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ABSTRACT
Modern Stream Processing Engines (SPEs) process large
data volumes under tight latency constraints. Many SPEs
execute processing pipelines using message passing on shared-
nothing architectures and apply a partition-based scale-out
strategy to handle high-velocity input streams. Further-
more, many state-of-the-art SPEs rely on a Java Virtual Ma-
chine to achieve platform independence and speed up system
development by abstracting from the underlying hardware.

In this paper, we show that taking the underlying hard-
ware into account is essential to exploit modern hardware
efficiently. To this end, we conduct an extensive experimen-
tal analysis of current SPEs and SPE design alternatives
optimized for modern hardware. Our analysis highlights po-
tential bottlenecks and reveals that state-of-the-art SPEs are
not capable of fully exploiting current and emerging hard-
ware trends, such as multi-core processors and high-speed
networks. Based on our analysis, we describe a set of design
changes to the common architecture of SPEs to scale-up on
modern hardware. We show that the single-node throughput
can be increased by up to two orders of magnitude compared
to state-of-the-art SPEs by applying specialized code genera-
tion, fusing operators, batch-style parallelization strategies,
and optimized windowing. This speedup allows for deploy-
ing typical streaming applications on a single or a few nodes
instead of large clusters.
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1. INTRODUCTION
Over the last decade, streaming applications have emerged

as an important new class of big data processing use cases.
Streaming systems have to process high velocity data streams
under tight latency constraints. To handle high velocity
streams, modern SPEs such as Apache Flink [29], Apache
Spark [91], and Apache Storm [81] distribute processing over
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Figure 1: Yahoo! Streaming Benchmark (1 Node).

a large number of computing nodes in a cluster, i.e., scale-
out the processing. These systems trade single node perfor-
mance for scalability to large clusters and use a Java Virtual
Machine (JVM) as the underlying processing environment
for platform independence. While JVMs provide a high level
of abstraction from the underlying hardware, they cannot
easily provide efficient data access due to processing over-
heads induced by data (de-)serialization, objects scattering
in main memory, virtual functions, and garbage collection.
As a result, the overall performance of scale-out SPEs build-
ing on top of a JVM are severely limited in throughput and
latency. Another class of SPEs optimize execution to scale-
up the processing on a single node. For example, Saber [58],
which is build with Java, Streambox [67], which is build with
C++, and Trill [34], which is build with C#.

In Figure 1, we show the throughput of modern SPEs ex-
ecuting the Yahoo! Streaming Benchmark [39] on a single
node compared to hand-coded implementations. We report
the detailed experimental setup in Section 5.1. As shown,
the state-of-the-art SPEs Apache Flink, Spark, and Storm
achieve sub-optimal performance compared to the physical
limit that is established by the memory bandwidth. To iden-
tify bottlenecks of SPEs, we hand-code the benchmark in
Java and C++ (HC bars). Our hand-coded Java implemen-
tation is faster than Flink but still 40 times slower than the
physical limit. In contrast, our C++ implementation and
Streambox omit serialization, virtual functions, and garbage
collection overheads and store tuples in dense arrays (arrays
of structures). This translates to a 26 times better per-
formance for our C++ implementation and a 6 times better
performance for Streambox compared to the Java implemen-
tation. Finally, we show an optimized implementation that
eliminates the potential SPE-bottlenecks which we identify
in this paper. Our optimized implementation operates near
the physical memory limit and utilizes modern hardware ef-
ficiently.

The observed sub-optimal single node performance of cur-
rent SPEs requires a large cluster to achieve the same per-
formance as a single node system using the scale-up opti-
mizations that we evaluate in this paper. The major ad-
vantage of a scale-up system is the avoidance of inter-node



data transfer and a reduced synchronization overhead. With
hundreds of cores and terabytes of main memory available,
modern scale-up servers provide an interesting alternative to
process high-volume data streams with high throughput and
low latency. Utilizing the capabilities of modern hardware
on a single node efficiently, we show that the throughput
of a single node becomes sufficient for many streaming ap-
plications and can outperform a cluster of several nodes.
As one result of this paper, we show that SPEs need to be
optimized for modern hardware to exploit the possibilities
of emerging hardware trends, such as multi-core processors
and high-speed networks.

