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Abstract
Modern database systems for online analytical processing (OLAP)
typically rely on in-memory processing. Keeping all active data in
DRAM severely limits the data capacity and makes larger deploy-
ments much more expensive than disk-based alternatives. Byte-
addressable persistent memory (PMEM) is an emerging storage
technology that bridges the gap between slow-but-cheap SSDs
and fast-but-expensive DRAM. Thus, research and industry have
identified it as a promising alternative to pure in-memory data ware-
houses. However, recent work shows that PMEM’s performance is
strongly dependent on access patterns and does not always yield
good results when simply treated like DRAM. To characterize
PMEM’s behavior in OLAP workloads, we systematically evaluate
PMEM on a large, multi-socket server commonly used for OLAP
workloads. Our evaluation shows that PMEM can be treated like
DRAM for most read access but must be used differently when
writing. To support our findings, we run the Star Schema Bench-
mark on PMEM and DRAM. We show that PMEM is suitable for
large, read-heavy OLAP workloads with an average query runtime
slowdown of 1.66x compared to DRAM. Following our evaluation,
we present 7 best practices on how to maximize PMEM’s bandwidth
utilization in future system designs.
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1 Introduction
Online analytical processing (OLAP) is one of the crucial applica-
tions for many companies to understand the state of their business.
Since the amount of data and the need for faster data processing has
increased immensely over the last decade, there has also been a shift
in technology: OLAP has moved from HDDs to faster SSDs [16]
and with databases like SAP HANA [26], even faster in-memory
column stores [1, 48] are widely used for OLAP workloads. Many
OLAP deployments need to support huge tables at good end-user
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performance [53], which results in a compromise between fast, but
low capacity DRAM and slower, but high-capacity SSDs.

Recently, Intel® Optane™ DC Persistent Memory became com-
mercially available. Optane DIMMs are persistent memory (PMEM)
modules that fit into regular memory slots, like DRAM. PMEM
promises persistent and byte-addressable storage with performance
close to DRAM while providing higher density [27, 30, 51, 54].

Before the general availability of PMEM, related research on
data structures and database systems was conducted based on sim-
ulations and assumptions [4, 6–9, 22, 38]. Since PMEM is available,
research on the actual hardware observed that there are huge perfor-
mance gaps depending on the type of I/O operation, which instruc-
tion is used, which access size is used, and howmany threads access
PMEM [30, 54]. Thus, it is critical to gain a solid understanding of
PMEM’s exact performance characteristics for future research.

In this paper, we systematically evaluate Intel’s OptaneDIMMs as
the first commercially available PMEM and provide 7 best practices
for its use in OLAP workloads. While previous work provides
initial performance numbers for PMEM [51, 54], a more detailed
understanding of this new technology is essential to achieve the
best performance in various use-cases. With this work, we aim
to provide additional insights for PMEM in OLAP workloads. To
this end, we build on benchmarks of previous work (e.g., Access
Size and Thread Count) but provide new and additional insights
into their impact. We also extend our benchmarks beyond previous
work by evaluating the use of PMEM on large-scale systems with
multiple NUMA nodes and full system control. This enables us to
investigate other OLAP-related parameters, such as the interaction
across NUMA Regions, as well as the Thread Assignment to cores.
Where applicable, we contrast PMEMwithDRAM to provide insight
into varying or similar device characteristics.

In this work, we focus on a PMEM-only design space. While
hybrid PMEM-DRAM use is expected in the future and recent work
focuses on initial performance numbers [45, 52], we see a need to
fully understand PMEM characteristics before adding additional
complexity through hybrid approaches.

To apply our findings in an OLAP-workload, we execute the Star
Schema Benchmark (SSB) [36] on PMEM. We implement the SSB
both in a handcrafted C++ version as well as in the in-memory
database Hyrise [24, 25]. This allows us to show the raw impact of
PMEM compared to DRAM and its expected impact in full systems,
which are not PMEM-aware. Based on our results, we conclude that
PMEM is a suitable alternative to expensive and capacity-limited
DRAM for OLAP workloads. In summary, we make the following
contributions:

(1) We extensively evaluate PMEM on a multi-socket system.
(2) We present 7 best practices to maximize PMEM bandwidth

utilization for OLAP workloads on a multi-socket server.
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Figure 1: System Architecture.

(3) We run the Star Schema Benchmark on PMEM and DRAM
in a handcrafted C++ version and the database Hyrise.

The remainder of this paper is structured as follows. Section 2
provides background on PMEM, OLAP characteristics, and de-
scribes our benchmark setup. In Section 3 and Section 4, we evaluate
PMEM’s sequential read and write bandwidth across several axes.
Section 5 focuses on mixed workloads and random access perfor-
mance. In Section 6, we present an implementation of the Star
Schema Benchmark on PMEM. Section 7 condenses our insights
into a set of best practices for PMEM bandwidth. We end this paper
with related work in Section 8, before concluding in Section 9.

2 Background
In this section, we introduce persistent memory, describe relevant
characteristics of OLAP workloads, and provide an overview of the
system we perform our evaluation on.

2.1 Persistent Memory
PMEM is generally defined by its two most significant attributes:
byte-addressability and persistency. These properties conceptually
place it somewhere between persistent block-devices like SSDs
or HDDs and volatile, but byte-addressable DRAM. The first and
currently only publicly available implementation of PMEM is the
Intel® Optane™ DC Persistent Memory. In the following, when
speaking about the explicit behavior of PMEM, we refer to the
behavior of Optane. Further, as in previous work, we assume that
future implementations of PMEM will perform similarly [30, 54].

Intel Optane’s integration into a system is very similar to DRAM
as shown in Figure 1. It comes in the form factor of a DIMM in the
sizes of 128 GB, 256 GB, and 512 GB and is connected to a memory
channel. These memory channels are connected directly to the
integrated memory controller (iMC) on the CPU. Each iMC serves
up to three memory channels and every CPU-socket contains two
iMC’s, resulting in up to six memory channels connected to PMEM
for each socket. The iMC and PMEM modules communicate via
the DDR-T protocol, an extension of the DDR4 protocol, allowing
asynchronous command- and data-timing.

Read and write accesses are inserted into a corresponding read or
write pending queue (RPQ orWPQ) inside the iMC. In a systemwith
multiple sockets, I/O operations can be inserted from one socket
into the WPQs and RPQs of another socket by transmitting them
over the Intel Ultra Path Interconnect (UPI), effectively allowing
one socket to utilize PMEM of another socket. After insertion into
the WPQ, write operations are guaranteed to be processed and thus
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Figure 2: DIMM Interleaving. Data is interleaved at 4 KB across
6 DIMMs forming one filesystem mount point.

persisted by PMEM, even in case of a power loss. As the CPU has
a cache line size of 64 Byte and Optane memory has an internal
granularity of 256 Byte, multiple accesses to consecutive addresses
result in a single internal read for PMEM, loading 256 Byte into a
buffer and resolving following accesses from this buffer.

PMEM can be used in two different modes: Memory Mode and
App Direct Mode.Memory Mode adds PMEM to the available DRAM
as addressable main memory and DRAM becomes an inaccessible
“L4”-cache in front of PMEM. Since it is not guaranteed that dirty
cache lines in DRAM are persisted in case of power loss, this mode
does not guarantee persistency. App Direct Mode makes PMEM
explicitly addressable outside of DRAM and allows the application
to map PMEM into its virtual address space. In App Direct, PMEM
profits from direct access, allowing PMEM to be accessed like a
filesystem (fsdax) or character-device (devdax), without filesystem-
overhead or the use of the OS page cache. Both modes can be used
in parallel, where parts of PMEM are in Memory Mode and extend
DRAM, while other parts of PMEM in App Direct Mode act as a
persistent storage device. As the App Direct Mode provides more
control over PMEM, most research focuses on it instead of the
Memory Mode [37, 45, 54]. However, existing applications need
to be re-written to use PMEM with it, whereas Memory Mode
transparently gives applications more DRAM without any changes.
Data stored on PMEM is interleaved across the DIMMs of a socket
in steps of 4 KB as shown in Figure 2. Following this, in a system
with six PMEM DIMMs per socket, data larger than 20 KB will
be striped across all DIMMs. This interleaving allows data to be
accessed in parallel on multiple DIMMs.

