the-art single-GPU sorting and

https://doi.org/10.1145/3514221.3517842
https://doi.org/10.1145/3514221.3517842
https://doi.org/10.1145/3514221.3517842

merging primitives, we implement a P2P-based (P2P sort) and a het-
erogeneous (HET sort) multi-GPU sorting algorithm. We evaluate
various compute and data transfer optimizations and incorporate
those approaches that boost the end-to-end performance into our
implementations. We study P2P and HET sort from an algorithmic
point of view and evaluate their performance using our automated
open-source benchmark suite!. We compare the two algorithms for
increasing numbers of GPUs and analyze HET sort’s scalability for
large data exceeding the combined GPU memory.

We show that NVLink 2.0 accelerates CPU-GPU transfers up to
6.0x over PCle 3.0. NVLink 3.0-based NVSwitch outperforms PCle
3.0 up to 35.3% and NVLink 2.0 up to 5.5X for concurrent P2P data
transfers. Regarding multi-GPU sorting, we measure speedups over
PARADIS [13], a state-of-the-art parallel CPU radix sort, of up to
14x for P2P sort and 9% for HET sort. Besides, we observe that P2P
sort is 1.65x faster than HET sort on the DGX A100 with its high-
speed NVLink 3.0 P2P interconnects (see Figure 1). Contrary to
prior research findings [58, 71, 76], we show that overlapping GPU
copy and compute operations does not improve the sorting perfor-
mance for large out-of-core data on modern multi-GPU systems.
We further find that eagerly merging sorted chunks does not reduce
HET sort’s final CPU merge workload, decreasing its performance.
Generally, we identify two limiting factors for scaling to increasing
numbers of GPUs on modern platforms: low-bandwidth CPU-CPU
interconnects and shared PCIe bandwidth effects for CPU-GPU data
transfers. On the IBM AC922, where the CPU and the GPUs are
exclusively connected via NVLink 2.0, we observe the shortest end-
to-end sort durations. Therefore, a platform’s interconnect topology
heavily impacts the performance of multi-GPU-accelerated sorting.

With this paper, we make the following contributions.

(1) We conduct an extensive analysis of modern CPU-GPU and
P2P interconnects, covering serial, parallel, and bidirectional
data transfers for multiple GPUs and are the first to evaluate
NVLink 3.0-powered NVSwitch (Section 4).

(2) We evaluate state-of-the-art sorting and merging primitives
for both CPU and GPU (Section 5, Section 6).

(3) We publish highly optimized P2P-based and heterogeneous
multi-GPU sorting implementations (Section 5.2, Section 5.3).

(4) We analyze the two algorithms on three modern multi-GPU
platforms to evaluate each system’s and algorithm’s suitabil-
ity for GPU-accelerated sorting (Section 6.1).

(5) We demonstrate that overlapping GPU copy/compute oper-
ations does not mitigate the transfer bottleneck and eager
merging does not reduce the CPU-GPU load imbalance when
sorting heterogeneously on modern platforms (Section 6.2).

2 BACKGROUND

In this section, we provide essential background information on
GPUs and multi-GPU interconnect technologies.

GPU Accelerators. Graphics processing units (GPUs) provide
highly parallel compute capabilities. The NVIDIA Tesla V100 reaches
7.8 and 15.7 TFLOPS while the NVIDIA A100 achieves 9.7 and 19.5
TFLOPS for double-precision and single-precision floating-point
numbers, respectively. GPUs also provide high-bandwidth mem-
ory. However, with up to 80 GB, their memory capacity is small

Ihttps://github.com/hpides/multi- gpu-sorting

compared to that of main memory [45, 50]. High-performance com-
puting (HPC) systems have multiple GPUs to increase the compute
power and memory. GPUs are connected to the CPU’s memory
controller and each other via an interconnect. Traditionally, PCle
3.0 has been the standard interconnect. Its theoretical bandwidth
is 16 GB/s per direction. For GPU-accelerated database operations,
PCle 3.0 has been the bottleneck as its bandwidth is considerably
lower than that of main memory [19, 31, 38, 63, 70].

GPU Interconnects. In recent years, hardware vendors have
tried to mitigate the transfer bottleneck by providing higher band-
width rates. The latest systems connect the CPU to its GPUs with
PCle 4.0 at a 32 GB/s bandwidth. NVIDIA recently introduced a
high-bandwidth interconnect technology called NVLink. NVLink
2.0 increases the bandwidth to 25 GB/s per link per direction and is
primarily designed as a GPU-GPU interconnect, enabling faster P2P
communication. One NVLink 2.0-enabled GPU supports six links
for a theoretical peak bandwidth of 150 GB/s per direction. The
NVLink 3.0-enabled NVIDIA Ampere architecture supports 12 links
per GPU for up to 300 GB/s per direction. NVLink interconnects can
also serve as CPU-GPU interconnects and even provide cache coher-
ence across the CPU cache hierarchy and the GPU global memory
cache [38, 48]. Other vendors advance interconnect technologies
too. AMD Radeon Instinct GPUs include the high-speed AMD In-
finity Fabric interconnect [4]. Intel CXL is an industry standard for
CPU-to-accelerator interconnects based on PCle 5.0 [67].

On PCle-based multi-GPU systems without P2P interconnects,
the PCle interconnects form a balanced tree structure with the
CPU as its root. High-bandwidth P2P interconnects (e.g., NVLink)
allow for direct P2P transfers, eliminating the need for interconnect
hops. Then, data transfers are less likely to compete for shared
bandwidth. Modern systems often incorporate heterogeneous in-
terconnects. Thus, the interconnect topology critically influences
performance [35]. Most large-scale many-core CPU architectures
integrate processor-local main memory. DRAM is attached to a
CPU to form a non-uniform memory access (NUMA) node. Mul-
tiple NUMA nodes are connected through CPU interconnects so
that one CPU can access a remote CPU’s memory. CPU intercon-
nects typically provide less throughput and higher latency than
CPU memory controllers [26, 39]. Thus, on NUMA platforms, the
memory access time depends on the locality of the memory region
relative to the CPU issuing the access. NUMA systems often attach
an equal number of GPUs to each node. If no direct connection be-
tween the GPUs of different nodes exists, P2P transfers traverse the
CPU interconnect. Thus, some systems connect all GPUs directly.
NVIDIA’s NVSwitch uses NVLink-based switch chips to achieve
non-blocking all-to-all P2P communication [35, 46].

3 RELATED WORK

In recent years, researchers have evaluated modern GPU intercon-
nects. Pearson et al. evaluate single-GPU data transfer primitives
for PCIe 3.0 and NVLink 1.0/2.0 [56]. Li et al. benchmark a wide
range of interconnects on multi-GPU systems and suggest harness-
ing inter-GPU communication [35, 36]. In contrast, we evaluate the
end-to-end sorting performance of multi-GPU accelerator platforms
and design our data transfer benchmarks accordingly. Besides, we
are the first to analyze NVLink 3.0-based NVSwitch.

https://github.com/hpides/multi-gpu-sorting

Research that evaluates database-relevant GPU-acceleration with
NVLink has emerged within the last few years. Raza et al. evaluate
the performance of GPU interconnects in the database management
context and propose a hybrid materialization approach consisting
of lazy and eager data transfers to accelerate OLAP workloads [62].
The authors evaluate using two GPUs only — one local GPU per CPU
node. Lutz et al. benchmark performance characteristics of NVLink
2.0 and evaluate hash join workloads using various data placement
and transfer strategies for large out-of-core data [38]. They perform
their experiments with one GPU only and do not analyze P2P
transfers. In contrast, we evaluate data processing algorithms for
multiple GPUs, one of which utilizes P2P interconnects.

Rui et al. evaluate three multi-GPU join algorithms for large out-
of-core data on platforms with PCIe and NVLink interconnects [63].
They analyze the data transfers to be the bottleneck, observing a
speedup of up to 2.8X with eight GPUs over one. Paul et al. propose
a partitioned hash join for multiple GPUs. They evaluate it to out-
perform prior distributed join algorithms on the NVIDIA DGX-1
using an adaptive multi-hop data distribution strategy [55]. In com-
parison, we evaluate multi-GPU sorting through two algorithms
on three modern systems and analyze modern interconnects.

All published multi-GPU sorting algorithms are sort-merge ap-
proaches. Tanasic et al. propose the only approach that performs all
computations on the GPUs using P2P memory swaps [72]. Other
multi-GPU sorting algorithms are heterogeneous approaches for
large data: Gowanlock and Karsin extend the CPU-GPU sort by
Stehle and Jacobsen to multiple GPUs and observe the CPU merge
to be a major bottleneck, next to the CPU-GPU transfers [19, 71].
Ye et al. adapt a deterministic parallel sample sort to multiple GPUs
and evaluate it on two GPUs [76]. Peters et al. describe an algo-
rithm that uses k-way merging [58]. All of these algorithms were
evaluated on systems with PCle 3.0 only. We are the first to eval-
uate multi-GPU sorting on high-bandwidth interconnects and to
compare two multi-GPU sorting algorithms to each other.

4 INTERCONNECT ANALYSIS

In this section, we analyze the data transfer performance of three
multi-GPU platforms with different interconnect topologies.

4.1 Hardware Systems Overview

Table 1 shows each system’s hardware specification and their topol-
ogy with the bandwidth rates per direction. The IBM Power System
AC922 comes with NVLink 2.0 for CPU-GPU and P2P connections.
The DELTA System D22x M4 PS is equipped with PCle 3.0 as the
CPU-GPU interconnect and NVLink 2.0 for P2P transfers. Both
systems have four NVIDIA Tesla V100 GPUs and only differ in
their interconnects and host side. The NVIDIA DGX A100 has eight
NVIDIA A100 GPUs that are interconnected with NVLink 3.0-based
NVSwitch for fast all-to-all P2P transfers and via PCle 4.0 to the
CPU. All systems have two NUMA nodes but differ in their CPU in-
terconnects. The IBM AC922 has an X-Bus interconnect, the DELTA
D22x comes with Intel’s Ultra Path Interconnect (UPI), and the DGX
A100 uses AMD Infinity Fabric. The IBM AC922 is the only system
that includes NVLink 2.0 as the CPU-GPU interconnect, enabling
efficient GPU-accelerated query processing [38]. The DGX A100 is
NVIDIA’s most competitive GPU-accelerator platform.

4.2 CPU-GPU Data Transfers

We compare the throughput of CPU-GPU transfers when perform-
ing a serial copy and copying to or from multiple GPUs in parallel.
Additionally, we evaluate the bidirectional copy throughput in the
serial and parallel scenarios. For that, we repeat concurrently exe-
cuted HtoD and DtoH copies and calculate the average duration of
one bidirectional copy. Only after both copy streams finish, bidi-
rectional data transfers are considered to be completed. Thus, they
are bound by the slower copy stream. For serial transfers, we copy
4 GB from host to device memory (HtoD) and back (DtoH). For the
parallel experiment, a host memory buffer of 4 GB is allocated for
each GPU, allowing the data transfers to occur concurrently. This
results in different interconnect paths being used, either shared or
exclusively. When copying bidirectionally, the transfers operate
on distinct 4 GB buffers per direction. For every experiment, the
transfers start from CPU node 0, where the host buffers are allo-
cated in pinned memory. While the operating system can move
pageable memory, pinned memory is page-locked. The advantage
of pinned memory is that the CUDA driver starts copying with-
out intermediate transfers [24]. More importantly, pinned memory
copies utilize substantially higher transfer rates because the data
transfer is offloaded to the GPU’s copy engine that accesses the
host memory via direct memory access (DMA) [38, 56].

IBM Power System AC922: In Figure 2a, we observe the sys-
tem’s topology reflected in the results. For GPUs 0 and 1, which
are local to CPU 0, the throughput almost reaches the theoretical
peak of 75 GB/s with 72 GB/s. When the copy stream traverses
the CPU interconnect to GPUs 2 or 3, we measure a performance
drop to 41 GB/s and 35 GB/s for HtoD and DtoH transfers, re-
spectively, which is 64% and 55% of the theoretical 64 GB/s X-Bus
bandwidth. Our results confirm the measurements by Pearson et al.
as we obtain the same numbers [56]. Also, we observe a slight
performance overhead for bidirectional copies as the local GPUs
achieve a throughput of 127 GB/s, 88% of 2X the unidirectional
throughput of 72 GB/s. The X-Bus bandwidth again limits the bidi-
rectional throughput of remote GPUs. While a small bidirectional
copy overhead is expected, the X-Bus throughput is surprisingly
low. We analyze memory copies between NUMA nodes to exclude
the CUDA driver but find that the measured throughput does not
reach the theoretical maximum. The X-Bus interconnect consists
of two X-Links [14]. One X-Link carries the coherency traffic and
the payload; the other is a data-only link [27]. We suspect that
the system reaches a state of many retries since the CPU tries to
drive more bandwidth than the X-Link can sustain. Therefore, retry
attempts, not data transfers, consume the bandwidth.