We investigate streaming optimizations by examining dif-
ferent aspects of stream processing regarding their exploita-
tion of modern hardware. To this end, we adopt the ter-
minology introduced by Hirzel et al. [53] and structure
our analysis in data-related and processing-related optimiza-
tions. As a result, we show that by applying appropriate
optimizations, single node throughput can be increased by
two orders of magnitude. Our contributions are as follows:

• We analyze current SPEs and identify their inefficien-
cies and bottlenecks on modern hardware setups.

• We explore and evaluate new architectures of SPEs on
modern hardware that address these inefficiencies.

• Based on our analysis, we describe a set of design
changes to the common architecture of SPEs to scale-
up on modern hardware.

• We conduct an extensive experimental evaluation us-
ing the Yahoo! Streaming Benchmark, the Linear Road
Benchmark, and a query on the NY taxi data set.

The rest of this paper is structured as follows. In Section 2,
we introduce concepts of current SPEs as well as aspects of
modern hardware that we investigate in this paper. After
that, we explore the data-related (Section 3) and processing-
related stream processing optimization (Section 4) of an SPE
on modern hardware. In Section 5, we evaluate state-of-
the-art SPEs and investigate different optimizations in an
experimental analysis. Finally, we discuss our results in Sec-
tion 5.3 and present related work in Section 6.

2. BACKGROUND
Stream processing engines enable the processing of long-

running queries over unbounded, continuous data streams.
A major challenge for SPEs is to provide near real-time pro-
cessing guarantees. Furthermore, they have to handle fluc-
tuations in the input data rate. In contrast, batch processing
engines pull data from storage as needed, which allows for
controlling input rates [14, 29]. In this section, we intro-
duce the underlying processing models of SPEs as well as
the SPEs that we selected for our study (Section 2.1). Af-
ter that, we present aspects of modern hardware that we
investigate in this paper (Section 2.2).

2.1 Streaming Systems
Over the last decades, two categories of streaming sys-

tems emerged. SPEs in the first category are optimized for
scale-out execution of streaming queries on shared-nothing
architectures. In general, these SPEs apply a distributed
producer-consumer pattern and a buffer mechanism to han-
dle data shuffling among operators (e.g., partitioning). Their
goal is to massively parallelize the workload among many
small to medium sized nodes. In this paper, we analyze
Apache Flink [29], Apache Spark [91], and Apache Storm [81]
as representative, JVM-based, state-of-the-art scale-out

SPEs. We choose these SPEs due to their maturity, wide
academic and industrial adoption, and the size of their open-
source communities.

SPEs in the second category are optimized for scale-up
execution on a single machine. Their goal is to exploit
the capabilities of one high-end machine efficiently. Recent
SPEs in this category are Streambox [67], Trill [34], and
Saber [58]. In particular, Streambox aims to optimize the
execution for multi-core machines, whereas SABER takes
heterogeneous processing into account by utilizing GPUs.
Finally, Trill supports a broad range of queries beyond SQL-
like streaming queries. In this paper, we examine Streambox
and SABER as representative SPEs in this category.

A major aspect of parallel stream processing engines are
the underlying processing models which are either based on
micro-batching or use pipelined tuple-at-a-time processing
[14, 19, 33, 42, 89]. Micro-batching SPEs split streams into
finite chunks of data (batches) and process these batches in
parallel. SPEs such as Spark [90], Trident [1], and SABER[58]
adopt this micro-batching approach. In contrast, pipelined,
tuple-at-a-time systems execute data-parallel pipelines
consisting of stream transformations. Instead of splitting
streams into micro-batches, operators receive individual tu-
ples and produce output tuples continuously. SPEs such as
Apache Flink [15] and Storm [81] adopt this approach.