While integrated into the system similarly to DRAM, research
on Intel Optane conducted by Yang et al. [54] shows that PMEM
behaves a lot more nuanced and has characteristics that differ sig-
nificantly from the idea of “slow, persistent DRAM” as assumed by
earlier research [5, 37, 53, 55]. Reading from PMEM yields approx. a
third and writing a seventh of the bandwidth of DRAM, but is still at
least an order of magnitude higher than on SSD. Like SSDs, PMEM
wears out over time and offers much higher capacities than DRAM,
which is typically used in smaller 32 GB DIMMs on servers [45].

2.2 Online Analytical Processing
Today’s data workloads on an industrial scale are mainly placed in
two categories: Online Transaction Processing (OLTP) and Online
Analytical Processing (OLAP). OLTP requires low latency reading
and writing while primarily accessing only a few records per trans-
action [23]. OLAP is, aside from the ingestion of the data, generally
read-only. The queries are more complex and often require scanning
and joining multiple tables, resulting in large intermediate results
and a need for higher memory capacity [46, 49]. Following this,



both the huge table sizes as well as maintaining a good end-user per-
formance were identified as core challenges for OLAP systems [53].
Recent work on in-memory OLAP systems shows that OLAP on
high-performance column stores can be orders of magnitude faster
than on traditional row stores [2, 48]. However, even in these opti-
mized column stores performance is lost due to long-latency data
cache misses, which can directly be connected to the bandwidth
saturation of the underlying storage medium [46]. Due to this, in
this paper, we mainly focus on increasing the bandwidth of PMEM
to maximize its performance for OLAP.

2.3 Experimental Setup
We perform our experiments on a dual-socket server with an ar-
chitecture as shown in Figure 1. This design is very similar to the
benchmark systems used in previous research [45, 54]. The CPU-
sockets are Intel® Xeon® Gold 5220S with 2.70 GHz base frequency
and 18 CPU cores each. Two logical cores are available per physical
core due to hyperthreading. The logical cores share the physical
core’s L1 and L2 caches. Hyperthreading gives us 36 (18 x 2) logical
cores per socket and 72 (36 x 2) logical cores in total.

There are two iMC’s per socket with three memory channels,
each connected to one PMEM DIMM, resulting in six (3 channels
x 2 iMC’s) PMEM DIMMs per socket and twelve (6 DIMMs x 2
sockets) DIMMs for the whole system. We use 128 GB Intel Optane
DIMMs, resulting in a total PMEM capacity of 1.5 TB (128 GB x 6
DIMMs x 2 sockets). Besides PMEM, a 16 GB Samsung DDR4 DIMM
is connected to every memory channel, totaling 186 GB (16 GB x 6
channels x 2 sockets) of DRAM.

As our server contains four NUMA nodes with different memory
access distances to each other, we distinguish between the terms
NUMA region and NUMA node for our benchmarks. Each NUMA
node consists of 9 physical cores and one iMC connected to three
PMEMDIMMs aswell as three DRAMDIMMs. ANUMA region (i.e.,
one socket) consists of two close NUMA nodes, where the access
distance within the region (intra-region) is nearly identical. The
access across NUMA regions (inter-region) incurs higher overhead
via the UPI. Consequently, we also distinguish between near and
far PMEM, where near PMEM is any DIMM that is within the same
NUMA region and far PMEM is any DIMM in the other region.

Our machine runs Ubuntu 18.04 LTS (kernel 4.15). We access
PMEM in App Direct Mode via devdax. Our evaluation shows that
the behavior and trends on devdax and fsdax are identical but devdax
consistently achieves a 5–10% higher bandwidth in all experiments.
This performance difference is attributed to the impact of page faults
in fsdax. As mmap returns zeroedmemory by default, any initial page
fault in fsdax triggers the kernel to zero the requested page. Once
data is present (i.e., the file was written to already or devdax is used),
the memory does not need to be zeroed. We ran an experiment
to verify this. The performance of devdax and fsdax is identical if
all pages were pre-faulted before the measured access. We note,
however, that a 2MB page fault (default in PMEM if configured with
ndctl) takes ~0.5 ms, thus, pre-faulting 1 GB of PMEM takes at
least 0.25 seconds. As we investigate large-scale OLAP workloads,
we assume a system to have full hardware-control and to manage
memory itself in devdax, which achieves higher bandwidths due to
avoiding page faults.
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Figure 3: Read Bandwidth dependent on Access Size and
Thread Count. Bandwidth peaks at 4 KB and high threads counts
for grouped reads and is constant for individual sequential reads.

PMEM data is interleaved as described above and shown in Fig-
ure 2, resulting in a large PMEM character device for each socket.
As a programming interface, we use the Persistent Memory De-
velopment Kit’s libpmem library [21] without any of its high-level
abstractions. All benchmarks are written in C/C++ and assembly to
work as close to the hardware as possible. For additional hardware
insights during the benchmarks, we use the Intel® VTune™ Pro-
filer [20], which provides detailed information about various system
components. Our code is open-source and available on GitHub1.

3 Sequential Read Performance
Large full-table scans are the most common read pattern in OLAP
workloads [14], making them highly dependent on sequential read
performance. In this section, we evaluate the maximum read band-
width of PMEM. We evaluate the impact of the Access Size, the
Thread Count, Thread Pinning,NUMA Effects, andMulti-Socket Char-
acteristics. We use the vmovntdqa instruction to read data into the
CPU registers and exploit the AVX-512 capability of modern servers,
as done in previous work [54]. Unless stated otherwise, all read
benchmarks are performed on 70 GB raw data located in PMEM.

3.1 Read Access Size
We first evaluate the access size to determine how many bytes
should be read from PMEM to achieve the highest bandwidth.

Workload. We define the access size as the number of consecu-
tive bytes accessed by one thread. The benchmark is run for 1 to 36
threads with access sizes from 64 Byte to 64 KB. We use cores and
memory of only one NUMA region, to which threads are pinned
using numactl. As each NUMA region has 18 physical cores, we
use hyperthreading only for thread counts above 18. In the Grouped
Access, reads are interleaved across all threads, i.e., if thread 1 reads
bytes 0–255, thread 2 reads from byte 256, which leads to one global
sequential read. In Individual Access, each thread has its own dis-
joint memory region, i.e., thread 1 reads GB 0 to 1, thread 2 reads
GB 1 to 2, which leads to #threads sequential reads.

Results. Figure 3 shows that the access size is relevant when
all threads read consecutively from the same location (a) while
impacting the bandwidth of individual access only marginally (b).
The maximum bandwidth for grouped access ranges from 12 to 40
GB/s for 36 threads, whereas the maximum individual spans only
3 GB. It also shows that in both grouped and individual access, a
peak bandwidth of ~40 GB/s is achieved. However, grouped access
only achieves this peak for certain configurations and shows large
variation, while individual reads constantly perform close to the

1https://github.com/hpides/pmem-olap
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peak for high thread counts. In the grouped reads, 4 KB access
results in a global maximum for various thread counts, which is
not observable for individual reads. The bandwidth stays constant
for access sizes larger than 64 KB.

Discussion. The reason for the impact of the access size on
grouped reads is threefold. First, for small access sizes (< 256 Byte),
nearly all threads operate on the same DIMM, thus not profiting
from the parallelism of interleavedmemory. This shows that an even
distribution of threads to DIMMs is essential to achieve high PMEM
bandwidths. This clearly distinguishes PMEM from DRAM. Second,
4 KB access aligns perfectly to the interleaved DIMM boundaries
causing an ideal thread-to-DIMM distribution and better prefetch-
ing. Third, the L2 hardware prefetcher [17] performs poorly for 1
and 2 KB access. When running the same benchmark with the L2
prefetcher disabled, we do not observe the drop at 1 and 2K access
but a more constant bandwidth for access larger than 256 Byte.
However, we also observe this poor prefetching behavior in DRAM,
thus, this is not a PMEM-specific anomaly but indicates that this
access pattern is sub-optimal for Intel’s L2 hardware prefetcher. We
do not recommend disabling the prefetcher, as it is a system-wide
setting that might cause unexpected performance degradation.