250 250
@ VR HtoD @ B2A HtoD
@ 200 NN DtoH @ 200 SN DtoH
< 150 E 2% HtoD/DtoH 5 150 S HtoD/DtoH
(=9 XX a
—§D100 :E:E E"IOO
2 50 X £ 50
= 950 =
KX
a8 0
{0, 13 {2,3} (0,1) (2,3 (0,1,2,3)
GPU GPUs
(a) Serial (b) Parallel

Figure 2: CPU-GPU data transfers on the IBM AC922

Table 1: Topology and specification of the evaluated multi-GPU platforms

(a) IBM Power System AC922 (b) DELTA System D22x M4 PS (c) NVIDIA DGX A100
{170 GB/s 170 GB/s | 128 GB/s 128 GBs | 204 GB/s 204 GB/s |
] 64 GB/s]] 62 GB/s]] 102 GB/s]
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘] cpuo b---------] cpPu1 CPUO CPU1
16 GB/s 16 GB/s 32 GB/s
i 16 GB/s 16 GB/si e, L
50 GB/s GPU 0 GPU 4 ;
GPU 0 GPU 2| L L Jerus
<H> 50 GB/s 50 GB/s <H> JURTERRE (Nvswitch .
25 GB/s P GPU 2 GPU 67
: GPU 1 GPU 3 i 300 GB/s
32 GB/s
— NVLink 2.0 X-Bus — NVLink 2.0 == PCle3.0 - - UPI -+« NVLink3.0 - PCle 4.0 —-IF
2x IBM POWERSY (16 x 2.7 GHz) 2x Intel Xeon Gold 6148 (20 x 2.4 GHz) 2x AMD EPYC 7742 (64 x 2.3 GHz)
4x NVIDIA Tesla V100 SXM2 32 GB 4x NVIDIA Tesla V100 SXM2 32 GB 8x NVIDIA A100 SXM4 40 GB
2x 256 GB DDR4 2x 755 GB DDR4 2x 512 GB DDR4
RHEL 7.6, ppc64le Ubuntu 18.04, x86_64 Ubuntu 20.04, x86_64
CUDA 11.2, GCC 10.2.1 CUDA 11.2, GCC 10.3.0 CUDA 11.0, GCC 9.3.0
When copying in parallel (Figure 2b), we observe near peak per- — 250
. : @ W2 HioD @ WAA HioD
formance for HtoD transfers to GPUs 0 and 1. Since we issue two @ S Diofl A 200 o Diol
parallel copies, the theoretical aggregated throughput is twice the = Y%% HtoD/DtoH % 150 KXX HtoD/DtoH
single local copy throughput (150 GB/s). However, the bandwidth é é -
is not fully utilized for DtoH copies as the throughput reaches only %“ %‘)100 o
109 GB/s. Flushing the CPU caches before the transfers prevents 5 =
cache line eviction of dirty data and can accelerate DtoH copies [56]. = o
. . {0, 1} {2, 3} 0, 1) (2,3) (0,1,2,3)
However, it does not increase the unexpectedly low throughput. GPU GPUs
When the two local GPUs (0, 1) each perform bidirectional copies in (a) Serial (b) Parallel

parallel on the same CPU node (for a total of four copy streams), we
measure a throughput of 136 GB/s. This is only 25% more than the
throughput the two GPUs achieve for unidirectional DtoH transfers.
The throughput is reasonable, though, since that many copies com-
pete for and saturate the main memory bandwidth. When copying
to the remote GPUs 2 and 3 in parallel, we observe the through-
put of the three transfer types to stay within 82% of their single
remote-GPU-copy counterpart as the two copy streams now share
the comparatively low X-Bus bandwidth. The throughput for CPU-
local GPUs is up to 3.6x higher than on remote GPUs (2, 3). When
copying on all four GPUs, we measure the data transfers to reach
twice the throughput of the parallel remote copies on GPUs (2, 3)
as the slowest copy operation limits the total throughput. Overall,
the parallel copies on four GPUs only use 26% (HtoD) and 19%
(DtoH) of the maximum throughput achievable if all four GPUs
were connected with three NVLinks 2.0 locally to one CPU node
and main memory bandwidth was high enough.

DELTA System D22x M4 PS: The bandwidth of PCle 3.0 inter-
connects is significantly lower than that of UPL Hence, in Figure 3a,
we observe that there is no performance difference between local
and remote GPU copies. We measure 12-13 GB/s, which is close to
the theoretical peak of 16 GB/s. Bidirectional data transfers reach
almost double the unidirectional throughput (within 77-83%). In
Figure 3b, we again observe the absence of NUMA effects. Paral-
lel copy operations on multiple GPUs achieve the desired scaling:

Figure 3: CPU-GPU data transfers on the DELTA D22x

When copying on four GPUs, the HtoD, DtoH, and bidirectional
transfers reach 4x higher throughput. This is the case because the
CPU interconnect bandwidth is high enough to support multiple,
shared, PCle 3.0-bound copy streams and because the system pro-
vides an exclusive PCle switch for each GPU. Still, the parallel copy
throughput on all four GPUs is higher on the IBM AC922 despite
its strong NUMA-related performance decreases.

NVIDIA DGX A100: In Figure 4, we measure 24-25 GB/s for
serial HtoD and DtoH data transfers on local and remote GPUs,
which is within the expected range of 75-78% of the theoretical
32 GB/s PCle 4.0 bandwidth. Thus, PCle 4.0 doubles the measured
bandwidth of PCle 3.0. This is the case for any GPU taken out
of the sets {0, 1,2,3} and {4, 5, 6, 7}. However, we observe a slight
throughput decrease by 18% down to 32 GB/s for bidirectional
copies on remote GPUs compared to 39 GB/s on local ones. The
parallel copy throughput results reveal that some data transfers
share bandwidth when executed in parallel (GPUs in tuple notation).
Compared to a single GPU, the throughput does not double when
copying with GPUs (0, 1), but it does increase 2x for GPU pair
(0,2). This is because the GPU pairs (0, 1), (2,3), (4,5), and (6,7)
each share a PCle switch. Because one PCle switch connects one
pair of GPUs with CPU memory via only one PCle 4.0 interconnect
instance of 16 lanes, these GPU pairs share the respective bandwidth

[\
3
o

W72 HtoD
B DtoH
R HtoD/DtoH

[
o u S
S o S

Throughput [GB/s]
w
(=]

o

0-3 {7 (0,1) (02) (46) (0,246 (0-7)

GPUs
Figure 4: CPU-GPU data transfers on the DGX A100

of 32 GB/s. This also explains why the throughput does not increase
from GPUs (0, 2,4, 6) up to eight. For the remote GPU pair (4, 6),
we observe that the HtoD and DtoH throughput is almost the same
as for the local pair (0, 2) because of the CPU interconnect’s high
enough bandwidth. However, we again observe a bidirectional copy
overhead on remote GPUs, as GPU pair (4, 6) achieves 61 GB/s (74%)
instead of 82 GB/s — a performance discrepancy that requires further
investigation. The bidirectional throughput for GPUs (0, 2, 4, 6)
and all eight is bound by the remote performance as we measure
approximately twice the throughput of GPU pair (4, 6).

Conclusion. Our results show that even though high-speed
NVLink 2.0 significantly accelerates data transfers over PCle 3.0
and 4.0 on CPU-local GPUs, concurrent multi-GPU usage intro-
duces bottlenecks on two of our platforms. We observe low CPU
interconnect bandwidth on the IBM AC922 as well as an insufficient
number of PCle switches (and the resulting shared PCle bandwidth)
on the DGX A100 to limit the scalability of the systems’ multi-GPU
copy throughput. We observe that multiple GPUs do not always
harness full bidirectional bandwidth concurrently.

4.3 P2P Data Transfers

We measure the P2P throughput for serial and parallel transfers. In
the serial scenarios, we copy 4 GB of data from one GPU to another.
In the parallel scenarios, multiple GPUs copy concurrently, operat-
ing on distinct blocks of 4 GB each. We evaluate parallel copies for
sets of g GPUs with g € {2,4, ..., ¢} and g being the system’s maxi-
mum number of GPUs. For a set of g GPUs (GPU, ..., GPUg_l), we
concurrently copy as follows: GPUy <> GPUy-1, GPU; > GPUy-3,

GPU(-1 € GPUg As the arrows indicate, we measure the
b1d1rect1ona1 pP2p throughput for the parallel scenarios.

IBM Power System AC922: The IBM AC922 connects GPUs
0 and 1 with three NVLinks for a P2P throughput of 72 GB/s (Fig-
ure 5a). GPUs 2 and 3 can only communicate via X-Bus, resulting in
46% of the direct throughput. Achieving high performance depends
on the GPU locality. Figure 5b shows that concurrent P2P transfers

250 .
) S PoP | @
/M 200 /M
9 9,
b= 150 k=
2 2
5,100)
g g
.E 50 32 33 .E
= =
0—1 0—2 0—3 01 23063,12
GPU — GPU GPU + GPU
(a) Serial (b) Parallel

Figure 5: P2P data transfers on the IBM AC922

250 250
@ SR PP | @ FEEE . PtoP
/M 200 /M 200
9 9
5 150 5 150
a, a,
£,100 £,100
g g
= 50 0 = 50 30
= 0 = 0
0—1 0—2 0—3 01 263043,12
GPU — GPU GPU +» GPU
(a) Serial (b) Parallel

Figure 6: P2P data transfers on the DELTA D22x

between two directly connected GPUs reach optimal performance.
When all four copies are performed between distant GPUs, (0, 3)
and (1, 2), the X-Bus bandwidth is shared in both directions. Thus,
the throughput drops to 53 GB/s - 18% of what could be achieved
if all GPUs were interconnected via three NVLinks.

DELTA System D22x M4 PS: The DELTA D22x comes with at
most two NVLinks to connect GPUs between each other but does
connect more pairs of GPUs than the IBM AC922. In Figure 6a, we
observe the throughput of the P2P copies from GPU 0 to GPUs 1
and 2 to reach 48 GB/s of the theoretical 50 GB/s. The performance
decrease for distant (host-side traversing) P2P transfers is much
steeper. This is the case for the path from GPU 0 to GPU 3, where
throughput drops by 81% compared to direct P2P copies. While
the CPU interconnect bandwidth (UPI) is high enough (62 GB/s),
the low PCle 3.0 bandwidth slows down the data transfers twice:
On the way from GPU 0 to CPU node 0 and from the remote CPU
node to GPU 3. Compared with the IBM AC922, three NVLinks
achieve an 8% higher transfer rate (72 GB/s) than PCle 3.0 (9 GB/s).
For parallel transfers on two GPUs, we see optimal throughput in
Figure 6b. Given that GPU pairs (0, 3) and (1, 2) are not directly
interconnected, the throughput drops for four GPUs.

NVIDIA DGX A100 The DGX A100 fully connects all GPUs
between each other with NVLink 3.0-based NVSwitch. As a result,
any data transfer from one GPU i to any other GPU j utilizes its
own direct, high-bandwidth P2P connection powered by twelve
NVLinks per direction, for a total theoretical bandwidth of 300GB/s.
We measure 279 GB/s for serial P2P transfers, as seen in Figure 7.
This constitutes a 31X higher throughput compared to the host-side
traversing P2P copies via PCle 3.0 on the DELTA D22x (9 GB/s).
The serial P2P copy throughput on the DGX is also 3.9% higher
than on the IBM AC922 (72 GB/s). The parallel P2P transfers reveal
that NVSwitch is designed to support concurrent all-to-all copies,
because the throughput scales well for increasing numbers of GPUs.
We measure a total parallel P2P copy throughput of 894-1060 GB/s
for four GPUs, which is 17-20x higher than four GPUs reach on the

...... 2116
...... PtoP
£ 2000 °
= 1500
a 1060
51000 894
o0
= 530 453
2 500 279 u
g %003 2
Hoo0
i 061 062 046, 043, 067, ...,
2654 1432 364

GPU — / «+» GPU
Figure 7: P2P data transfers on the DGX A100

IBM AC922. Between all eight GPUs of the DGX A100, we observe a
total parallel P2P copy throughput of 2116 GB/s, which constitutes
a perfectly linear 2Xx speedup over four GPUs.