2.2 Modern Hardware
A streaming system on modern hardware has to exploit

three critical hardware resources efficiently to achieve a high
resource utilization: CPU, main memory, and network. In
this paper, we investigate if current SPEs and their system
designs exploit these resources efficiently.

First, modern many-core CPUs contain dozens of CPU
cores per socket. Additionally, multi-socket CPUs connect
multiple CPUs via fast interconnects to form a network of
cores. However, this architecture introduces non-uniform
memory access (NUMA) among cores [62, 74]. As a result,
the placement of data in memory directly affects the overall
efficiency of the system. Furthermore, each core caches parts
of the data in its private and shared caches for fast access.
To exploit this performance critical resource efficiently, the
data and instruction locality have to be taken into account.

Second, today’s common servers provide main memory
capacities of several terabytes. As a result, the majority of
the data and state informations, e.g., the data of one win-
dow, can be maintained in main memory. In combination
with multiple threads working on the same data, this sig-
nificantly speeds up the processing compared to maintain-
ing the same state with slower disk or network connections.
On the other hand, such a streaming system has to handle
synchronization and parallel aspects in much shorter time
frames to enable efficient processing.

Third, today’s network connections become constantly
faster and potentially outperform main memory band-
width [22] in the future. Commonly available Ethernet tech-
nologies provide 1, 10, 40, or 100 Gbit bandwidth. In con-
trast, new network technologies such as InfiniBand provide
much higher bandwidth up to or even faster than main mem-
ory bandwidth [22]. This important trend will lead to rad-
ical changes in system designs. In particular, the common
wisdom of processing data locally first does not hold with
future network technologies [22]. As a result, a system which
transfers data between nodes as fast as or even faster than
reading from main memory introduces new challenges and
opportunities to future SPEs.
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Figure 2: Data ingestion rate overview.

3. DATA-RELATED OPTIMIZATIONS
In this section, we explore data-related aspects for stream-

ing systems. We discuss different methods to supply high
velocity streams in Section 3.1 and evaluate strategies for
efficient data passing among operators in Section 3.2.

3.1 Data Ingestion
We examine different alternatives how SPEs can receive

input streams. In Figure 2, we provide an overview of com-
mon ingestion sources and their respective maximum band-
widths. In general, an SPE receives data from network, e.g.,
via sockets, distributed file systems, or messaging systems.
Common network bandwidths range from 1 to 100 GBit over
Ethernet (125 MB/s - 12.5 GB/s). In contrast, InfiniBand
(IB) offers higher bandwidths from 1.7 GB/s (FDR 1x) to
37.5 GB/s (EDR - Enhanced Data Rate - 12x) per network
interface controller (NIC) per port [3].

Analysis. Based on the numbers in Figure 2, we con-
clude that modern network technologies enable ingestion
rates near main memory bandwidth or even higher [22].
This is in line with Binning et al. who predict the end of
slow networks [22]. Furthermore, they point out that fu-
ture InfiniBand standards such as HDR or NDR will of-
fer even higher bandwidths. Trivedi et al. [84] assess the
performance-wise importance of the network for modern dis-
tributed data processing systems such as Spark and Flink.
They showed that increasing the network bandwidth from
10 Gbit to 40 Gbit transforms those systems from network-
bound to CPU-bound systems. As a result, improving the
single node efficiency is crucial for scale-out systems as well.
On single node SPEs, Zhang et al. [94] point out that cur-
rent SPEs are significantly CPU-bound and thus will not
natively benefit from an increased ingestion rate. An SPE
on modern hardware should be able to exploit the boosted
ingestion rate to increase its overall, real-world throughput.