On the other hand, individual reads profit significantly from
Optane-internal prefetching as each core accesses consecutive data
in a DIMM. When deactivating the L2 prefetcher, we observe no
impact regarding the access size. Thus, for individual reads, the
access size is not as relevant. Accesses smaller than Optane’s 256
Byte granularity still achieve 30+ GB/s, as the Optane controller
can immediately answer consecutive requests from the loaded 256
Byte cache line without causing read amplification.

Insight #1: Read data from individual memory regions or in
consecutive 4 KB chunks to benefit from prefetching and an
even thread-to-DIMM distribution.

3.2 Read Thread Count
We now evaluate the optimal read thread count for grouped and
individual reads, with the same workload as in the previous section.

Results. Figure 3 shows that the highest bandwidth (~40 GB/s)
is achieved with 16 and 18 threads in both grouped and individual
reads. Generally, all thread counts above 16 achieve a very high
bandwidth (except for the prefetcher dip in Figure 3a). However,
adding hyperthreads does not improve the bandwidth. Access with
36 threads constitutes a small outlier, as the other thread counts
with hyperthreading perform worse than 18 threads and 36 threads
achieve peak performance for certain access sizes. Yet, access with
as few as 8 threads achieves nearly as much bandwidth utilization
as 36 threads (~15% difference).

Discussion. The main insight from this benchmark is that hy-
perthreading is generally not needed to saturate PMEM’s band-
width. In certain cases, it even performs worse than using fewer
threads. In light of the high impact of prefetching on the access
size, we also investigate its impact on the thread count. When dis-
abling the L2 prefetcher, lower thread counts (<8) perform worse
but higher thread counts (>18) perform better. This indicates that
the prefetcher does not work efficiently for high thread counts read-
ing from various locations. Hyperthreading especially benefits from
a disabled prefetcher, as hyperthreads share the L2 cache on one

core, and thus the prefetcher constantly pollutes it. With a disabled
prefetcher, 36 threads also achieve the highest bandwidth of ~40
GB/s (like 16/18 threads). However, as prefetching is most likely
activated, hyperthreads will not generally increase the bandwidth.

Concluding, more cores lead to higher bandwidth and all physical
cores are needed to saturate it. If hyperthreading is used, again,
more threads achieve higher bandwidth. While the observation
of more threads equals more bandwidth seems trivial, we observe
a different behavior in write performance (see Section 4). Thus,
we explicitly point out the performance implications of the thread
count at this point. We evaluate the impact of the thread-ratio on
mixed read-write workloads in Section 5.

Insight #2: Use all available cores for maximum read band-
width and avoid hyperthreaded reads.

3.3 Read Thread Pinning
When multiple threads access PMEM, an efficient thread-to-core
assignment (or thread pinning) becomes an important factor when
aiming for higher bandwidths. We explore three basic approaches
to assign (pin) threads to the available cores.

The threads are either not pinned at all (None), pinned to the
NUMA region near the PMEM they are accessing (NUMA Region),
or to individual cores in that NUMA region (Cores). For None, the
scheduler can freely assign threads to cores across all sockets and
for NUMA Region, the scheduler assigns only to cores in that region.
While the third approach is relatively independent of the scheduler,
the first and second approaches rely heavily on its behavior. Rely-
ing on the scheduler has the advantage of adaptability to changing
workloads, given that the scheduler is aware of PMEM characteris-
tics. However, it also removes the ability to fine-tune the system in
favor of a known workload to achieve even higher bandwidths.

Workload. In our setup, the threads are either distributed across
all 36 physical cores (None), pinned to the 18 cores of one NUMA
region (NUMA Region) or pinned to one individual core (Cores). In
the Cores run, with fewer than 18 threads, we fill up the physical
cores before placing threads on the logical sibling cores. All pinning
variants use individual access with a fixed size of 4 KB.

Results. In Figure 4, we observe that pinning to individual cores
slightly outperforms only pinning to the NUMA region on that
socket when using more than 18 threads. Pinning threads to in-
dividual cores gives the highest bandwidth of ~41 GB/s with 18
threads, while only pinning them to a NUMA region results in ~40
GB/s for 18 and 36 threads. No pinning at all results in drastically
worse performance, peaking at only ~9 GB/s for 8 and 36 threads.

Discussion. The higher performance with Cores-pinning over
NUMA Region is explained by avoiding the scheduling overhead
when having to schedule more than 18 threads onto 18 physical
available cores. This is not neededwhen directly pinning the threads
to cores. Using 18 threads or fewer does not require scheduling of
multiple threads to a single core and therefore results in exactly
the same bandwidth for pinning to NUMA regions or individual
cores. The general bandwidth drop after 18 threads is again caused
by shared L2 pollution of hyperthreads, regardless of the pinning
strategy. The low bandwidth for no pinning is caused by the sched-
uler placing some of the threads on the far socket regarding the
PMEM DIMMs we are reading from. This results in threads having
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to access PMEM connected to the other CPU socket. As the perfor-
mance is significantly lower in this case, we evaluate the bandwidth
impact of accessing far and near memory in detail in Section 3.4.
Insight #3: Pin threads to avoid far-memory access.

3.4 Read NUMA Effects
The low bandwidth of the None-pinning in the previous section
indicates that there are NUMA effects when working with PMEM
on multiple sockets. In this section, we examine them in detail.

Workload. The threads are pinned to the NUMA region on the
first socket. They either read only from the PMEM connected to
the same socket (Near), or from PMEM connected to the second
socket (Far). We also measure a second run for far PMEM access
(2nd Far). All access is individual with a size of 4 KB.

Results. In Figure 5, we measure the bandwidth when accessing
PMEM across sockets. It shows that accessing PMEM connected
to the near socket has a peak performance of ~40 GB/s. The first
access on the far PMEM results in a very low bandwidth of ~8
GB/s, being worse by a factor of 5. The optimal thread count for far
PMEM access also shifts from 18 threads to only 4 threads. This
is the same effect we see in Figure 4, when not pinning threads
at all. An interesting effect, which we observe, is the warm-up
behavior when accessing far PMEM. Starting from the second run,
the performance nearly matches the performance of accessing the
near PMEM (~40 GB/s when accessing near PMEM vs. ~33 GB/s
when accessing far PMEM in the second and consecutive runs).

Discussion. Figure 1 shows the architecture of our and other
commonly used systems [45, 54]. Especially, it shows that we have
two independent sets of PMEM DIMMs, which are not interleaved
with each other and have to be accessed individually. Intel® Xeon®
processors use a coherency protocol to manage the address space
of multiple sockets that requires address space mappings. When
memory is accessed by cores from another socket, mapping entries
need to be reassigned [18]. If access to the same memory regions
is constantly switching between sockets, constant remapping is
required. The warm-up behavior results from this reassignment and
strongly reduces the bandwidth. This can be verified by the fact that
reading with a single thread on far memory before reading with
multiple threads on far memory eliminates the warm-up behavior,
which implies that this is not a core- but a NUMA region-related
anomaly.

The lower bandwidth of the 2nd Far is caused by a high cross-
socket UPI utilization, which we investigate further in the following
section. Considering these two effects, we recommend accessing
only near PMEM, or if this is not possible, to change the assignment
of address spaces to NUMA regions as rarely as possible. If this is
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not considered, bandwidth will be poor regardless of the access size
or thread count. These effects are also observable in DRAM-based
systems, albeit slightly weaker [41, 42].
Insight #4: Threads should only read data on their near socket
PMEM. If this is not possible, the assignment of address spaces
to NUMA regions should change as rarely as possible.