Conclusion. We conclude that P2P copies are by far the fastest
on the DGX A100 due to NVLink 3.0-powered NVSwitch. Compared
to the other two systems, the DGX A100 achieves an up to 5.5X
higher throughput on two GPUs and up to 35.3x on four GPUs. On
the IBM AC922 and the DELTA D22x, NVLink 2.0 provides high
P2P throughput for select GPU pairs. Both systems do not connect
all four GPUs directly. Therefore, concurrent P2P transfers between
all GPUs traverse the poorly interconnected host-side.

5 SORTING ALGORITHMS

In this section, we present our two multi-GPU sorting algorithm
implementations: a P2P-based approach building upon Tanasic et al.
and a heterogeneous GPU-CPU strategy. First, we study state-of-
the-art single-GPU sorting and merging primitives in our imple-
mentations. For both multi-GPU sorting approaches, we re-evaluate
if published performance optimizations still hold on today’s accel-
erator platforms with high-bandwidth interconnects. In addition to
that, we introduce our optimizations and algorithmic extensions.
We compare the two algorithms in terms of data transfer volume
and computational complexity of their merge phase.

The first phase of the multi-GPU sorting process is the same for
the two algorithms. The input data is partitioned into equally sized
chunks that fit into GPU memory. Then, g GPUs simultaneously
sort their chunk locally. The algorithms differ in the second phase
(i.e., how the sorted chunks are merged into the fully sorted output
data). Tanasic et al. propose a P2P-based GPU merge strategy while
the heterogeneous approach utilizes the CPU for merging.

5.1 Single-GPU Sorting

Since both multi-GPU sorting approaches employ a single-GPU
algorithm to sort chunks locally, we study the performance of
state-of-the-art single-GPU sorting algorithms. We use the fastest
primitive in both of our implementations. Most single-GPU sorting
algorithms are either merge-based or radix sort algorithms [43,
49, 65, 71]. Merge sort has the worse time complexity with O(n *
log(n)). While radix sort has a computational complexity of O(n),
its main bottleneck is the high memory bandwidth demand. At
their time of evaluation, Satish et al. find that radix sort performs
slightly better than merge sort, claiming that merge sort is better
suited for future architectures with increased SIMD widths [65].
However, the last decade’s hardware developments and algorithmic
improvements helped establish radix sort as the fastest single-GPU
sorting algorithm. The most recent work in this field is the MSB
radix sort by Stehle and Jacobsen which lifts the restriction of
having to respect the order of preceding sorting passes [71]. This
enabled their implementation to consider more bits per sorting
pass, reducing the memory bandwidth demand. The GPUs’ memory
bandwidth has increased considerably as well [45, 50].

We re-evaluate state-of-the-art single-GPU sorting primitives on
modern hardware for 1B (billion) 32-bit integers in Table 2. Contrary
to previous research [71], we observe that NVIDIA’s two CUDA
libraries, CUB and Thrust [51, 54], achieve identical performance as
they currently use the same underlying LSB radix sort. Additionally,

Table 2: Sorting 1B 32-bit keys on the NVIDIA A100 GPU

Algorithm Type Duration
Thrust Radix 36 ms
CUB Radix 36 ms
Stehle et al. Radix 57 ms
MGPU Merge 200 ms

we evaluate the openly available Modern GPU merge sort [49] as
well as the original implementation of the radix sort by Stehle and
Jacobsen [71]. At the time of publication, they evaluated their radix
sort to be the fastest sorting algorithm for the GPU, outperforming
Thrust, CUB, and MGPU. With release 1.11.0, Thrust’s sorting per-
formance improved up to 2X for 32 and 64-bit numeric keys. The
performance improvements result from reducing the number of
memory reads/writes per pass from 3 * n to 2 * n and increasing the
number of considered digits per sorting pass. This is achieved by
calculating the histogram once and further decoupling the parallel
computation of the prefix sum [1, 42]. Now, thrust: :sort not only
outperforms MGPU’s merge sort (5.5%), but the MSB radix sort by
Stehle and Jacobsen as well (1.6x). Thus, we show that, contrary to
Shanbhag et al.’s findings [66], MSB radix sorts are not inherently
better suited for the GPU than their LSB counterparts. Like CUB,
Thrust’s sort allows for passing a custom memory buffer, eliminat-
ing the need to dynamically allocate memory during the sorting
execution. The space complexity of thrust::sort is in O(n) as it
needs temporary memory as large as the input size n plus a small
constant overhead (less than 64 MB). Dynamic memory allocations
are expensive and should be avoided in performance-critical ap-
plications [47]. On the IBM AC922, we measure allocating 8 GB
of GPU memory to take 150ms. Thus, we pre-allocate all device
memory for both multi-GPU sorting algorithms.

5.2 P2P-Based Multi-GPU Sorting

The P2P-based multi-GPU sorting algorithm (P2P sort) performs all
computations on the GPUs. After the data is locally sorted on each
GPU, the merge phase produces the globally sorted array across
all g GPU chunks, which are then copied back to the host. The
comparison-based nature of the merge phase allows for sorting any
comparable data. The main benefit of merging on the GPUs is the
considerably faster execution because highly parallel GPU merge
algorithms outperform CPU implementations [21]. Multiple GPUs
merge their data by swapping blocks of keys between each other
through P2P data transfers, based on a specific pivot.

Pivot Selection. To merge two sorted arrays A and B of equal
size n into one sorted array AB, we need to swap keys between A
and B so that every key in A is less than or equal to every key in B.
Tanasic et al. present an algorithm to calculate a pivot position p in
B and the mirrored position p” in A, where p” = |A| — p. The pivot
ensures that the first p” keys of A and the first p keys in B are < to
the last p keys of A and the last p’ keys in B [72].

Vi,j€{0,...,.n—1},i<pAj=p :B[i] <A[j]A
< B[i

Vi,je{0,...,n—1},i2pAj<p :A[j] [i]

Algorithm 1 Pivot selection for two sorted arrays A and B

1: function SELECT_P1voT(array A, array B)

2 low « 0, high < size(B)

3 while low < high do

4 mid « high — (high — low) /2

5 if A[size(A) — mid] < B[mid — 1] then
6 high <« mid — 1

7 else

8 low «— mid

9 return low

The first p keys in B are swapped with the last p keys in A,
fulfilling the condition that A < B, while guaranteeing the two
exchanged blocks to be of equal size p. It allows for perfect load-
balancing throughout the multi-GPU sorting algorithm as each
GPU’s chunk size is constant. Since we swap blocks of consecu-
tive keys, we must individually sort each array. Both arrays are
sorted initially. Thus, the exchanged blocks are also sorted. After
the memory swap, each of the two arrays A and B contains two
sorted sublists, which are then merged, bringing the concatenated
array AB into sorted order. When the arrays A and B are distributed
to one GPU each, the P2P swap and the two GPU-local merges
conclude the entire merge phase (see Figure 8).

We implement the pivot selection using an adapted binary-search
that operates on two sorted arrays, as seen in Algorithm 1. Contrary
to Tanasic et al., our pivot selection guarantees to pick the leftmost
pivot. This minimizes the number of keys transferred via the P2P
interconnects. In the extreme case, when no P2P swap is necessary,
our pivot selection returns zero, and we skip the P2P swap to reduce
data transfers. The performance gain of this optimization depends
on the number of duplicate keys and the data distribution (see
Section 6.3). The pivot selection accesses keys of remote GPUs via
P2P memory reads. The number of remote memory accesses and
the algorithm’s complexity is O(log(n)), where n is the chunk size.
We measure fast execution, even without parallelization. Across
our three multi-GPU systems, the pivot selection accounts for 0.03%
of the total execution time for 2B integers on four GPUs.

After the pivot is selected, we swap memory blocks via over-
lapped P2P transfers to utilize the interconnects’ bidirectional band-
width. Tanasic et al. propose not to implement the memory swaps
in-place but rather use secondary buffers to avoid synchronizing.
Consequently, for the two chunks that are divided by the pivot, the
memory block that is not swapped needs to be locally copied to
the same secondary buffer that the P2P copy stream of the corre-
sponding remote chunk writes into. This local copy is performed
within the device memory. We measure it orders of magnitude
faster than the interconnect transfer because of the significantly
higher GPU memory bandwidth. We measure device-local copies

GPU 0 GPU 1

‘7 11 12 16| 2 (9] 13 15‘3

9il12 16 13 15‘

12 13 15 16‘

Figure 8: Merge phase for two GPUs

GPU 0 GPU 1 GPU 2 GPU 3

‘2 7 (91112 13 15 16[1 3 4 5 61014‘B

@‘2 7 6 81 3 4 512 13 15 169 11 10 14‘

‘26781345121315169101114‘

| [& s
| |

Figure 9: Merge phase for four GPUs

to be faster than P2P transfers — 3x over NVLink 3.0, 5X over three
NVLinks 2.0, and 42X over PCle 3.0. Because the local copies and
the P2P transfers happen concurrently, we do not sacrifice perfor-
mance. Also, we do not introduce any memory overhead because
thrust: :sort already needs an auxiliary memory buffer of size n,
which we reuse for the P2P swaps. Since the copy streams write to
separate memory addresses, no synchronization is needed, and the
throughput is not throttled. Thus, we confirm that the out-of-place
P2P swap optimization still holds on modern systems.

Merge Phase. When the data is distributed to more than two
GPUs, the merge phase gets more complex. Figure 9 depicts the
merge algorithm on g = 4 GPUs, each with its locally sorted chunk
C; with i € {0,...,g — 1} . It starts by merging pairs of GPU chunks
(Co with C1 and Cy with C3). As a result, a sorted array across
GPUs 0+1 and 2+3 is obtained in (D). In the global merge stage in
(2), a pivot is selected among all chunks. If the pivot falls into Cj,
the entire chunk C; is swapped with C. Additionally, we swap
the pivot-determined blocks in Cy and C3, which then need to be
locally merged. After the global merge stage, all keys in Cy and Cy
are less than or equal to the ones in Cy and Cs. If concatenated,
however, the arrays across Cp+C; and C2+C3 are not sorted yet.
Subsequently, another pair-wise merge stage produces the final,
sorted output in (3). Tanasic et al. design the algorithm for up to
four GPUs only. We extend it to any number of GPUs g with g = 2k
to fully utilize the DGX A100 (see Algorithm 2).

Algorithm 2 Merge phase for a set of GPUs G

1: function MErRGE_CHUNKS(array G)
2 g « size(G)

3 if g > 2 then

4 MERGE_CHUNKS(G[0, g/2[)
5 MEeRGE_CHUNKS(G[g/2, g])

6: pivot « SELECT_P1voT(G)

7: if pivot > 0 then

8: chunks < Swap_CHUNKs(pivot, G)

9: MERGE_CHUNKS_LocALLy(pivot, chunks, G)
10: if g > 2 then

11: MERGE_CHUNKS(G[0, g/2[)

12: MEeRGE_CHUNKS(G[g/2, g])

Once the chunks are locally sorted, the merge phase produces the
globally sorted array through multiple merge stages. In divide-and-
conquer fashion, the problem of merging g GPU chunks is solved
by merging the left as well as the right half of chunks (Lines 4
and 5). We define a merge stage as the algorithm’s execution phase
when merges occur at a certain recursion tree level. Thus, a merge
stage is identified by the number of chunks merged m. When we
sort on g GPUs, the merge stage m = 2 describes the g/2 pair-wise
merges on the leaf-level while the merge stage m = g defines the
global merge at root-level where the pivot is selected across all g
chunks. Once the recursion tree is fully constructed down to its
leaves, the first merge stage is executed, during which pairs of
chunks are merged into one sorted array by 1) finding the pivot,
2) swapping the corresponding keys, and 3) merging the affected
chunks locally (Lines 6-9). As the recursion tree resolves, merge
stages are performed on more than two GPUs. Then, executing
the three merge steps does not result in a globally sorted array,
as already seen in Figure 9. Instead, swapping keys re-distributes
them into their correct half of chunks, which are then each merged
by subsequent recursive calls (Lines 11 and 12). For locally merging
on a single GPU, we use Thrust because it outperforms MGPU up
to 1.7X for two sorted lists of 8 GB each [49, 54].