Infiniband and RDMA. The trends in the area of net-
working technologies over the last decade showed, that Re-
mote Direct Memory Access (RDMA) capable networks be-
came affordable and thus are present in an increasing num-
ber of data centers [56]. RDMA enables the direct access
to main memory of a remote machine while bypassing the
remote CPU. Thus, it does not consume CPU resources of
the remote machine. Furthermore, the caches of the re-
mote CPU are not polluted with the transfered memory con-
tent. Finally, zero-copy enables direct send and receive us-
ing buffers and bypasses the software network stack. Alter-
natively, high-speed networks based on Infiniband can run
common network protocols such as TCP and UDP (e.g., via
IPoIB). However, this removes the benefits of RDMA be-
cause their socket interfaces involve system calls and data
copies between application buffers and socket buffers [75].

Today, three different network technologies provide RDMA-
support: 1) InfiniBand, 2) RoCE (RDMA over Converged
Ethernet), and 3) iWARP (Internet Wide Area RDMA Pro-
tocol). The underlying NICs are able to provide up to 100
Gbps of per-port bandwidth and a round-trip latency of
roughly 2µs [56]. Overall, there are two modes for RDMA
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Figure 3: Infiniband network bandwidth.

communication: one-sided and two-sided. With two-sided
communication, both sides, the sender and the receiver are
involved in the communication. Thus, each message has to
be acknowledged by the receiver and both participants are
aware that a communication takes place. In contrast, one-
sided communication involves one active sender and one pas-
sive receiver (RDMA write) or a passive sender and an active
receiver (RDMA read). In both cases, one side is agnostic of
the communication. As a result, synchronization methods
are required to detect that a communication is finished.

Experiment. In Figure 3, we run the aforementioned
communication modes on an InfiniBand high-speed network
with a maximum bandwidth of 56 Gbit/s (FDR 4x). On
the x-axis, we scale the buffer/message and on the y-axis
we show the throughput in GBytes/s for a data transfer of
10M tuples of 78 byte each, i.e., the yahoo streaming bench-
mark tuples. To implement the C++ version, we use RDMA
Verbs [40]. The Java implementation uses the disni library
[2] and follows the Spark RDMA implementation [6]. As a
first observation, Figure 3 shows that all modes perform bet-
ter with larger buffer/messages sizes and their throughput
levels off starting around 1M. Second, the C++ RDMA read
implementation achieves roughly 2 GB/s more throughput
than the Java implementation. As a result, we conclude
that the JVM introduces additional overhead and, thus, a
JVM-based SPE is not able to utilize the entire network
bandwidth of modern high-speed networks. Third, the C++
RDMA write operation is slightly slower than the read op-
eration. Finally, the two-sided send/receive mode is slower
than the one-sided communication modes. Overall, the one-
sided RDMA read communication using a message size of 4
MB performs best. Note that, our findings are in line with
previous work [68, 56].

Discussion. Our experiments show that a JVM-based
distributed implementation is restricted by the JVM and
cannot utilize the bandwidth as efficiently as a C++ im-
plementation. As a result, the performance of JVM-based
SPEs is limited in regards to upcoming network technologies
that are able to deliver data at memory-speed.

3.2 Data Exchange between Operators
In this section, we examine the design of pipelined ex-

ecution using message passing, which is common in state-
of-the-art SPEs. In particular, SPEs execute data-parallel
pipelines using asynchronous message passing to provide
high-throughput processing with low-latency. To pass data
among operators, they use queues as a core component. In
general, data is partitioned by keys and distributed among
parallel instances of operators. In this case, queues enable
asynchronous processing by decoupling producer and con-
sumer. However, queues become the bottleneck if operators
overload them. In particular, a slow consumer potentially
causes back-pressure and slows down previous operators.
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To examine queues as the central building block in modern
SPEs, we conduct an experiment to asses the capabilities of
open-source, state-of-the-art queue implementations.

Experimental Setup. In this experiment, we selected
queues that cover different design aspects such as in memory
management, synchronization, and underlying data struc-
tures. We select queues provided by Facebook (called
Folly) [7], the Boost library [8], the Intel TBB library [9],
and the Java java.util.concurrent package [4]. In addition,
we choose an implementation called Moody [5] and an imple-
mentation based on memory fences [85]. Finally, we provide
our own implementations based on the STL queue and list
templates. Except the Java queue, all queues are imple-
mented in C++.