3.5 Read from Multiple Sockets
After investigating the performance of near and far PMEM from
a single socket, we now evaluate the same access from multiple
sockets, i.e., the interaction of multiple threads on multiple sockets
concurrently reading from near and far PMEM. We also compare
this to the performance of multi-socket DRAM reads.

Workload. When reading in parallel across two sockets, five
combinations are possible: i) Reading from one socket on its near
PMEM, ii) reading from one socket on its far PMEM, iii) reading
from two sockets on their near PMEM respectively, iv) reading from
two sockets on their far PMEM respectively, and v) reading from
one socket on its near PMEM and reading from the other socket on
its far PMEM (i.e., both read the same memory). The threads are
pinned to NUMA regions and the access is individual 4KB.

Results. Figure 6 shows the accumulated bandwidth across
all threads in these scenarios when reading across two sockets for
PMEM and DRAM. The results for reading only on the near (i) or far
(ii) PMEM on one socket match the results from Figure 5, peaking
at ~40 GB/s and ~33 GB/s, respectively. We also see peak bandwidth
for near DRAM (~100 GB/s) but a stark difference in far access,
achieving only ~33 GB/s. Using 18 threads on each socket (36 total)
accessing their near memory (iii) results in a linear speedup with
the number of sockets, resulting in a bandwidth of ~80 GB/s (PMEM)
and 185 GB/s (DRAM). This setting also does not use the UPI and
thus, does not limit other inter-socket communication. Accessing
the far memory with 36 total threads (iv) peaks at only ~50 GB/s
(PMEM) and ~60 GB/s (DRAM). This is significantly lower than the
performance of only near access on both sockets. Accessing the
same PMEM from different sockets (v) yields a very low bandwidth
on PMEM, while nearly achieving the performance of only far
access on both sockets for DRAM.

Discussion. While reading from near memory performs best
and scales linearly, reading from far memory does not. Since every
read request and answer of far access to memory has to be con-
ducted via the UPI, it becomes the bottleneck when both sockets
access their far memory, resulting in a flattened curve compared to
reading from near sockets. The UPI achieves ~40 GB/s per direction
but about 25% of this is required for metadata transfer, i.e., allow-
ing for ~30 GB/s data per direction. We verify this by running the



benchmark in VTune, showing an average UPI utilization of 90+%,
including metadata. Thus, both DRAM and PMEM are limited by
the UPI but the impact on DRAM is significantly higher due to
otherwise higher absolute bandwidth utilization.

Reading the same memory from both sockets achieves very low
bandwidth utilization compared to the respective 1 Near configura-
tion. This is caused by the cache coherency mapping across sockets
(cf. Sec. 3.4), which incurs higher UPI utilization and writes to the
memory. This is especially harmful in PMEM, as mixed read/write
access heavily impacts the overall bandwidth.

A second reason for the reduced performance is the pollution
of the RPQs and WPQs. On a single socket, threads insert their
requests nearly sequentially into the queues. But with a second
socket, these sequences are interrupted by requests inserted with
latency by another socket into the same iMC. This causes read
amplification of the 256 Byte PMEM cache line and thus reduces
performance. Following this, adding more threads from another
socket does not increase PMEM performance.

In conclusion, fully utilizing PMEM from multiple sockets re-
quires an efficient splitting of the data across PMEM with the goal
that threads on both sockets should not have to read from far
PMEM. However, as providing detailed partitioning concepts is
beyond the scope of this work, we refer the reader to existing re-
search [3, 13, 31, 43, 44] and plan to investigate such PMEM-aware
partitioning schemes in the future.
Insight #5: If possible, stripe data into independent and evenly
distributed data sets across the PMEM of all sockets and en-
sure that sockets read only from near PMEM.

4 Sequential Write Performance
In order to analyze large volumes of data, it first needs to be ingested
into the system that analyzes it. Thus, an important feature of data
warehouses is an efficient data import [14]. Additionally, large in-
termediate results are often produced in complex analytical queries,
e.g., when data is sorted or joins are performed. Again, these inter-
mediate writes should be as efficient as possible to achieve higher
throughput within OLAP systems. Both data ingestion, as well as in-
termediate result creation, are often expressed in sequential writes.
Therefore, we investigate the performance of sequential writes in
OLAP systems in this section.

We perform our analysis analogously to that of sequential reads
in Section 3, covering the same dimensions Access Size, Thread
Count, Thread Pinning, NUMA Effects, and Multi-Socket Charac-
teristics. For all our stores, we use the non-temporal vmovntdq
instruction, which exploits AVX-512 of modern systems, as done
in previous work [54]. All writes are followed by an sfence in-
struction, which is required to guarantee persistence. Unless stated
otherwise, all write benchmarks write 70 GB of raw data to PMEM.

4.1 Write Access Size
A crucial factor for the overall write bandwidth to PMEM is the
size in which data is written. To better understand the impact this
size has, we evaluate it for various thread counts.

Workload. We run the benchmark for 1 to 36 threads with
access sizes from 64 Byte to 32 MB. The access size is defined as the
number of consecutive bytes that a thread writes in one operation.
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Figure 7: Write Bandwidth dependent on Access Size and
Thread Count. Bandwidth is heavily impacted by the combination
of access size and thread count.

In the Grouped Access, writes are interleaved across all threads,
i.e., if thread 1 writes bytes 0–255, thread 2 writes from byte 256,
which leads to one global sequential write. In Individual Access, each
thread has its own disjoint memory region, i.e., thread 1 writes GB
0 to 1, thread 2 writes GB 1 to 2, which leads to #threads sequential
writes. All threads are pinned to a single socket via numactl.

Results. We show the results in Figure 7. We observe that the ac-
cess size has a significant impact on the bandwidth for both grouped
(a) and individual (b) access. However, grouped writes behave non-
monotonically in that they increase, decrease, and increase again
for certain access sizes, which is not observable as strongly for indi-
vidual writes. Overall, two trends are visible, i) bandwidth increases
significantly from 64 Byte to 256 Byte or 4 KB and ii) bandwidth
decreases after 256 Byte for thread counts above 18. Thus, we ob-
serve the counterintuitive trend to achieve the highest bandwidth:
the higher the thread count, the lower the access size must be. Unlike
read operations, this indicates a strong entanglement between the
access size and the number of threads used. In this section, we focus
on the access size alone that yields the highest performance and we
investigate the impact of the thread count in the following section.
We also distinguish between grouped and individual writes, as they
differ significantly for small access sizes, e.g., 2.6 GB/s compared
to 9.6 GB/s with 64 Byte and 36 threads. Writes larger than 1 KB
achieve the highest overall bandwidth with a global maximum of
12.6 GB/s for grouped 4 KB access.

Discussion. Similar to sequential read access, there are two
peaks at around 256 Byte and 4 KB. The 256 Byte peak indicates a
beneficial write-size equivalent to Optane’s internal access gran-
ularity. The 4 KB peak, on the other hand, indicates a beneficial
write-size equivalent to the DIMM-interleaving size.

To understand this behavior in more detail, we look at the under-
lying components in the Optane DIMMs. Each DIMM contains an
internal write-combining buffer that groups neighboring writes be-
fore flushing them to the underlying storage medium. A write is not
necessarily flushed directly but held in the buffer, which increases
the number of write requests the DIMM can process as fewer ex-
pensive PMEM flushes are needed. This buffer is required, as the
CPU transfers only 64 Byte cache lines but Optane works with 256
Byte “cache lines”. Thus, for writes smaller than 256 Byte, Optane
must perform a read-modify-write operation. 256 Byte writes do
not cause any write amplification and can be written directly by
the controller and they are small enough to not be interrupted by
other threads. As each DIMM contains its own write-combining
buffer, aligned 4 KB writes target exactly one DIMM and lead to an
ideal thread-to-DIMM distribution with minimal interruption by
other threads.