5.3 Heterogeneous Multi-GPU Sorting

The heterogeneous multi-GPU sorting algorithm (HET sort) utilizes
the CPU for merging. The locally sorted g chunks are copied back
from the GPUs to host memory, where a CPU-based multiway
merge algorithm produces the globally sorted data.

Multiway Merge Algorithm. For a fair comparison between
P2P and HET sort, the CPU multiway merge primitive needs to be
sufficiently optimized. The lower bound time complexity of any
comparison-based k-way merging algorithm is O(nx*log(k)), where
k is the number of sublists. Typical implementations are heap-based
and require 2 * log(k) comparisons in each step of computing the
next smallest key. However, the loser tree data structure performs
better as it needs exactly log(k) comparisons [6]. Efficient algo-
rithms work out-of-place (i.e., they require two times the input size
in main memory). In-place approaches have a worse time complex-
ity and perform poorly in practice [7, 11]. We favor an out-of-place
algorithm since we work on modern platforms with enough main
memory and optimize for end-to-end sort durations. Multiway
merging on the CPU is memory bandwidth-bound [9, 19]. Balkesen
et al.’s two published single-threaded k-way merging primitives [9],
used by the authors in a parallel sort-merge join algorithm, do
not saturate the memory bandwidth of our systems. The multi-
threaded k-way merging algorithm included in the gnu_parallel
compiler extension utilizes the loser tree data structure and, there-
fore, has the best conceivable time complexity [17, 18]. We an-
alyze its memory utilization across our three systems using the
Likwid monitoring tool [16, 74]. First, we measure the maximum
sustainable memory bandwidth on all three systems using the
STREAM benchmark adapted to our NUMA architectures [41]. We
confirm the observation of Li et al. that the DRAM of modern high-
performance systems achieves 75-80% of its theoretical bandwidth
rate [37]. Second, we measure the memory bandwidth utilization
of gnu_parallel: :multiway_merge for n € {2, 8,32} billion integers

CPU GPU
[S
ol i le] []
I I i
o e [a [e] [l J[1]
| — Y
i]
ol ATl e] [ol3] [d{em]
I I N
om i le] [welf]3]

Figure 10: Sorting large data with the 3n-approach (1 GPU)

equally distributed into g € {2, 4, 8} sorted sublists. We find that
it saturates main memory with 71-94% across our three systems.
Thus, gnu_parallel’s multiway merge is sufficiently competitive,
and we utilize it as HET sort’s merging primitive.

Sorting Large Data. Contrary to P2P sort, HET sort is not lim-
ited by the combined GPU memory. Instead, it is explicitly designed
to sort large data sets (i.e., data that exceeds the combined device
memory of a multi-GPU system), assuming that the main memory
capacity is sufficiently large. It achieves this by sequentially sorting
multiple chunk groups. We refer to the set of g chunks, each dis-
tributed to one GPU, as a chunk group. As soon as the first chunk
group arrives on the GPUs, its chunks are sorted and copied back
to host memory. Then, the second chunk group will be sorted. This
process continues until all chunks are sorted and reside in main
memory, leaving an ever-increasing number of sorted sublists for
the CPU to merge. It is crucial to utilize the interconnect’s bidirec-
tional transfer capability for copying the chunks back and forth.
While a sorted chunk is copied back to the host, the next chunk
is copied to its GPU concurrently. We implement the concurrent
copies with two non-blocking CUDA streams. Modern GPUs are
typically equipped with at least two copy engines providing the
necessary hardware support for efficient data transfers. While the
bidirectional copy optimization is without alternative, there are
two approaches regarding the employed level of parallelism, which,
in turn, influences the GPU memory utilization.

3n-Approach. The first approach reserves three buffers of chunk
size n in GPU memory. One buffer stores chunk i while another is
used as the auxiliary buffer for sorting chunk i. The third buffer
is used for copying chunk i + 1 from host to device while also
copying the sorted chunk i — 1 back to the host. Performing two
copy operations on the same buffer is achieved by an in-place data
transfer swap. Thus, this approach allows for interleaving the two
copy operations with the sort execution while only requiring three
memory buffers on each GPU. Figure 10 illustrates the behavior.
Concurrently executing copy and compute operations hides the
cost of either the data transfer or the GPU sort (whichever takes less
time). Given our data transfer and single-GPU sorting benchmarks,
we can ensure that on-GPU sorting is the faster operation. For ex-
ample, we measure Thrust to sort 16 GB of integers 4.75X faster
than the bidirectional copies take on the DGX A100. On the IBM
AC922 and its NVLink 2.0 CPU-GPU interconnects, sorting 12 GB
is still 2x faster than the data transfer because of the bidirectional
copy overhead. For large enough numbers of chunk groups, the
total duration of the GPU sort phase is, thus, equal to the transfer
time. Stehle and Jacobsen propose this strategy [71].

CPU GPU
I ™~
ol o [t [.[e] [o] |
[
ol o [t [.] ¢] [smo [|
[T~
ol o [t [] [o J[1]
@‘0‘1“c‘ ‘ }‘Sortl‘

Figure 11: Sorting large data with the 2n-approach (1 GPU)

2n-Approach. Our approach reduces the GPU space to 2 * n via
a synchronization step: After a chunk is copied from host to device,
the GPU sorts the chunk, blocking all copy operations. Once sorted,
the chunk is copied back to main memory. Simultaneously, the next
chunks are copied to the GPUs. When sorting, thrust: :sort uses
the second buffer as auxiliary memory. When copying the sorted
chunk back and the next one to the GPU, each copy stream operates
on one buffer. At any time, either copy or compute operations are
executed (see Figure 11). While the level of parallelism is reduced,
the increased GPU buffer size reduces the total number of chunks.
For each round of CPU-GPU data transfers, bigger chunks of sorted
data are copied to main memory. Therefore, fewer sublists need to
be merged in the final CPU-based multiway merge.

Stehle and Jacobsen evaluate their 3n-approach on a single GPU
and show that it outperforms state-of-the-art parallel CPU radix
sort PARADIS [13, 71]. Other heterogeneous CPU-GPU sorting
algorithms propose overlapping copy and compute operations as
an optimization to mitigate the transfer bottleneck as well [58, 76].
However, these approaches were evaluated when PCle was the
newest interconnect. Since then, the computational power of GPUs
has improved and GPU sorting primitives have been optimized.
Moreover, we benchmark on platforms with different types of mod-
ern interconnects. Thus, it is necessary to re-evaluate if overlapping
copy and compute operations at the cost of reducing the effective
GPU memory usage is still the best option for sorting large out-of-
core data. We compare both approaches in Section 6.2.

Eager Merging. Gowanlock and Karsin propose eager merging
as an optimization for large out-of-core data to reduce the load im-
balance between the CPU and the GPUs [19]. The number of sorted
sublists in the final multiway merge can be decreased through ea-
gerly merging runs as soon as a certain number of sorted chunks
are returned from the GPUs, all while the GPUs are sorting the
remaining chunks. Assuming that the time it takes the CPU to
merge g chunks is roughly the same as g GPUs need to sort the
chunk group, we can perfectly interleave GPU and CPU workloads.
Given c chunk groups, each of which consists of g chunks, instead
of merging all ¢ * g chunks in one final merge, the eager merg-
ing approach lowers the number of final chunks to ¢ — 1 + g. We
skip eagerly merging the last chunk group, which would postpone
the final merge and increase the total sort duration because, at
that point, there is no GPU workload left. Gowanlock and Karsin
measure marginal performance improvements of eager merging,
claiming that for larger data, the speedup factor would increase [19].
However, since they utilize outdated hardware, we re-evaluate the
performance of eager merging in Section 6.2.

5.4 Algorithm Discussion

We compare the two algorithms and outline the expected perfor-
mance differences based on an analysis of the merge phases and the
performed data transfers. For a direct comparison, we only focus
on sorting data sets that fit into the combined GPU memory of
a multi-GPU system. Then, the CPU-GPU data transfers are the
same for the two algorithms as both transfer the entire data set
of length n to the g GPUs and back once, distributing a chunk of
size n/g to each GPU. Since we use the fastest single-GPU sorting
algorithm to sort a chunk for both algorithms, the performance
difference can only lie in the merge phase. While P2P sort requires
P2P data transfers between the GPUs in its merge phase, HET sort
does not need more data transfers as the chunks are merged in
main memory. Given that we sort g chunks, HET sort’s final merge
phase has a time complexity of O(n*log(g)). P2P sort, on the other
hand, requires O(g — 1) merge stages, each of which involves P2P
data transfers between the GPUs. In the worst case, one merge
stage copies O(n) keys. This results in a total of O(n * (g — 1)) P2P
transfers within the merge phase of P2P sort. On average (for uni-
form data distributions), however, the pivot falls into the middle of
the chunk, which results in significantly fewer data to be swapped:
O(% * (9 —1)). We have already measured the negligible impact of
the pivot selection algorithm on the total execution time. Based on
our benchmarks of GPU merging primitives and interconnect anal-
ysis, we can conclude that the local two-way merge computation
within each GPU’s memory does not have a significant running
time either. Thus, the merge phase of P2P sort mainly depends
on the P2P key swap throughput. Hence, we expect P2P sort to
outperform HET sort as long as the number of GPUs g is small
enough and the system’s P2P interconnect paths relevant for the
merge phase provide bandwidth rates roughly as high as the main
memory (i.e., exclusive NVLink 2.0/3.0 connections).

To achieve the best performance with P2P sort on g GPUs, choos-
ing the g GPUs whose interconnects combine the highest bandwidth
is not enough. We need to specify which GPUs perform P2P swaps
between each other so that the runtime is minimized. We identify
the exact P2P connections for a GPU set (i, j, k, [) using the order of
its GPU identifiers i-/, thereby defining which chunks are merged
in certain merge stages. GPUs (i, j) and (k,) are merged in the
pair-wise merge stages while, in the global merge stage, the P2P
swaps happen between GPUs (i,[) and (j, k). The copy pattern of
our parallel P2P transfer benchmarks in Section 4.3 mimics these
merge phase swaps. Depending on the interconnect topology, the
order influences the sort duration. On the IBM AC922, the best
performing 4-GPU set is (0, 1, 2, 3) because the pair-wise merges
happen between NVLink-interconnected GPUs. We cannot avoid
traversing the host side for the global merge stage. Consequently,
the GPU set (0, 2, 1,3) performs worse for P2P sort. For HET sort,
the GPU set order does not influence the performance.

6 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of multi-GPU sorting
on systems with fast interconnects. Our analysis in Section 4 shows
the importance of choosing the most suitably interconnected GPUs.
For example, GPU pair (0,2) achieves a higher CPU-GPU copy
throughput than (0, 1) on the DGX A100. Thus, when sorting with

g GPUs, we always choose the GPU set with the best transfer
performance, which includes optimizing the GPU set order for
P2P sort (see Section 5.4). In all experiments, the initial data is
stored within host memory of node 0, and the CPU-GPU transfers
are included in the sort duration. We disregard the GPU memory
allocation times as we pre-allocate the memory, assuming exclusive
system usage. We run each experiment ten times and report the
arithmetic mean across all runs. Our open-source benchmark suite
runs the experiments and generates the plots.

CPU Sorting Baseline. For a fair comparison of multi-GPU
sorting to the CPU, we evaluate CPU sorting primitives from par-
allel algorithm libraries, as well as the state-of-the-art CPU radix
sort algorithms from the literature. Our benchmarks include the
GNU parallel algorithms extension [17, 69], Intel’s Thread Building
Blocks library [29, 60], the parallel C++17 extension of std: :sort,
the parallel in-place radix sort PARADIS by Cho et al. [13], and the
SIMD-enabled LSB radix sort by Polychroniou and Ross [61]. We
find that PARADIS outperforms the library primitives. While the
SIMD-enabled LSB radix sort is even faster for data sets of < 2B
keys on the DGX A100 and < 8B on the DELTA D22x, PARADIS is
platform-independent and provides the best performance for larger
data sets. Polychroniou and Ross’ sorting algorithms use Intel SIMD
instructions which the IBM AC922 does not support. Therefore, we
employ PARADIS as our CPU sorting algorithm baseline.