Following Sax et al. [55] and Carbone et al. [29], we
group tuples into buffers to increase the overall throughput.
They point out, that buffers introduce a trade-off between
latency and throughput. For our C++ implementations, we
enqueue filled buffers into the queue by an explicit copy and
dequeue the buffer with a different thread. In contrast, our
Java queue implementation follows Flink by using buffers
as an unmanaged memory area. A tuple matches the size
of a cache line, i.e., 64 Byte. We pass 16.7M tuples, i.e., 1
gigabyte of data, via the queue.

Observation. In Figure 4, we relate the throughput mea-
surements in GB/s to the physically possible main memory
bandwidth of 28 GB/s. Furthermore, we scale the buffer
size on the x-axis such that it fits a particular cache size.
In general, the lock-free queues from the TBB and Boost
library achieve the highest throughputs of up to 7 GB/s,
which corresponds to 25% of the memory bandwidth. Other
C++ implementations achieve slightly lower throughput of
up to 7 GB/s. In contrast, the Java queue, which uses con-
ditional variables, achieves the lowest throughput of up to
3 GB/s. Overall, buffering improves throughput as long as
the buffer size either matches a private cache size (L1 or L2)
or is smaller than L3 cache size. Inside this range, all buffer
sizes perform similar with a small advantage for a buffer size
that matches the L1 cache.

Discussion. Figure 4 shows that queues are a potential
bottleneck for a pipelined streaming system using message
passing. Compared to a common memory bandwidth of ap-
proximately 28 GB/s, the best state-of-the-art queue imple-
mentations exploit only one fourth of this bandwidth. Fur-
thermore, a Java queue achieves only 10% of the available
memory bandwidth because it exploits conditional variables
and unmanaged buffers. These design aspects introduce syn-
chronization as well as serialization overhead.

As a result, the maximum throughput of a streaming
system using queues is bounded by the number of queues
and their aggregated maximum throughput. Additionally,
load imbalances reduce the maximum throughput of the en-
tire streaming system. In particular, a highly skewed data
stream can overload some queues and under-utilize others.

3.3 Discussion
The results in Figure 3, suggest to use RDMA read opera-

tions and a buffer size of several megabytes to utilize todays
high-speed networks in a distributed SPE. The results in
Figure 4 strongly suggest that a high performance SPE on
modern hardware should omit queues as a potential bottle-
neck. If queues are used, the buffer size should be between
the size of the L1 and 2*L2 cache.

4. PROCESSING-RELATED
OPTIMIZATIONS

In this section, we examine the processing-related design
aspects of SPEs on modern hardware. Following the clas-
sification of stream processing optimizations introduced by
Hirzel et al. [53], we address operator fusion in Section 4.1,
operator fission in Section 4.2, and windowing techniques
in Section 4.3. We will address the stream-processing opti-
mization of placement and load balancing in the context of
operator fusion and fission [53].

4.1 Operator Fusion
We examine two different execution models for SPEs,

namely query interpretation and compilation-based query ex-
ecution. Both models enable data-parallel pipelined stream
processing. For our following considerations, we assume a
query plan that is translated into a processing pipeline con-
sisting of sources, intermediate operators, and sinks. Sources
continuously provide input data to the processing pipeline
and sinks write out the result stream. In general, we can
assign a different degree of parallelism to each operator as
well as to each source and sink.

4.1.1 Interpretation-based Query Execution
An interpretation-based processing model is character-

ized by: 1) an interpretation-based evaluation of the query
plan, 2) the application of queues for data exchange, and
3) the possibility of operator fusion. In Figure 5(a), we show
an example query plan of a simple select-project-aggregate
query using a query interpretation model. To this end, a
query plan is translated into a set of pipelines containing
producer-consumer operators. Each operator has its own
processing function which is executed for each tuple. The
interpretation-based processing model uses queues to for-
ward intermediate results to downstream operators in the
pipeline. Each operator can have multiple instances where
each instance reads from an input queue, processes a tuple,
and pushes its result tuples to its output queue. Although
all operators process a tuple at a time on a logical level, the
underlying engine might perform data exchanges through
buffers (as shown in Section 3.2).