The most significant difference between grouped and individual
writes is the stark contrast for <128 Byte writes at high thread
counts and the non-monotonic behavior of grouped writes. If each
thread receives its own memory region, the other threads do not
interfere with the write-combining logic as strongly. This indicates
that the buffer cannot perform write-combining efficiently across
threads. Secondly, similar to grouped sequential reads, smaller ac-
cess sizes all target the same DIMM. This pattern does not fully
utilize the parallelism of all available DIMMs with a poor thread-
to-DIMM distribution. For individual writes, the threads naturally
distribute across the DIMMs, leading to a higher DIMM-parallelism.

In general, PMEM writes behave significantly differently than
DRAM writes. In DRAM, more threads result in higher bandwidth
andwe do not observe any decrease in performance for larger access
sizes. This must be taken into account when designing write-heavy,
memory-bound systems, as the favorable access sizes known from
DRAM might have a negative impact on the overall bandwidth
utilization in PMEM.

This evaluation provides two main insights: i) workloads re-
quiring many small writes, e.g., appending to a log file, should
be performed on individual memory locations, e.g., one log per
worker and ii) grouped writes should be either 4 KB or 256 Byte
operations. As we are investigating the maximum performance for
a given access size at this point, we recommend using 4 KB, as this
performs best for both grouped and individual writes. However,
as shown above, the performance is tightly coupled to the access
size in combination with the thread count. Thus, we evaluate the
impact of the thread count in the following section.

Insight #6: Write data in 4 KB chunks to achieve the high-
est bandwidth or in 256 Byte chunks if smaller consecutive
writes are necessary.

4.2 Write Thread Count
Having determined a reliable access size, we proceed to evaluate
the optimal thread count for writing to PMEM.

Workload. We use the identical workload as in the previous
section with 1 to 36 threads on one socket.

Results. Figure 7a shows the highest bandwidth of ~12.5 GB/s
for 4, 6 and 8 threads at 4 KB. However, only the 4- and 6-thread
configurations achieve ~12 GB/s with an increasing access size
while the 8-thread configuration drops to ~8 GB/s. A similar trend
is observable for the individual writes. A second peak is visible
around 256 Byte, where all thread counts above 18 achieve ~10
GB/s. However, for access sizes larger than 256 Byte, the high thread
count performance decreases significantly, stabilizing at around
5–6 GB/s. Generally, for thread counts up to 4 (and 6), larger access
sizes result in higher bandwidth but for higher thread counts the
performance drops after a peak. This is visible for larger writes,
where 2 threads achieve the same bandwidth as 8 threads.

To further investigate this behavior, we provide a combined mea-
surement of access size and thread count in Figure 8. It depicts a
boomerang-shaped peak-bandwidth pattern along top left – bottom
left – bottom right with a bandwidth above 10 GB/s. There are two
major observations to be made in this figure. First, the bandwidth
does not drop when increasing the access size but keeping the num-
ber of threads constant at around 4 to 8. Second, the performance
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Figure 8: Write Bandwidth dependent on Access Size and
Thread Count. Write bandwidth peaks at 1–4 KB access size and
4–6 threads. Increasing only one of them shows a slight decrease,
increasing both at the same time significantly decreases bandwidth.

does not drop significantly when increasing the threads but keeping
the access size constant between 256 Byte and 1 KB.

Discussion. Our measurements show that write bandwidth dis-
plays a considerable variation in performance. Write bandwidth is
tightly coupled to two parameters, i.e., the access size and thread
count. This differs significantly from the equivalent read bandwidth
results, where an increase in threads or access size leads to an in-
crease in bandwidth. A first major insight is that 4 threads are
sufficient to fully saturate the PMEM bandwidth. Also, while 4, 6,
and 8 write threads all reach a maximum performance at 4 KB, only
4 and 6 threads can maintain this bandwidth for larger access sizes.
Compared to reads, we observe far less variance in the bandwidth,
as writes are not affected by caching and prefetching, which might
lead to unexpected performance as in reads (e.g., bad 1 KB access).

Two further related insights are that i) more threads harm the
overall bandwidth of the system for large accesses and ii) scaling
both the access size and thread count reduces the bandwidth while
scaling only one of them can improve it. This behavior contrasts
that of DRAM and leads to counterintuitive access patterns for
PMEM users.

The effect that the bandwidth degrades beyond 256 Byte access
size in certain thread configurations has two reasons. The first
of which is contention at the iMC-level. As write operations are
masked by the iMC, the application can issue a significantly higher
number of requests than the underlying storage medium supports.
Additional threads will in turn issue more requests. If the storage
cannot complete the write operations as fast as they are received,
this leads to full WPQs in the iMC and, thus, slower write calls.

The second and more relevant cause for a decreased bandwidth
with large access sizes and higher thread counts is the internal write-
combining buffer. As an application can only write a maximum of
64 Byte in a single request (CPU cache line size), the buffer receives
many requests to write the given access size, which needs to be
held in the buffer for efficient flushing. However, a higher number
of threads issue many requests spread across the memory range,
thus requiring the buffer to flush more often as it cannot hold all
data. This leads to write amplification and decreased bandwidth.

Regarding the thread count, PMEM writes behave significantly
different than DRAM writes. In PMEM, adding threads beyond 8
harms the bandwidth, while DRAM benefits from more threads and
even scales nearly linearly when using hyperthreading. Therefore,
we advise against scaling up both the number of threads and the
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access size. If the access is strictly sequential for all threads (e.g.,
appending to a log) and writes are small (< 256 Byte), adding threads
will not harm the performance as severely. However, for larger
access sizes (> 1 KB) an increase in threads causes stronger write
amplification and reduced performance.

Insight #7: Use 4 – 6 threads towrite to PMEM in large blocks
or keep the access small when scaling the number of threads.

4.3 Write Thread Pinning
We now explore the effect that thread pinning has on the write
bandwidth of PMEM.

Workload. The threads are either not pinned at all (None),
pinned to the NUMA region near the PMEM they are accessing
(NUMA Region), or to explicit cores in that NUMA region (Cores).
All pinning variants use individual access with a size of 4 KB.

Results. In Figure 9, we observe the same pattern as for reading
(see Section 3.4). No pinning performs worse than pinning and
pinning to individual cores outperforms pinning to NUMA regions
when using more than 18 threads. During writing, no pinning
peaks at ~7 GB/s while pinning to individual cores peaks at ~13
GB/s. We also see that no pinning has a weaker relative impact
on the write bandwidth than it does on reading. No pinning is 2x
worse for writing, while we see that no pinning is 4x worse for
reading. We also observe the same effect as in Figure 7, where the
bandwidth drops for a 4 KB access after 8 threads.

Discussion. The increased bandwidth of explicit over NUMA-
region pinning has the same reason as for reading. The scheduler
must place more hyperthreads than available cores, causing sched-
uling overhead and more frequent thread-to-core changes. As each
NUMA region contains two NUMA nodes, intra-region placements
might still cause inter-node assignments, whichwrite data via differ-
ent iMCs. Thus, the write-combining buffer cannot combine writes
as efficiently, causing higher write amplification and reduced band-
widths. No pinning again shows a very unfavorable performance.
As threads can be placed on both sockets, NUMA impacts overall
bandwidth. To further investigate this, we evaluate the impact of
writing to different NUMA regions in the following section.

If you need more than 18 threads (e.g., when using multiple
workers) and exceed the NUMA regions for writing, you should
always pin the threads to individual cores. Furthermore, when read
threads are pinned to individual cores one should also pin write
threads to avoid cache conflicts or bad placements.

Insight #8: Pin write-threads to individual cores if you have
full system control. Otherwise, pin them to NUMA regions.

4.4 Write NUMA Effects
Section 4.3 shows that writing is also impacted by far PMEM ac-
cess, resulting in low bandwidth. Therefore, we evaluate how to
efficiently write in a multi-socket environment.

Workload. The 36 threads (one per physical core) are pinned
to the NUMA regions of their respective socket. We run two exper-
iments, one where all threads only write to their near PMEM and
one where all threads only write to their far PMEM. The access size
is fixed to 4 KB.