6.1 Multi-GPU Sorting Algorithm Comparison

In this subsection, we analyze the performance of the two multi-
GPU sorting algorithms (P2P sort and HET sort) for increasing
numbers of GPUs and keys. For these experiments, the data to be
sorted consists of uniformly distributed 32-bit integers. We evaluate
which algorithm performs better on each of the three platforms
from Table 1. To compare the two algorithms, we restrict the data
size to fit into the combined memory of g GPUs. Thus, the hetero-
geneous approach sorts one chunk group and merges its g chunks
once on the CPU. As a result, the different pipelining strategies de-
scribed in Section 5.3 do not apply as eager merging is not possible,
and the 3n- and 2n-approach perform the same (given the same
chunk size). For a more accurate evaluation, we break down the
end-to-end sort duration into four phases (HtoD transfers, DtoH
transfers, on-GPU sorting, and merging), showing which algorithm
phase most heavily influences the execution time. The merge phase
is performed either on the GPUs via P2P memory swaps or on
the CPU, depending on the algorithm. The GPUs execute partly
uncoupled (e.g., one GPU can start sorting while another GPU is
still copying data from the host). We define a phase to end when
the last GPU completes executing it. The calculated time durations
are bound by the slowest executing GPU pipeline.

6.1.1 IBM Power System AC922. We start the multi-GPU sorting
algorithm comparison with the IBM AC922 (Table 1a). We analyze
the single-GPU baseline as well as GPUs (0, 1) and (0, 1, 2, 3).
Figures 12a and 12b (top) show how the two multi-GPU sorting
algorithms scale with increasing data sizes. Our first observation is
that both algorithms scale linearly with the number of keys for one,
two, and four GPUs. We observe that utilizing four GPUs does not
improve performance over the single-GPU baseline on this system
and data sizes that fit onto one GPU. Figure 12a shows that P2P

3 3
— | —— 1G6PU — | —— 1GPU
v 12
|~ 26rUs |~ 2GRUs
G 2] —— 4GPUs S 2] —— 4GPUs
= g=

< <

1 1

3 3
<1 T1

2 2

- -

=] Q
%] I

0 0

01 2 3 45 6 7 8 001 2 3 45 6 7 8

Number of keys [1e9] Number of keys [1e9]

0.8 0.8
NN DtoH I Sort SN DtoH B Sort
0.6 Merge 7% HtoD 0.6 Merge W2 HtoD
0.45 0.45

e
)

Sort duration [s]
S)
o N

Sort duration [s]
(=]
'S

el
o
S
o

Number of GPUs
(b) HET sort

Figure 12: Multi-GPU sort performance on the IBM AC922

Number of GPUs
(a) P2P sort

sort achieves the best sorting performance, with a total duration
of 0.24s for two GPUs. This constitutes a 1.5X speedup over one
and 1.9 speedup over four GPUs. For HET sort, we observe longer
sorting times on two GPUs as P2P sort outperforms HET sort by
32% for 4B integers. Using all four GPUs, both algorithms perform
the same. Compared to the CPU radix sort PARADIS, we measure
speedups of up to 14X for P2P sort and 9x for HET sort.

Sort Duration Breakdown. The sort duration breakdowns in
Figures 12a and 12b (bottom) help in analyzing the main bottlenecks.
For a clear comparison, each GPU set sorts a total of two billion
32-bit integer keys. Thus, each GPU sorts less data when using
more GPUs. On this system, sorting with a single GPU is not bound
by one phase only as all three make up approximately one-third
of the total duration. For P2P sort, scaling to two GPUs results in
the sort and the HtoD phase being halved while the DtoH copies
are reduced down to only 64% (as already covered in Figure 2).
In addition to the merge phase overhead, this explains the 1.5x
speedup. Most of the merge phase time is spent on P2P key swaps.
For two GPUs, the merge phase accounts for about 20% of the
total execution time because the GPUs (0, 1) are directly connected
via NVLink 2.0 for peak P2P throughput (see Figure 5b). For four
GPUs, we measure the merge phase to be 3.6X slower than for two.
This is because the number of merge stages increases and, more
importantly, the unavoidable CPU-traversing P2P swaps throttle
the merge performance due to the low X-Bus bandwidth. HET
sort’s performance is bound by the CPU merge phase, which makes
up 46% of the total sort duration for two GPUs. As discussed in
Section 5.3, the CPU-based merge phase is bound by the main
memory bandwidth. Compared to the P2P-based GPU merge, the
CPU takes 3.6X longer to merge two chunks. For four chunks, the
CPU merge duration increases by only 8%, which explains why the
two algorithms perform the same on four GPUs. For a constant total
data size, we measure similar execution times for gnu_parallel’s
multiway merge with two and four sorted sublists, as the main
memory bandwidth is saturated in any case.

3 3
— —— 1GPU — —— 1GPU
w wv
‘E‘ —— 2 GPUs 'E‘ —— 2GPUs
8 2] —— 4GpUs S 2] —— 4GpUs
= i
- -
= =
o1 <1
= =
- -
S S
%) %)
0 0
01 2 3 4 5 6 7 8 01 2 3 4 5 6 7 8
Number of keys [1e9] Number of keys [1e9]
2.8 2.8
— NN DtoH N Sort — SN DtoH B Sort
» 2.4 » 2.4
= M 7 HtoD — M W2 HtoD
= 2.0 erge to! =20 erge to!

Number of GPUs
(a) P2P sort

Figure 13: Multi-GPU sort performance on the DELTA D22x

Number of GPUs
(b) HET sort

6.1.2 DELTA System D22x M4 PS. For the DELTA D22x (Table 1b),
we study the GPU sets (0), (0, 1), and (0, 1,2, 3).

The measurements in Figures 13a and 13b (top) show linear
scaling with increasing data sizes for both algorithms. Compared to
the single-GPU baseline, P2P sort achieves 1.86X the performance
with two GPUs while four GPUs sort 2.1x faster than one. This
platform scales comparatively well up to four GPUs, although the
speedup from two to four is less than from one to two. HET sort
improves the performance for two GPUs by 52% over one. With
four GPUs, it reaches the same 2.1X speedup that P2P sort achieves.
Thus, HET sort again performs worse than P2P sort on directly
NVLink-interconnected GPUs. Both multi-GPU sorting algorithms
sort equally fast on four GPUs due to a lack of P2P interconnects
and outperform PARADIS, our CPU baseline, by up to 9x.

Sort Duration Breakdown. In Figures 13a and 13b (bottom),
we observe that the P2P sort’s 1.86X speedup for two GPUs over
one is higher on this platform than on the IBM AC922. First, the
DtoH copy is twice as fast on two GPUs compared to one, which is
not the case on the IBM AC922. All phases except the merge scale
with 2x speedup on the DELTA D22x. Second, the two-GPU merge
phase has a negligible overall impact on this system due to the
slow CPU-GPU transfers accounting for 84% of the total execution
time. The low PCle 3.0 bandwidth also explains why P2P sort is
still 3x faster with two GPUs on the IBM AC922 than this system.
In Figure 13a, we see why four GPUs outperform one only 2.1x.
The HtoD and DtoH transfers are 4x faster on four GPUs because
of exclusive PCle switches for each GPU and a high enough CPU
interconnect bandwidth (Figure 3b). However, the main bottleneck
shifts from CPU-GPU data transfers on one GPU to P2P transfers in
the merge phase on four GPUs. Since the global merge stage is not
optimally P2P-interconnected, it is PCle-bound (Figure 6). Thus,
the merge phase makes up 45% of the total execution time. HET
sort is slower than P2P sort on two GPUs because the CPU merges
3.8x slower than GPU pair (0, 1). Similar to the IBM AC922, the
CPU merges just as fast as the insufficiently interconnected four
GPUs. Four GPUs are only beneficial on this system because the
sort and copy durations scale perfectly linearly.

3 3
— | —— 1GPU — | —— 1GPU
v 1]
‘E‘ —— 2GPUs ‘: —— 2GPUs
S 2] —— 4GPUs S 2] —— aGpUs
= 8 GPUs = 8 GPUs
1 1
= =
o1 <1
- -
— —
o]
§ | g2 E

0 0

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Number of keys [1e9] Number of keys [1e9]

— NN DtoH I Sort —
» 1.2 ' 1.2
= Merge 7% HtoD —

SN DtoH BN Sort
Merge W2 HtoD

ﬁ 0.81 0.72 ‘3 0.81 0.72
5 0.6 = 0.6 0.56
o 0.38 o XY 039 037
g 04 By 025 o024 | EO04 NSNS
»n 0.2 ANNANENNN Y »n 0.2
0.0
1 2 4 8 1 2 4 8
Number of GPUs Number of GPUs
(a) P2P sort (b) HET sort

Figure 14: Multi-GPU sort performance on the DGX A100

6.1.3 NVIDIA DGX A100. Next, we look at the DGX A100 (Table 1c)
for GPUs (0), (0,2), (0,2,4,6), and all eight GPUs.

In Figure 14a (top), we see that P2P sort achieves 1.9% faster ex-
ecution with two GPUs over one. Four and eight GPUs outperform
a single GPU 2.9x and 3.0x, respectively, reducing the total sort
duration to 0.24s. This makes utilizing eight GPUs the best option
for P2P sort, especially since eight GPUs can sort twice as much
data as four. HET sort, seen in Figure 14b (top), improves the sort
performance of a single GPU by 30% for two GPUs while four GPUs
sort 1.84X faster than one. Scaling up to eight GPUs also provides
the best HET sort performance, with 1.95X speedup over one GPU.
Thus, P2P sort is faster than HET sort for all g € {2, 4,8} on this
system. Again, both achieve significant speedups (up to 7.8 for
P2P sort and 5x for HET sort) over CPU-only sorting.

Sort Duration Breakdown. Figures 14a and 14b (bottom) show
that sorting 2B keys with this system’s NVIDIA A100 GPU is almost
twice as fast as with the NVIDIA Tesla V100 of the previous two
platforms. We further observe the significant benefit of NVSwitch-
powered P2P transfers: The merge phase of P2P sort has a minimal
impact on the total execution time with only 4% for two, 13% for four,
and 23% for eight GPUs. While the sort phase also plays a minor role,
the data transfers via PCle 4.0 are P2P sort’s main bottleneck on this
platform. Sharing the PCle switches limits this system’s scalability
as transfer times are not reduced from four to eight GPUs (Figure 4).
The CPU merge duration of HET sort stays constant for increasing
numbers of chunks. Furthermore, gnu_parallel: :multiway_merge
achieves shorter execution times on the DGX A100, merging almost
twice as fast as the IBM AC922 for two chunks and 2.75X quicker
for four. Nonetheless, the P2P-based GPU merge is still significantly
faster than the CPU merge, e.g., 3.3 for eight GPUs, which is the
reason why P2P sort outperforms HET sort.

6.1.4 Conclusion. Across all systems, both multi-GPU sorting ap-
proaches show significant speedups over parallel CPU radix sort
PARADIS, up to 14X (P2P sort) and 9x (HET sort). Therefore, mul-
tiple GPUs significantly accelerate sorting. The speedups are par-
ticularly high on the IBM AC922 as it is the system with the lowest

number of physical CPU cores. We observe that PARADIS scales
very well with increasing numbers of threads, but on the IBM AC922,
it does not efficiently utilize 4X hyper-threading. Our experiments
also show that, across all systems, P2P sort is the faster sorting
algorithm, outperforming HET sort up to 1.5X on two GPUs on
the IBM AC922 while sorting up to 1.65X faster on the DGX A100.
However, the scalability of P2P sort to increasing numbers of GPUs
highly depends on the P2P interconnect topology. We show that
for GPUs that are NVLink-interconnected, multiple GPUs merge
considerably faster than the CPU. When the systems lack direct
P2P interconnects, HET sort is only equally as fast as P2P sort. The
DGX A100 most strongly favors P2P sort because of its NVLink
3.0-powered NVSwitch. We measure the best scalability for this
system, as two GPUs are 1.9, and four GPUs are 2.9X faster than
one. Regarding the end-to-end sort duration, the CPU-GPU inter-
connects are a key deciding factor. The IBM AC922 achieves the
same performance with only two GPUs as the DGX A100 with eight
GPUs even though the NVIDIA A100 GPU sorts almost twice as
fast as the Tesla V100. This is because the IBM AC922 is the only
system with NVLink 2.0 for CPU-GPU transfers. We conclude that
the ever-increasing compute power of multiple GPUs, accompa-
nied by high-speed P2P interconnects, requires fast CPU-GPU data
transfers to outperform the CPU more efficiently.

6.2 Sorting Large Out-Of-Core Data

We evaluate the performance of HET sort for data sizes that exceed
the combined GPU memory capacity. First, we compare the different
approaches and optimizations from Section 5.3. We analyze the
performance of the 2n- and 3n-approach, with and without eager
merging in Figure 15a. Then, we compare the best algorithm variant
with the state-of-the-art CPU-only radix sort PARADIS [13] in
Figure 15b. We sort up to 60B integers (240 GB) and conduct the
experiments on all three systems (see Table 1). The observations
are conceptually the same, and the takeaways consistent across all
systems. Since it achieves the shortest execution time, we depict
our results for the DGX A100 with eight GPUs.

In Figure 15a, we observe that the eager merging strategy de-
creases performance for the 2n- and the 3n-approach. The main
reason is that the time it takes the CPU to merge the eight chunks
of one chunk group is significantly higher than the GPUs need for
sorting the chunks and returning them. This is especially the case
for the IBM AC922, where eagerly merging a chunk group takes up
to 2.2X longer than sorting and copying it back. Consequently, the
queue of merge tasks grows over time, postponing the final merge
phase. The supposed benefit of eager merging (i.e., the reduced
number of sorted sublists for the final merge) does not pay off. We
even measure the final merge of the eager merging approach to be
48% (DGX A100) and 70% (IBM AC922) longer than the final merge
where all chunks are merged at once. Besides, we observe the effect
of main memory bandwidth saturation for the eager merging ap-
proaches. The memory bandwidth already limits the highly parallel
multiway merge for many threads. When concurrently executed
with bidirectional transfers to/from the GPUs, the CPU merge and
the transfers compete for the main memory bandwidth, decreas-
ing the CPU-GPU copy throughput. All effects combined, eager
merging worsens the performance by 1.5-1.75X.

25 35
— —— 3n ~=30] —— PARADIS (CPU)
—20] —— 3n+EM — —+— HET sort (8 GPUs)
=1 = 25
S 15 2n g
B 2+ EM E 20
2 10 3 15
P =10
— 5 —
] Qo 5
w [95]

0 0

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Number of keys [1e9] Number of keys [1e9]
(a) HET sort approaches (b) HET sort vs. CPU-only sort

Figure 15: Sorting large data on the DGX A100 with 8 GPUs

Figure 15a also shows that the 2n- and 3n-approach sort equally
fast without eager merging. For a fair comparison, both approaches
utilize the same total GPU memory of 33 GB. The 2n-approach
employs a chunk size of 4.125B integers, while the 3n-approach
uses chunks of size 2.75B. As discussed in Section 5.3, the copy-
compute overlap in the 3n-approach hides the sort duration on
the GPUs. We measure the on-GPU sort as the least influential
factor in the total execution time. When sorting 60B integers, the
full GPU sort phase and the final CPU merge phase each account
for half the total duration (2Xx 5s). Most of the sort phase duration
comprises data transfers to and from the GPUs. The accumulated
time that the GPUs spend on sorting accounts for only 3% of the total
execution time on the DGX A100. Therefore, the main advantage
of the 3n-approach (i.e., hiding the sorting computation) does not
have a significant performance impact. On the IBM AC922, where
hiding the on-GPU sorting has the highest relative impact due to
NVLink-powered CPU-GPU transfers, we observe a significantly
higher merging bottleneck: For 32B integers on two GPUs, the final
CPU merge accounts for 77% (10s) of the total execution time (13s),
which overshadows the benefit of overlapping GPU copy/compute
operations. Since the combined data transfer times are equal, the
2n- and 3n-approach perform almost identically.

In Figure 15b, we compare HET sort (2n-approach, no eager
merging) with PARADIS as our CPU baseline. Despite the bidi-
rectional copy overhead, we observe that HET sort outperforms
PARADIS even for increasing data sizes. We measure speedups of
2.6X for 60B keys on the DGX A100. On the IBM AC922 with two
GPUs and the DELTA D22x with four GPUs, we measure HET sort
to outperform the CPU with similar speedups (2.3-2.5X).

Conclusion. We find that contrary to previous research [19],
eager merging decreases HET sort’s performance due to host-side
bottlenecks (i.e., the weaker CPU merge and the limited main mem-
ory bandwidth). We show that, on modern platforms, overlapped
copy and compute operations do not notably improve the sorting
duration because, relative to the total execution time, the impact of
hiding the GPU sort computation is negligible. Still, multiple GPUs
accelerate sorting large out-of-core data considerably.

6.3 Sorting Different Data Sets

Lastly, we benchmark the impact of the data distribution and the
data type on the execution time of P2P and HET sort.
Distribution Type. In Figure 16, we show the sort duration of
the algorithms for differently distributed data for the IBM AC922
with two GPUs. We observe the performance of P2P sort to be
stable for uniform and normal distributions. The number of P2P

0.5
‘; o4 Uniform
2 P
=03 Normal
5 Sorted
_g 02 Reverse-sorted
g 0.1 Nearly-sorted
w
0.0

P2P sort HET sort
Distribution type
Figure 16: Sorting 2B integers for different data
distributions on the IBM AC922 with 2 GPUs

swaps is maximal for reverse-sorted data, resulting in the longest
execution time. If the data is (nearly) sorted, the sort duration goes
down by 9-20% because very few or no P2P swaps are necessary.
When sorting with four GPUs on the IBM AC922, we measure
even higher speedups (1.4-1.6X) for optimal distributions due to the
higher impact of the P2P merge phase on the total execution time.
Thus, we measure less variance for different distributions on the
DGX A100 with NVSwitch. HET sort is stable for all distributions
as the merge phase is memory bandwidth-bound.

Data Type. We evaluate both multi-GPU sorting algorithms for
different data types. We sort 4B integers and floats (32-bit) and
2B doubles and longs (64-bit). Therefore, we sort 8 GB of data in
each experiment. On the NVIDIA A100, we observe the 32 and
64-bit data type sorting runs perform similarly (within 95%). Both
GPUs have twice as many 32-bit as 64-bit cores. On the NVIDIA
Tesla V100, sorting the 32-bit data types takes only 83-88% as long
as for 64-bit types. Profiling reveals that thrust::sort performs
disproportionately better on 32-bit keys on the Tesla V100.

7 DISCUSSION

Having evaluated two multi-GPU sorting algorithms, we observe
both to scale linearly with increasing data sizes while outperform-
ing highly parallel CPU-only sorting algorithms, even for large
out-of-core data. However, we find that P2P sort achieves better
performance than HET sort across three modern platforms as HET
sort tends to become bound by the CPU merge and the main mem-
ory bandwidth. Thus, future research should evaluate the suitability
of a P2P-based GPU merge for large data. We confirm the findings
of Gowanlock and Karsin who claim that high-bandwidth intercon-
nects make GPU-based merging necessary [19].

Regarding interconnect bandwidth, we extend prior findings.
Many GPU-accelerated algorithms, including P2P sort, are not only
interconnect-bound for PCle 3.0 [62, 63], but also for PCle 4.0.
Tanasic et al. evaluate their P2P-based algorithm on a purely PCle
3.0 interconnected platform and still measure 3.3x the speedup on
four GPUs [72]. At the time, the GPU’s computational power was
the main bottleneck. However, recent advances in GPU performance
have outpaced the development of interconnects by far. This is why
today, the sorting computation on the GPUs, is never the bottleneck.
Multi-GPU systems that still include PCle 3.0 interconnects are
highly bandwidth-bound. Until now, the state-of-the-art approach
of mitigating the data transfer bottleneck has been overlapping
compute with copy operations [58, 71, 76]. However, our large
data experiments show that this does not hold anymore since the
performance of GPUs has become orders of magnitude higher than

that of their interconnects. Even for high-bandwidth interconnects,
we still observe transfer-related bottlenecks on the host-side to
negatively impact the efficiency of modern multi-GPU systems.
Low CPU interconnect bandwidth makes it infeasible to involve
remote GPUs on the IBM AC922 if the input data resides in the
host memory of a single NUMA node. An insufficient number of
PCle switches limits the benefit of involving neighboring GPUs due
to shared bandwidth effects on the DGX A100. Thus, we conclude
that, since P2P throughput has increased, hardware systems now
need to provide fast CPU-GPU transfers to improve the scalability
of modern multi-GPU systems to all their GPUs.

Nonetheless, we show that modern P2P interconnects acceler-
ate merging considerably. For GPUs with NVLink 2.0 or NSwitch
3.0 as P2P interconnects, we measure speedups up to 14X with
P2P sort over state-of-the-art CPU-only sorting. On these systems,
inter-GPU communication is not the limiting factor anymore. Mod-
ern platforms increasingly include NVSwitch (e.g., top-of-the-line
cloud instances) [3, 44]. Thus, assuming fast P2P throughput when
designing multi-GPU algorithms becomes more and more viable.
For systems with few P2P interconnects, future work should eval-
uate multi-hop routing for the P2P merge phase, similar to Paul
et al.’s work [55]. Data transfers are redirected to their destination
over multiple GPUs instead of traversing the host-side via PCle 3.0.
However, this strategy is limited to systems where multi-hop traver-
sals can benefit from high-speed interconnects (e.g., DELTA D22x).
More importantly, we suggest reducing the P2P communication by
designing a radix partitioning-based multi-GPU sorting algorithm
that swaps the keys between all g GPUs only once (all-to-all). This
approach would highly benefit accelerator platforms with many
NVSwitch-interconnected GPUs such as the DGX A100.

8 CONCLUSION

In this paper, we conduct an extensive analysis of modern CPU-
GPU, and P2P interconnects covering serial, parallel, and bidirec-
tional data transfers for multiple GPUs. Furthermore, we evaluate
a P2P-based (P2P sort) and a heterogeneous (HET sort) multi-GPU
sorting algorithm on three state-of-the-art accelerator platforms.
P2P and HET sort significantly outperform the state-of-the-art CPU
radix sort on all systems. If the GPUs are directly connected via
high-bandwidth NVLink 2.0 or NVLink 3.0-based NVSwitch, we
demonstrate that P2P sort outperforms HET sort up to 1.65X as the
CPU’s merging performance is a limiting factor. For P2P sort, we
find that CPU-GPU data transfers are the main bottleneck. Since
the IBM AC922 is the only system with NVLink 2.0 CPU-GPU inter-
connects, it achieves the shortest end-to-end sort durations. Overall,
multiple GPUs accelerate sorting considerably, and the emerging
trend towards high CPU-GPU interconnect bandwidth promises
more efficient multi-GPU platforms [5, 53].

ACKNOWLEDGMENTS

The authors would like to thank Nikolay Sakharnykh and Elias
Stehle for their input throughout the evaluation process. This work
was partially funded by the German Ministry for Education and Re-
search (ref. 01IS18025A and ref. 01IS18037A), the German Research
Foundation (ref. 414984028), and the European Union’s Horizon
2020 research and innovation program (ref. 957407).