Results. The two single-socket configurations in Figure 10 (i.e.,
1 Far and 1 Near) show the write bandwidth dependent on the
number of threads. They show that writing to only near PMEM
has a peak performance of ~12.5 GB/s (4 threads) but only ~7 GB/s
(with 8 threads) when accessing PMEM connected to the far socket.
Additionally, we observe that at least 6 threads are needed to maxi-
mize the bandwidth when accessing the far memory compared to 4
in near memory accesses. Unlike reading, we do not observe any
warm-up effect when writing.

Discussion. The cause for the bandwidth drop when writing
to far PMEM is twofold, i) higher latency for individual writes via
the UPI and ii) read-modify-write behavior instead of write-only.
If a write accesses far PMEM, all data needs to pass through the
UPI, the latency for the blocking write operation increases and,
thus, the bandwidth is reduced. Generally, the UPI utilization is
very low when writing, as far writes do not achieve high absolute
bandwidths. However, this is not the only cause for reduced band-
width. We observe data being read from the PMEM that should only
be written via a non-temporal store. In our case, some ntstore
operations behave like a cache line read-modify-write (or clwb)
operation. Intel’s Architecture Guide [19] states that an ntstore
only provides a non-temporal “hint” and is not necessarily executed
as such. This read-modify-write pattern requires more bandwidth
and is essentially a mixed read-write workload, thus reducing the
available write bandwidth. In this benchmark, we observed a write
amplification of up to 10x, e.g., ~500 MB/s actual data with 18 far
threads but an internal write bandwidth consumption of 5 GB/s. To
further understand these effects, we investigate multi-socket writes
in Section 4.5 and mixed read-write workloads in Section 5.1.
Insight #9: Threads should onlywrite data to their near PMEM.

4.5 Writing to Multiple Sockets
Section 4.4 shows that writing to far memory results in low band-
width. Therefore we evaluate how to properly utilize the multi-
socket characteristics of our server for writing data.

Workload. To optimize our workload for the dual-socket char-
acteristics, we use the same combinations as in Section 3.5. When
writing in parallel across two sockets these are, i) writing from
one socket to its near PMEM, ii) writing from one socket to its far
PMEM, iii) writing from one socket to its near PMEM and writing
from the other socket on the same PMEM (its far PMEM), iv) writ-
ing from two sockets to their respective near PMEM, and v) writing
from two sockets to their respective far PMEM. The configurations
that write from both sockets in parallel use up to 72 threads, while
the other ones use a maximum of 36 threads. Threads are pinned
to the NUMA region of their respective socket and the access size
is fixed to 4 KB.
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Figure 11: Mixed Workload Performance.

Results. Figure 10 shows that accessing near PMEM (i) achieves
the highest bandwidth and doubles when using both sockets (iv).
The same 2x speed-up holds, though significantly lower, for writing
to the respective far PMEM (v), peaking at ~13 GB/s for 8 threads
per socket. When both sockets write to the same PMEM (iii), the
performance is low as in the equivalent reading operations (see
Section 3.5). This peaks at ~8 GB/s, again showing worse results
than using only near threads.

Discussion. Accessing far memory, regardless of whether from
one or both sockets, achieves at most 50% of the bandwidth com-
pared to their near PMEM access. As discussed in the previous
section, higher latency and read-modify-write behavior is the main
cause for the poor far memorywrite performance. Themore threads
write to far memory, the bigger is the performance drop due to
write amplification. Also, writing to far memory that is also being
written to from the near socket, reduces the bandwidth by up to 25%.
Writing data in this pattern should be avoided whenever possible.

Overall, writing across NUMA regions performs considerably
worse than reading across them. We recommend writing data only
to near memory to avoid significant performance hits. Similar to
reading, systems should use efficient partitioning schemes, which
take multi-socket PMEM into account (see Section 3.5). This is
especially relevant for the few write-intensive workloads in OLAP,
e.g., data import.

Insight #10: Avoid contending cross-socket writes.

5 Mixed and Random Access
Although large sequential read operations (e.g., table scans) are
the predominant mode of data access in OLAP workloads, random
access and mixed read-writes need to be supported efficiently to
allow for parallel aggregations and joins, as well as multi-user
systems. We evaluate mixed read-write workloads in Section 5.1
and random data access in Section 5.2.

5.1 Mixed Workload Performance
Even though OLAP workloads consist of mostly independent large
reads and writes, they are usually run in parallel to better utilize
the system. Queries should be able to run while data is ingested to
not halt the entire system. Also, intermediate results are created
while other queries are running. They both require efficient reads
while writing. We now investigate the overall bandwidth in mixed
read-write workloads.

Workload. We run a benchmark with 𝑥 write threads and 𝑦

read threads in different 𝑥 − 𝑦 combinations. We evaluate 1, 4, and
6 write threads, each with 1, 8, 18, and 30 read threads, which gives
us at most 36 threads on one socket. Both workloads read/write
different data (each 40 GB) on the same PMEMDIMMs. We measure

the write and read bandwidth for each run. All combinations use
4KB individual access and are pinned to NUMA regions.

Results. The results are shown in Figure 11. The entries are
denoted as 𝑥/𝑦, i.e., write/read threads. For comparison, we achieve
a read performance of ~31 GB/s with 30 threads without contend-
ing workloads and a peak write performance of ~13 GB/s with 6
threads. Adding a single write thread to the 30 read threads already
reduces the achieved read bandwidth to ~26 GB/s. Adding more
write threads further reduces the read bandwidth. Also, the com-
bined read and write bandwidth does not exceed the non-contended
maximum read bandwidth for any combination. More contend-
ing write threads reduces the bandwidth further to ~45% of the
maximum read bandwidth with 6 write threads.

On the other hand, the write performance, while still reduced,
does not get hit as hard initially. Using a write thread count of 4
with 1 read thread, only reduces the bandwidth from ~13 GB/s to
~12 GB/s, nearly matching the maximum write bandwidth. How-
ever, when running with 30 read threads the write bandwidth drops
to just above ~40% of the maximum bandwidth, similar to the read
performance drop. 6 write threads also reach ~12 GB/s with one
contending read thread but perform slightly worse than 4 write
threads for the other configurations. Generally, increasing the num-
ber of read threads harms the write performance and vice versa,
even if the maximum bandwidth is not yet reached.

Discussion. The read bandwidth already shows a major reduc-
tion with one write thread accessing the same PMEM DIMMs. Our
experiments show that replacing the one contending write thread
with a contending read thread only reduces the bandwidth to ~29
GB/s instead of ~26 GB/s. This has two reasons, i) the bandwidth
drop observed with the contending read thread is caused by the
L2 Hardware Prefetcher again. Having already only one contend-
ing read thread, makes the L2 Hardware Prefetcher prefetch data
from two locations, yielding suboptimal results. ii) The difference
between having a contending read or write thread is caused by
the read/write imbalance on PMEM. Due to write operations being
significantly slower and therefore blocking the iMCs for a longer
time than read operations, the bandwidth with a contending write
thread is lower than with a contending read thread. To test this,
we replicate this experiment on DRAM, which shows that the gap
between an added contending read or write thread is not as signifi-
cant. The read/write imbalance is considerably smaller on DRAM
and therefore this effect is only moderately observable.

From these results, no clear recommendation is evident. As mix-
ing read and write workloads harms the overall bandwidth, the
reader must make assumptions about their workloads and adapt ac-
cordingly. However, we suggest using the previously recommended
number of threads for sequential reads and writes. This combina-
tion keeps the balance between read and write bandwidth, as both
drop to ~1/3 of their respective maximums. Configurations resulting
in a higher accumulated bandwidth result in a significantly higher
read/write imbalance, due to a very low write bandwidth. As the
bandwidth is impacted notably, for latency insensitive workloads
it might be beneficial to execute them sequentially instead of par-
allel. However, this is highly workload-dependent and cannot be
generalized.

Insight #11: Serialize PMEM access when possible.
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Figure 12: Random PMEM/DRAM Read Bandwidth

5.2 Random Access Performance
While sequential access generally dominates in OLAP workloads,
random access occurs, e.g., during hash probing or point-lookups [46].
Thus, we investigate the bandwidth of random reads and writes.

Workload.We run the benchmark with 1 – 36 threads for access
sizes ranging from 64 Byte to 8 KB, as we do not consider larger
access sizes to be random anymore. As random access most often
occurs in joins or aggregations, we limit the memory range to 2
GB, representing, e.g., a hash index.

Results. In Figure 12, we show the impact of random access
on the read bandwidth. The maximum random read bandwidth
is worse than its corresponding sequential bandwidth, reaching
only up to ~2/3 of the maximum for larger access sizes above 4 KB,
while DRAM reads achieve only 50% of their sequential maximum.
For common smaller access sizes around 256/512 Byte2 PMEM and
DRAM both achieve ~50% of sequential performance. Generally,
more threads achieve a higher bandwidth and hyperthreading im-
proves the PMEM bandwidth, unlike sequential reads.

Figure 13 presents the bandwidth for random writes. Similar to
reads, the maximum bandwidth is about 2/3 and 50% of the maxi-
mum sequential performance for PMEM and DRAM, respectively
We again observe the highest PMEM bandwidth for 4–6 threads
and larger access sizes generally improve the bandwidth utilization.
On the other hand, the access size has little impact on the DRAM
bandwidth and more threads achieve higher bandwidths.

Discussion. Generally, the trends of sequential access are also
present in random access. More threads yield higher read band-
width utilization but decrease write performance. Random reads do
not achieve peak sequential performance, as they cannot benefit
from prefetching and random writes suffer from reduced write-
combining. Very small PMEM access is additionally impacted by
read and write amplification, as Optane works in 256 Byte granular-
ity. These results indicate that PMEM behaves similarly to typical
random access memory, once a minimum access size is reached, i.e.,
~512 Byte in this experiment. DRAM similarly profits from larger
access sizes and does not reach its peak bandwidth until 4 KB, but
the absolute bandwidth is higher than PMEM’s, making it more
suitable for random-access workloads.

However, we note that DRAM and PMEM are impacted differ-
ently by the size of the memory region. In our evaluation, we
discovered that a 2 GB DRAM allocation is present on only one
NUMA node within the socket, i.e., only 3/6 channels process re-
quests. When operating on large memory regions, e.g. 90 GB (= all
DRAM per socket), DRAM’s random performance nearly doubles,
as all channels are active. This scaling reaches 90% of DRAM’s se-
quential performance and exhibits, e.g., 4x bandwidth over PMEM

2Recent PMEM data structures work on internal 256 Byte access granularity [15, 34]
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Figure 13: Random PMEM/DRAMWrite Bandwidth

for 512 Byte. A larger memory region does not impact PMEM, as it
is already interleaved across all channels at 4 KB granularity. Hence,
in large OLAP systems DRAM scales significantly better when in
full use. This difference in performance shows that hybrid designs
are essential in future OLAP designs [45, 52].

Concluding, sequential PMEM access clearly outperforms ran-
dom access. Yet, (random-access-) DRAM also benefits from larger
access sizes and does not reach its full bandwidth for small op-
erations, albeit with considerably higher absolute performance.
Therefore, we recommend treating PMEM more as sequential ac-
cess memory than random access memory for I/O-heavy workloads
and investigate the co-design of hybrid memory models in future
work. If random access is required, choose the access size as large
as possible but at least 256 Byte.

Insight #12: Access PMEM sequentially or use the largest
possible access for random workloads.

6 OLAP on Persistent Memory
To determine whether PMEM is suitable for OLAP workloads, we
implement the Star Schema Benchmark (SSB) as a commonly used
data warehouse benchmark [36]. The SSB has a star schema with
one fact table lineorder, and four dimension tables date, supplier,
customer, part. The SSB introduces 13 queries (Q) that are grouped
into 4 query flights (QFs), where the fact table is joined with a
varying number of dimension tables. Queries inside of the same
flight always join the same tables but vary both in selectivity and
aggregation. The SSB defines a scaling factor (sf ) to determine the
data size, where a scaling factor of 1 equals 6 million tuples in the
fact table. To investigate the use of PMEM in existing OLAP sys-
tems, in Section 6.1 we execute the SSB on the in-memory database
Hyrise [24, 25]. In Section 6.2, we handcraft an SSB implementation
and apply the insights from our evaluation to show the potential
of PMEM in future PMEM-aware OLAP workloads.

6.1 Hyrise SSB
For this experiment, we run the SSB on Hyrise, an open-source,
columnar, in-memory database. All tables and intermediates are
stored either completely in PMEM or in DRAM.We use sf 50, which
results in a fact table with 300 million entries. Higher scaling factors
exceed the available memory per socket on our server. As Hyrise
does not support NUMA-aware allocation of intermediates and data
structures, we run Hyrise on a single socket to avoid undesirable
remote memory access. In Figure 14a, we show the SSB query
execution times for PMEM and DRAM. On average, PMEM-Hyrise
is 5.3x slower than on DRAM, with a maximum difference of 7.7x
for Q2.3 and a minimum of 2.5x for Q3.1.
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Figure 14: Star Schema Benchmark Performance.

As the results show, using PMEM as a drop-in replacement for
DRAM results in low performance. For most queries, we found that
hash-operations (join/aggregate) take over 90% of the execution
time. This indicates dominant random access operations, which
yield lower performance in PMEM than in DRAM. Thus, Hyrise’s
PMEM-unaware hash index implementation performs worse in
PMEM than in DRAM. To overcome this performance gap, OLAP
systems should use PMEM-optimized data structures.

6.2 Handcrafted SSB
To demonstrate the potential of PMEM-aware OLAP systems over
existing unaware ones, we implement a handcrafted SSB in C++.
The goal of this version is to illustrate how certain optimizations
affect OLAP queries and not to achieve the highest possible per-
formance with complex join implementations of query-specific
tweaks. We note that optimizing PMEM for joins and related data
structures [27, 33, 45] is still an open research question, requiring
similar investigation as previous in-memory join algorithms [10–
12], which is beyond the scope of this paper. Data is stored in a row
format with a custom schema in one file per table. To avoid parsing
overhead for each tuple, we align all fields to 128 Byte, which is
slightly larger than the size of a tuple (< 10%) and we access only
the columns that are relevant to the given query. We implement a
basic hash join with the PMEM-optimized hash index Dash [34].

The benchmark is conducted with sf 100, i.e., 600 million line-
order entries in 70GB. In our implementation, we assume all data
to fit into DRAM and PMEM and we use the same index implemen-
tation for both DRAM and PMEM. To improve the performance of
our SSB in DRAM and PMEM, we use 36 threads, explicitly pinned
to all 36 physical cores across both sockets. The SSB experiments
are performed on fsdax, as Dash requires a filesystem interface.

The fact table is shuffled and striped across PMEM on both
sockets and threads access only their near data in individual chunks
(cf. Individual Access in Sec. 3.1). To achieve this striping in a full
OLAP system, NUMA-aware partitioning schemes could be used.
In DRAM, we analogously bind memory to both sockets using
libnuma. Since the dimension tables are very small in comparison to
the fact table, we replicate them on both sockets to avoid far random
access, which would drastically decrease the bandwidth utilization.
This data layout results in an approximately equal workload on
both sockets.

We note that storing data in such a manner and creating optimal
partitions is not always possible and generally hard to achieve, e.g.,
due to skewed data. Full NUMA-awareness in OLAP systems and
its trade-offs pose interesting questions for future work.

Figure 14b shows the performance of PMEM in comparison to
DRAM. On average, PMEM performance is 1.66x times worse than
that of DRAM. PMEM achieves its best performance in comparison

to DRAM in query Q3.3, being only 1.4x as slow as DRAM and
worst in Q1.3, being 3x as slow.