REFERENCES

[1] A.Adinets. 2020. A Faster Radix Sort Implementation. NVIDIA. Retrieved October

[2

[3

[11

[12

(13

[14

[15

[16

[17

(18

[19

[20

[21

[22

[23

[24

[25

]

]

]

]

]

]

]

]

]

]

]

31, 2021 from https://developer.download.nvidia.com/video/gputechconf/gtc/
2020/presentations/s21572- a-faster-radix-sort-implementation.pdf

M.-C. Albutiu, A. Kemper, and T. Neumann. 2012. Massively Parallel Sort-Merge
Joins in Main Memory Multi-Core Database Systems. Proc. VLDB Endow. 5, 10
(June 2012), 1064-1075. https://doi.org/10.14778/2336664.2336678

Amazon. 2020. Amazon EC2 P4d Instances. Amazon. Retrieved October 31, 2021
from https://aws.amazon.com/ec2/instance-types/p4/

AMD. 2018. AMD Radeon Instinct MI60: Unleash Discovery on the World’s Fastest
Double Precision PCle Accelerator. AMD. Retrieved October 31, 2021 from https:
//www.amd.com/system/files/documents/radeon-instinct-mi60-datasheet.pdf
AMD. 2019. AMD Joins Consortia to Advance CXL. AMD. Retrieved Octo-
ber 31, 2021 from https://community.amd.com/t5/amd-business-blog/amd-joins-
consortia-to-advance- cxl-a-new-high-speed- interconnect/ba-p/418202

M. Axtmann, T. Axtmann, P. Sanders, and C. Schulz. 2015. Practical Massively
Parallel Sorting. In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA ’15). Association for Computing Machinery,
New York, NY, USA, 13-23. https://doi.org/10.1145/2755573.2755595

M. Axtmann, S. Witt, D. Ferizovic, and P. Sanders. 2017. In-Place (Parallel) Super
Scalar Samplesort. Karlsruhe Institute of Technology. Retrieved October 31, 2021
from http://algo2.iti kit.edu/axtmann/invtalks/colgate/ipssss.pdf

P. Bakkum and K. Skadron. 2010. Accelerating SQL Database Operations on a GPU
with CUDA. In Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units (GPGPU-3). Association for Computing Machinery,
New York, NY, USA, 94-103. https://doi.org/10.1145/1735688.1735706

C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu. 2013. Multi-Core, Main-
Memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow. 7, 1 (September 2013),
85-96. https://doi.org/10.14778/2732219.2732227

D. Cederman and P. Tsigas. 2010. GPU-Quicksort: A Practical Quicksort Algo-
rithm for Graphics Processors. ACM J. Exp. Algorithmics 14, 4 (January 2010),
1-24. https://doi.org/10.1145/1498698.1564500

J.-C. Chen. 2006. A Simple Algorithm for In-Place Merging. Inform. Process. Lett.
98, 1 (April 2006), 34-40. https://doi.org/10.1016/.ip.2005.11.018

A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan. 2015. One
Trillion Edges: Graph Processing at Facebook-Scale. Proc. VLDB Endow. 8, 12
(August 2015), 1804-1815. https://doi.org/10.14778/2824032.2824077

M. Cho, D. Brand, R. Bordawekar, U. Finkler, V. Kulandaisamy, and R. Puri. 2015.
PARADIS: An Efficient Parallel Algorithm for In-Place Radix Sort. Proc. VLDB
Endow. 8, 12 (August 2015), 1518-1529. https://doi.org/10.14778/2824032.2824050
S. Chun, W. D. Becker, J. Casey, S. Ostrander, D. Dreps, J. A. Dreps, R. M. Nett, B.
Beaman, and J. R. Eagle. 2018. IBM POWER9 Package Technology and Design.
IBM 3. Res. Dev. 62, 4 (July 2018), 1-10. https://doi.org/10.1147/JRD.2018.2847178
J. Fang, Y. T. B. Mulder, J. Hidders, J. Lee, and H. P. Hofstee. 2020. In-Memory
Database Acceleration on FPGAs: A Survey. The VLDB Journal 29, 1 (January
2020), 33-59. https://doi.org/10.1007/s00778-019-00581-w

FAU. 2021. Likwid: Performance Monitoring and Benchmarking Suite. FAU. Re-
trieved October 31, 2021 from https://github.com/RRZE-HPC/likwid

FSF. 2021. The GNU C++ Library Manual: Parallel Mode. FSF. Retrieved October 31,
2021 from https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manual/manual/
parallel_mode.html

FSF. 2021. The GNU C++ Library Reference Manual: multiway_merge.h. FSF. Re-
trieved October 31, 2021 from https://gcc.gnu.org/onlinedocs/gec-11.2.0/libstde+
+/api/a00986.html

M. Gowanlock and B. Karsin. 2018. Sorting Large Datasets with Heterogeneous
CPU/GPU Architectures. In 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops (IPDPSW). Institute of Electrical and Electronics
Engineers, New York, NY, USA, 560-569. https://doi.org/10.1109/IPDPSW.2018.
00095

G. Graefe. 2006. Implementing Sorting in Database Systems. ACM Comput. Surv.
38, 3 (September 2006), 1-37. https://doi.org/10.1145/1132960.1132964

O. Green, R. McColl, and D. A. Bader. 2012. GPU Merge Path: A GPU Merging
Algorithm. In Proceedings of the 26th ACM International Conference on Super-
computing (ICS ’12). Association for Computing Machinery, New York, NY, USA,
331-340. https://doi.org/10.1145/2304576.2304621

M. Grund, J. Kriger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden.
2010. HYRISE: A Main Memory Hybrid Storage Engine. Proc. VLDB Endow. 4, 2
(November 2010), 105-116. https://doi.org/10.14778/1921071.1921077

A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V. Srinivasan.
2015. Amazon Redshift and the Case for Simpler Data Warehouses. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’15). Association for Computing Machinery, New York, NY, USA, 1917-1923.
https://doi.org/10.1145/2723372.2742795

M. Harris. 2012. How to Optimize Data Transfers in CUDA C/C++. NVIDIA. Re-
trieved October 31, 2021 from https://developer.nvidia.com/blog/how-optimize-
data-transfers-cuda-cc/

M. Heimel, M. Kiefer, and V. Markl. 2015. Self-Tuning, GPU-Accelerated Kernel
Density Models for Multidimensional Selectivity Estimation. In Proceedings of the

[26

[27

[28

™~
29,

[30

[31

(32

@
&

(34]

(35]

[37

[38

[40]

[41]

[42

[43

[44

[45]

2015 ACM SIGMOD International Conference on Management of Data (SIGMOD
’15). Association for Computing Machinery, New York, NY, USA, 1477-1492.
https://doi.org/10.1145/2723372.2749438

IBM. 2018. IBM Power System AC922: Technical Overview and Introduction. IBM.
Retrieved October 31, 2021 from https://www.redbooks.ibm.com/redpapers/pdfs/
redp5494.pdf

IBM. 2019. IBM POWERS Processor User’s Manual. IBM. Retrieved October 31,
2021 from https://ibm.ent.box.com/s/tmklq90ze7aj8f4n32er imu3sy9usk3k

H. Inoue and K. Taura. 2015. SIMD- and Cache-Friendly Algorithm for Sorting
an Array of Structures. Proc. VLDB Endow. 8, 11 (July 2015), 1274-1285. https:
//doi.org/10.14778/2809974.2809988

Intel. 2021. OneAPI Threading Building Blocks. Intel. Retrieved October 31, 2021
from https://github.com/oneapi- src/oneTBB

H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R.
Ramakrishnan, and C. Shahabi. 2014. Big Data and Its Technical Challenges.
Commun. ACM 57, 7 (July 2014), 86—-94. https://doi.org/10.1145/2611567

T. Kaldewey, G. Lohman, R. Mueller, and P. Volk. 2012. GPU Join Processing
Revisited. In Proceedings of the 8th International Workshop on Data Management
on New Hardware (DaMoN ’12). Association for Computing Machinery, New York,
NY, USA, 55-62. https://doi.org/10.1145/2236584.2236592

S. Kalid, A. Syed, A. Mohammad, and M. N. Halgamuge. 2017. Big-Data NoSQL
Databases: A Comparison and Analysis of "Big-Table", "DynamoDB", and "Cas-
sandra”. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA).
Institute of Electrical and Electronics Engineers, New York, NY, USA, 89-93.
https://doi.org/10.1109/ICBDA.2017.8078782

B. Karsin, V. Weichert, H. Casanova, J. lacono, and N. Sitchinava. 2018. Analysis-
Driven Engineering of Comparison-Based Sorting Algorithms on GPUs. In
Proceedings of the 2018 International Conference on Supercomputing (ICS °18).
Association for Computing Machinery, New York, NY, USA, 86-95. https:
//doi.org/10.1145/3205289.3205298

A. Kemper and T. Neumann. 2011. HyPer: A Hybrid OLTP OLAP Main Mem-
ory Database System Based on Virtual Memory Snapshots. In 2011 IEEE 27th
International Conference on Data Engineering (ICDE). Institute of Electrical and
Electronics Engineers, New York, NY, USA, 195-206. https://doi.org/10.1109/
ICDE.2011.5767867

A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker. 2020.
Evaluating Modern GPU Interconnect: PCle, NVLink, NV-SLI, NVSwitch and
GPUDirect. IEEE Transactions on Parallel and Distributed Systems (TPDS) 31, 1
(January 2020), 94-110. https://doi.org/10.1109/TPDS.2019.2928289

A. Li, S. L. Song, J. Chen, X. Liu, N. Tallent, and K. Barker. 2018. Tartan:
Evaluating Modern GPU Interconnect via a Multi-GPU Benchmark Suite. In
2018 IEEE International Symposium on Workload Characterization (IISWC). In-
stitute of Electrical and Electronics Engineers, New York, NY, USA, 191-202.
https://doi.org/10.1109/IISWC.2018.8573483

S. Li, D. Reddy, and B. Jacob. 2018. A Performance and Power Comparison of
Modern High-Speed DRAM Architectures. In Proceedings of the International Sym-
posium on Memory Systems (MEMSYS ’18). Association for Computing Machinery,
New York, NY, USA, 341-353. https://doi.org/10.1145/3240302.3240315

C. Lutz, S. Bref3, S. Zeuch, T. Rabl, and V. Markl. 2020. Pump Up the Volume:
Processing Large Data on GPUs with Fast Interconnects. In Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 1633-1649.
https://doi.org/10.1145/3318464.3389705

Z.Majo and T. R. Gross. 2011. Memory System Performance in a NUMA Multicore
Multiprocessor. In Proceedings of the 4th Annual International Conference on
Systems and Storage (SYSTOR ’11). Association for Computing Machinery, New
York, NY, USA, 1-10. https://doi.org/10.1145/1987816.1987832

E. Manca, A. Manconi, A. Orro, G. Armano, and L. Milanesi. 2016. CUDA-
Quicksort: An Improved GPU-Based Implementation of Quicksort. Concurr.
Comput.: Pract. Exper. 28, 1 (February 2016), 21-43. https://doi.org/10.1002/cpe.
3611

J. McCalpin. 1995. Memory Bandwidth and Machine Balance in High Performance
Computers. IEEE Technical Committee on Computer Architecture Newsletter 2, 1
(December 1995), 19-25.

D. Merrill and M. Garland. 2016. Single-Pass Parallel Prefix Scan with Decoupled
Look-Back. Technical Report. NVIDIA. 1-9 pages. Retrieved October 31, 2021
from https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-
Parallel-Prefix/nvr-2016-002.pdf

D. Merrill and A. Grimshaw. 2011. High Performance and Scalable Radix Sort-
ing: A Case Study of Implementing Dynamic Parallelism for GPU Computing.
Parallel Processing Letters 21, 2 (June 2011), 245-272. https://doi.org/10.1142/
50129626411000187

Microsoft. 2021. Microsoft Azure ND A100 v4-Series. Microsoft. Retrieved October
31, 2021 from https://docs.microsoft.com/en-us/azure/virtual-machines/nda100-
v4-series

NVIDIA. 2017. NVIDIA Tesla V100 GPU Architecture. NVIDIA. Retrieved
October 31, 2021 from http://images.nvidia.com/content/volta-architecture/pdf/
volta-architecture-whitepaper.pdf

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21572-a-faster-radix-sort-implementation.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21572-a-faster-radix-sort-implementation.pdf
https://doi.org/10.14778/2336664.2336678
https://aws.amazon.com/ec2/instance-types/p4/
https://www.amd.com/system/files/documents/radeon-instinct-mi60-datasheet.pdf
https://www.amd.com/system/files/documents/radeon-instinct-mi60-datasheet.pdf
https://community.amd.com/t5/amd-business-blog/amd-joins-consortia-to-advance-cxl-a-new-high-speed-interconnect/ba-p/418202
https://community.amd.com/t5/amd-business-blog/amd-joins-consortia-to-advance-cxl-a-new-high-speed-interconnect/ba-p/418202
https://doi.org/10.1145/2755573.2755595
http://algo2.iti.kit.edu/axtmann/invtalks/colgate/ipssss.pdf
https://doi.org/10.1145/1735688.1735706
https://doi.org/10.14778/2732219.2732227
https://doi.org/10.1145/1498698.1564500
https://doi.org/10.1016/j.ipl.2005.11.018
https://doi.org/10.14778/2824032.2824077
https://doi.org/10.14778/2824032.2824050
https://doi.org/10.1147/JRD.2018.2847178
https://doi.org/10.1007/s00778-019-00581-w
https://github.com/RRZE-HPC/likwid
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manual/manual/parallel_mode.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/manual/manual/parallel_mode.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/api/a00986.html
https://gcc.gnu.org/onlinedocs/gcc-11.2.0/libstdc++/api/a00986.html
https://doi.org/10.1109/IPDPSW.2018.00095
https://doi.org/10.1109/IPDPSW.2018.00095
https://doi.org/10.1145/1132960.1132964
https://doi.org/10.1145/2304576.2304621
https://doi.org/10.14778/1921071.1921077
https://doi.org/10.1145/2723372.2742795
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/
https://doi.org/10.1145/2723372.2749438
https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
https://www.redbooks.ibm.com/redpapers/pdfs/redp5494.pdf
https://ibm.ent.box.com/s/tmklq90ze7aj8f4n32er1mu3sy9u8k3k
https://doi.org/10.14778/2809974.2809988
https://doi.org/10.14778/2809974.2809988
https://github.com/oneapi-src/oneTBB
https://doi.org/10.1145/2611567
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1109/ICBDA.2017.8078782
https://doi.org/10.1145/3205289.3205298
https://doi.org/10.1145/3205289.3205298
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/TPDS.2019.2928289
https://doi.org/10.1109/IISWC.2018.8573483
https://doi.org/10.1145/3240302.3240315
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/1987816.1987832
https://doi.org/10.1002/cpe.3611
https://doi.org/10.1002/cpe.3611
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://research.nvidia.com/sites/default/files/pubs/2016-03_Single-pass-Parallel-Prefix/nvr-2016-002.pdf
https://doi.org/10.1142/S0129626411000187
https://doi.org/10.1142/S0129626411000187
https://docs.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
https://docs.microsoft.com/en-us/azure/virtual-machines/nda100-v4-series
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[46

[47

[48]

[49

[50

[52

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61

[62]

[63]

NVIDIA. 2018. NVIDIA NVSwitch: The World’s Highest-Bandwidth On-Node Switch.
NVIDIA. Retrieved October 31, 2021 from http://images.nvidia.com/content/
pdf/nvswitch-technical-overview.pdf

NVIDIA. 2020. CUDA C++ Best Practices Guide. NVIDIA. Retrieved October 31,
2021 from https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
NVIDIA. 2020. CUDA C++ Programming Guide. NVIDIA. Retrieved October 31,
2021 from https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
NVIDIA. 2020. Modern GPU: Patterns and Behaviors for GPU Computing. NVIDIA.
Retrieved October 31, 2021 from https://github.com/moderngpu/moderngpu
NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architecture. NVIDIA. Retrieved
October 31, 2021 from https://www.nvidia.com/content/dam/en-zz/Solutions/
Data- Center/nvidia-ampere-architecture-whitepaper.pdf

NVIDIA. 2021. CUB: Cooperative Primitives for CUDA C++. NVIDIA. Retrieved
October 31, 2021 from https://github.com/NVIDIA/cub

NVIDIA. 2021. NVIDIA DGX A100 System. NVIDIA. Retrieved October 31, 2021
from https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf

NVIDIA. 2021. NVIDIA Grace CPU. NVIDIA. Retrieved October 31, 2021 from
https://www.nvidia.com/en-us/data-center/grace-cpu/

NVIDIA. 2021. Thrust: Code at the Speed of Light. NVIDIA. Retrieved October
31, 2021 from https://github.com/NVIDIA/thrust

J. Paul, S. Lu, B. He, and C. Lau. 2021. MG-Join: A Scalable Join for Mas-
sively Parallel Multi-GPU Architectures. In Proceedings of the 2021 ACM SIG-
MOD International Conference on Management of Data (SIGMOD °21). Asso-
ciation for Computing Machinery, New York, NY, USA, 1413-1425. https:
//doi.org/10.1145/3448016.3457254

C. Pearson, A. Dakkak, S. Hashash, C. Li, I.-H. Chung, J. Xiong, and W.-M. Hwu.
2019. Evaluating Characteristics of CUDA Communication Primitives on High-
Bandwidth Interconnects. In Proceedings of the 2019 ACM/SPEC International
Conference on Performance Engineering (ICPE ’19). Association for Computing Ma-
chinery, New York, NY, USA, 209-218. https://doi.org/10.1145/3297663.3310299
H. Peters and O. Schulz-Hildebrandt. 2012. Comparison-Based In-Place Sorting
with CUDA. In GPU Computing Gems Jade Edition, W.-M. Hwu (Ed.). Morgan
Kaufmann, Boston, MA, USA, 89-96. https://doi.org/10.1016/B978-0-12-385963-
1.00008-3

H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger. 2010. Parallel External
Sorting for CUDA-Enabled GPUs with Load Balancing and Low Transfer Over-
head. In 2010 IEEE International Symposium on Parallel Distributed Processing,
Workshops and PhD Forum (IPDPSW). Institute of Electrical and Electronics Engi-
neers, New York, NY, USA, 1-8. https://doi.org/10.1109/IPDPSW.2010.5470833
H. Peters, O. Schulz-Hildebrandt, and N. Luttenberger. 2012. A Novel Sorting
Algorithm for Many-Core Architectures Based on Adaptive Bitonic Sort. In 2012
IEEE 26th International Parallel and Distributed Processing Symposium (IPDPS).
Institute of Electrical and Electronics Engineers, New York, NY, USA, 227-237.
https://doi.org/10.1109/IPDPS.2012.30

C. Pheatt. 2008. Intel Threading Building Blocks. J. Comput. Sci. Coll. 23, 4 (April
2008), 298.

O. Polychroniou and K. A. Ross. 2014. A Comprehensive Study of Main-Memory
Partitioning and Its Application to Large-Scale Comparison- and Radix-Sort. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
755-766. https://doi.org/10.1145/2588555.2610522

S. M. A.Raza, P. Chrysogelos, P. Sioulas, V. Indjic, A. C. Anadiotis, and A. Ailamaki.
2020. GPU-Accelerated Data Management under the Test of Time. In Online
Proceedings of the 10th Conference on Innovative Data Systems Research (CIDR).
Conference on Innovative Data Systems Research, Amsterdam, Netherlands,
1-11.

R. Rui, H. Li, and Y.-C. Tu. 2020. Efficient Join Algorithms for Large Database
Tables in a Multi-GPU Environment. Proc. VLDB Endow. 14, 4 (December 2020),

[64

(65

=
o

[67]

[68

[69]

[70

3
=

[72

(73]

[74

[75

[76]

708-720. https://doi.org/10.14778/3436905.3436927

N. Satish, M. Harris, and M. Garland. 2009. Designing Efficient Sorting Algorithms
for Manycore GPUs. In 2009 IEEE International Symposium on Parallel Distributed
Processing (IPDPS). Institute of Electrical and Electronics Engineers, New York,
NY, USA, 1-10. https://doi.org/10.1109/IPDPS.2009.5161005

N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W. Lee, D. Kim, and P. Dubey.
2010. Fast Sort on CPUs and GPUs: A Case for Bandwidth Oblivious SIMD Sort.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’10). Association for Computing Machinery, New York, NY,
USA, 351-362. https://doi.org/10.1145/1807167.1807207

A. Shanbhag, S. Madden, and X. Yu. 2020. A Study of the Fundamental Perfor-
mance Characteristics of GPUs and CPUs for Database Analytics (Extended Version).
Technical Report. Massachusetts Institute of Technology. 1-17 pages. Retrieved
October 31, 2021 from https://arxiv.org/pdf/2003.01178.pdf

D. D. Sharma and S. Tavallaei. 2020. Compute Express Link 2.0 White Paper. CXL.
Retrieved October 31, 2021 from https://b373eaf2- 67af-4a29-b28c-3aae9e644f30.
filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955¢7d0f60bebe.pdf

V. Sikka, F. Fiarber, W. Lehner, S. K. Cha, T. Peh, and C. Bornhévd. 2012. Efficient
Transaction Processing in SAP HANA Database: The End of a Column Store Myth.

In Proceedings of the 2012 ACM SIGMOD International Con{lerence on Management
of Data (SIGMOD ’12). Association for Computing Machinery, New York, NY,

USA, 731-742. https://doi.org/10.1145/2213836.2213946

J. Singler and B. Konsik. 2008. The GNU libstdc++ Parallel Mode: Software En-
gineering Considerations. In Proceedings of the 1st International Workshop on
Multicore Software Engineering (IWMSE ’08). Association for Computing Machin-
ery, New York, NY, USA, 15-22. https://doi.org/10.1145/1370082.1370089

P. Sioulas, P. Chrysogelos, M. Karpathiotakis, R. Appuswamy, and A. Ailamaki.
2019. Hardware-Conscious Hash-Joins on GPUs. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). Institute of Electrical and Electronics
Engineers, New York, NY, USA, 698-709. https://doi.org/10.1109/ICDE.2019.
00068

E. Stehle and H.-A. Jacobsen. 2017. A Memory Bandwidth-Efficient Hybrid Radix
Sort on GPUs. In Proceedings of the 2017 ACM SIGMOD International Conference
on Management of Data (SIGMOD °17). Association for Computing Machinery,
New York, NY, USA, 417-432. https://doi.org/10.1145/3035918.3064043

1. Tanasic, L. Vilanova, M. Jorda, J. Cabezas, 1. Gelado, N. Navarro, and W.-M. Hwu.
2013. Comparison Based Sorting for Systems with Multiple GPUs. In Proceedings
of the 6th Workshop on General Purpose Processor Using Graphics Processing Units
(GPGPU-6). Association for Computing Machinery, New York, NY, USA, 1-11.
https://doi.org/10.1145/2458523.2458524

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S. Antony, H.
Liu, and R. Murthy. 2010. Hive - A Petabyte Scale Data Warehouse Using
Hadoop. In 2010 IEEE 26th International Conference on Data Engineering (ICDE).
Institute of Electrical and Electronics Engineers, New York, NY, USA, 996-1005.
https://doi.org/10.1109/ICDE.2010.5447738

J. Treibig, G. Hager, and G. Wellein. 2010. Likwid: A Lightweight Performance-
Oriented Tool Suite for x86 Multicore Environments. In 2010 IEEE 39th In-
ternational Conference on Parallel Processing Workshops (ICPPW). Institute of
Electrical and Electronics Engineers, New York, NY, USA, 207-216. https:
//doi.org/10.1109/ICPPW.2010.38

T. Willhalm, N. Popovici, Y. Boshmaf, H. Plattner, A. Zeier, and J. Schaffner. 2009.
SIMD-Scan: Ultra Fast In-Memory Table Scan Using On-Chip Vector Processing
Units. Proc. VLDB Endow. 2, 1 (August 2009), 385-394. https://doi.org/10.14778/
1687627.1687671

Y. Ye, Z. Du, D. Bader, Q. Yang, and W. Huo. 2011. GPUMemSort: A High
Performance Graphics Co-Processors Sorting Algorithm for Large Scale In-
Memory Data. GSTF International Journal on Computing 1, 2 (May 2011), 23-28.
https://doi.org/10.5176/2010-2283_1.2.34

http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://github.com/moderngpu/moderngpu
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://github.com/NVIDIA/cub
https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://github.com/NVIDIA/thrust
https://doi.org/10.1145/3448016.3457254
https://doi.org/10.1145/3448016.3457254
https://doi.org/10.1145/3297663.3310299
https://doi.org/10.1016/B978-0-12-385963-1.00008-3
https://doi.org/10.1016/B978-0-12-385963-1.00008-3
https://doi.org/10.1109/IPDPSW.2010.5470833
https://doi.org/10.1109/IPDPS.2012.30
https://doi.org/10.1145/2588555.2610522
https://doi.org/10.14778/3436905.3436927
https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1145/1807167.1807207
https://arxiv.org/pdf/2003.01178.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://b373eaf2-67af-4a29-b28c-3aae9e644f30.filesusr.com/ugd/0c1418_14c5283e7f3e40f9b2955c7d0f60bebe.pdf
https://doi.org/10.1145/2213836.2213946
https://doi.org/10.1145/1370082.1370089
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1145/3035918.3064043
https://doi.org/10.1145/2458523.2458524
https://doi.org/10.1109/ICDE.2010.5447738
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.5176/2010-2283_1.2.34

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Interconnect Analysis
	4.1 Hardware Systems Overview
	4.2 CPU-GPU Data Transfers
	4.3 P2P Data Transfers

	5 Sorting Algorithms
	5.1 Single-GPU Sorting
	5.2 P2P-Based Multi-GPU Sorting
	5.3 Heterogeneous Multi-GPU Sorting
	5.4 Algorithm Discussion

	6 Experimental Evaluation
	6.1 Multi-GPU Sorting Algorithm Comparison
	6.2 Sorting Large Out-Of-Core Data
	6.3 Sorting Different Data Sets

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