QF1 differs from the other queries since it focuses on sequential
read performancewith onlyminimal joins, filters, and intermediates.
On PMEM, the queries finish in ~1.3 seconds, while completing
in only ~0.5 seconds in DRAM, matching the 2-3x difference in
bandwidth between DRAM and PMEM as discussed in Section 3.5.

The other query flights consist of joins with multiple dimen-
sion tables. Furthermore, they require storing intermediates for the
group aggregate. In these complex queries, PMEM performs better
than in QF1, as they require more processing than raw table scan
speed. We observe that the use of a PMEM-optimized hash index
is beneficial in the joins compared to Hyrise, as PMEM achieves
much closer performance than in the unoptimized version. Overall,
the average query performance in QF2–4 is only 1.6x slower on
PMEM than on DRAM.

Table 1: Optimization of Q2.1
1 Thr. 18 Thr. 2-Socket NUMA Pinning

PMEM 306.7 s 25.1 s 12.3 s 9.4 s 8.6 s
DRAM 221.2 s 15.2 s 9.2 s 5.2 s 5.2 s

To show the impact of different optimizations, we break down the
performance of QF2.1, which is representative of the other queries.
In Table 1, we list the query completion time for PMEM and DRAM
in seconds per query. We present the performance improvements
of increasing the number of threads (18 Thr.), using memory and
CPUs on both sockets (2-Socket), pinning threads to NUMA regions
(NUMA), and pinning threads to physical cores (Pinning).

Increasing the number of threads improves the performance of
DRAM more than that of PMEM (14x vs. 12x). Additionally, the
runtime of both PMEM and DRAM can be further reduced by 3x
when utilizing the dual-socket architecture. In contrast to QF1, in
QF2 and later query flights, the join and hash operators limit the
query performance, narrowing the gap between PMEM and DRAM.
This is supported by the measured bandwidth utilization of ~15
GB/s for PMEM and ~30 GB/s for PMEM. Further investigation
shows that the benchmark is memory bound over 70% of the time,
indicating that the random-accesses-heavy hash lookups constitute
a major performance bottleneck. Following this insight, conducting
future research on random access data structures and operations is
essential to achieve a good OLAP performance.

To provide an intuition of the performance of a “traditional”
OLAP system, we also run Q2.1 on an NVMe SSD3, while stor-
ing the hash indexes and intermediates in DRAM. The benchmark
completes in 22.8 seconds, as it is limited by the table scan band-
width. Compared to the traditional setup, PMEM outperforms SSDs
by over a factor of 2.6x while not using any DRAM. This shows
3 Intel® SSD DC P4610 Series, 3.20 GB/s Sequential Read 2.08 GB/s Sequential Write



that PMEM shifts the bottleneck from traditional table scan disk
IO-bound processing to memory-bound operator processing and
should be treated like modern in-memory systems when optimizing.

7 Best Practices for OLAP
In this section, we gather our insights and discuss them in a larger
context. Following our evaluation, we propose the following gener-
alized best practices to maximize bandwidth when working with
persistent memory in OLAP workloads. For the individual insights,
please refer to the corresponding sections.
(1) Read and write to PMEM in distinct memory regions (#1, #6).
(2) Scale up the number of threads when reading but limit the

threads to 4 – 6 per socket when writing (#2, #7).
(3) Pin threads (explicitly) within their NUMA regions for maxi-

mum bandwidth (#3, #8).
(4) Place data on all sockets but access it only from near NUMA

regions (#4, #5, #9, #10).
(5) Avoid large mixed read-write workloads when possible (#11).
(6) Access PMEM sequentially or use the largest possible access

for random workloads. (#12).
(7) Use PMEM in devdax mode for maximum performance.

Overall, our evaluation has shown that PMEM should be opti-
mized like DRAM for reads. They behave similarly and benefit from
the same scaling/access optimizations that are applied to DRAM,
e.g., 4KB access in DRAM is aligned with OS cache sizes while
4KB access in PMEM aligns directly with the underlying DIMM-
interleaving. Writes, on the other hand, are more complex and
impacted unexpectedly when compared to DRAM. To achieve high
write bandwidths, it is essential to optimize for write-combining.
While NUMA-awareness is critical in both DRAM and PMEM, it
should especially be considered for PMEM as it cannot mask poor
access patterns with high absolute performance. Generally, unless
an application is memory-bound, bad DRAM access is less likely
to be noticed due to its overall performance, whereas PMEM can
quickly become a bottleneck.

While DRAM is required to achieve the best performance in
the SSB and hybrid designs must be considered in future systems,
PMEM-only systems offer a good price/performance. We briefly
demonstrate this by comparing the current cost of DRAM and
PMEM.4 A 128 GB PMEM DIMM, as used in our system, costs
~$575 [29]. Our system contains 12 DIMMs, totaling at ~$6900 for
1.5 TB PMEM. On the other hand, DRAM costs approx. $700 for a 64
GB module. The cost of 1.5 TB DRAM5 would be ~$16800, i.e., 2.4x
higher with the average SSB query performance of DRAM being
only 1.6x better than PMEM. Should this price difference remain
in hourly cloud costs, PMEM offers a viable price/performance
alternative to DRAM.

8 Related Work
With the availability of Intel’s Optane DIMMs, first papers charac-
terizing PMEM performance have been published. At the same time,
researchers have already ported existing DBMS to PMEM, serving

4This calculation is illustrative, as PMEM prices are not yet stable and cloud providers
do not offer PMEM.
5This is not possible with most common DRAM configurations.

OLAP and OLTP workloads. Even others continuously optimize
OLAP transaction processing of data warehouses for many years.

PMEMPerformance Characteristics Even before PMEMwas
available, researchers have alreadywritten papers speculating about
its performance and characteristics [39, 50].With its public availabil-
ity in 2019, researchers started investigating its actual performance.
This work ranges from deriving a general understanding of PMEM
covering a wide variety of PMEM behaviors [28, 30, 54] over exam-
ining its interaction in hybrid memory systems [45] to designing
and evaluating specific PMEM data and index structures [27, 33, 51].

However, recent work on PMEM’s performance characteristics
does not focus on large multi-socket systems, which are required
for OLAP workloads. Yang et al. [54] also show that certain as-
sumptions in previous work on PMEM data structures, e.g., the
assumed access pattern’s behaviors, do not hold for real PMEM
hardware. Both these factors show that there are still open ques-
tions regarding the low level, hardware-near PMEM characteristics,
and performance. Therefore, our evaluation is independent of ex-
act data structures providing general best practices for standalone,
PMEM-only performance on large, multi-socket servers.

OLAPWorkloads Recent studies show that OLAP workloads
are bandwidth-intensive with various data access patterns focusing
on sequential and random accesses [32, 46]. Furthermore, Sirin et al.
argue that bandwidth utilization is more critical than latency, which
can be masked by parallel workloads [40, 46]. Research has also
shown that efficiently using the characteristics of modern hardware
can improve the performance of OLAP systems by orders of magni-
tude [35, 47]. We therefore focus on improving PMEM’s bandwidth
in OLAP typical workloads on large multi-socket systems.

9 Conclusion
For many years researchers have speculated about the character-
istics of persistent memory. Recent work has shown that many of
the assumptions research was based on do not hold for the only
recently available actual hardware. In this paper, we present an in-
depth analysis of the performance of persistent memory for OLAP
workloads. Our evaluation shows that it is crucial to understand
PMEM’s performance characteristics in large, multi-socket systems
to maximize its bandwidth. While PMEM can be treated like DRAM
for most read access, it must be used differently when writing. We
propose a set of 7 best practices for application designers to fully
utilize PMEM’s bandwidth in future systems.We implement the SSB
with our proposed optimizations and show that the performance
gains apply to real-world OLAP workloads. In the SSB, PMEM is
only 1.66x slower than DRAM on average for large OLAP queries.
In conclusion, we show that PMEM is suitable for data-intensive
systems and provides a higher capacity at lower prices than DRAM
while performing only slightly worse. In future work, we plan to
transfer our insights to hybrid PMEM-DRAM setups.
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