In general, interpretation-based processing is used by mod-
ern SPEs like Flink, Spark, and Storm to link parallel op-
erator instances using a push-based approach implemented
by function calls and queues. In case an operator instance
forwards its results to only one subsequent operator, both
operators can be fused. Operator fusion combines operators
into a single tight forloop that passes tuples via register and
thus eliminating function calls. Note, that this register-level
operator fusion goes beyond function call-based operator fu-
sion used in other SPS [30, 80, 48]. However, many operators
like the aggregate-by-key operator in Figure 5(a) require a
data exchange due to partitioning. In particular, each par-
allel instance of the aggregate-by-key operator processes a
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range of keys and stores intermediate results as internal op-
erator state. As a result, queues are a central component in
an interpretation-based model to link operators. Note that,
this execution model represents each part of the pipeline as
a logical operator. To execute a query, every logical opera-
tor is mapped to a number of physical operators, which is
specified by the assigned degree of parallelism.

4.1.2 Compilation-based Query Execution
A compilation-based processing model follows the ideas of

Neumann [70] and is characterized by: 1) the execution of
compiled query plans (using custom code generation), 2) op-
erator fusion performed at query compile time, and 3) an
improved hardware resource utilization. In general, this ap-
proach fuses operators within a pipeline until a so-called
pipeline-breaker is reached. A pipeline breaker requires the
full materialization of its result before the next operator
can start processing. In the context of databases and in-
memory batch processing, pipeline breakers are relational
operators such as sorting, join, or aggregations. In the con-
text of streaming systems, the notion of a pipeline breaker
is different because streaming data is unbounded and, thus,
the materialization of a full stream is impracticable. There-
fore, we define operators that send partially materialized
data to the downstream operator as soft pipeline breakers.
With partially materialized, we refer to operators that re-
quire buffering before they can emit their results, e.g., win-
dowed aggregation. Compilation-based SPEs such as IBM’s
System S/SPADE and SABER use operator fusion to re-
move unnecessary data movement via queues.

In Figure 5(b), we present a select-project-aggregate query
in a compilation-based model. In contrast to an interpret-
ation-based model, all three operators are fused in a single
operator that can run with any degree of parallelism. This
model omits queues for message passing and passes tuples
via CPU registers. Additionally, it creates a tight loop over
the input stream, which increases data and instruction lo-
cality. Neumann showed that this model leads to improved
resource utilizations on modern CPUs in databases [70].
In terms of parallelization, operator fusion results in a re-
duced number of parallel operators compared to the query
interpretation-based model. Instead of assigning one thread
to the producer and another thread to the consumer, this
model executes both sides in one thread. Thus, with the
same number of available threads, the parallelism increases.

4.1.3 Discussion
We contrast two possible processing models for an SPE.

On a conceptual level, we conclude that the compilation-
based execution model is superior for exploiting the resource
capabilities of modern hardware. In particular, it omits
queues, avoids function calls, and results in code optimized
for the underlying hardware. We expect the same improve-
ment for streaming queries as Neumann reported for database
queries [70]. However, a scale-out optimized SPE commonly
introduces queues to distribute the computation among dif-
ferent nodes to decouple the producer from the consumer.
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4.2 Operator Fission
In this section, we present two general parallelization stra-

tegies to distribute the processing among different comput-
ing units. This stream processing optimization includes par-
titioning, data parallelism, and replication [53]. With Up-
front Partitioning we refer to a strategy that physically par-
titions tuples such that each consumer processes a distinct
sub-set of the stream. With Late Merging we refer to a
strategy that logically distributes chunks of the stream to
consumers, e.g., using a round-robin. This strategy may
require a final merge step at the end of the processing if
operators such as keyed aggregations or joins are used.

Upfront Partitioning (UP). Upfront Partitioning in-
troduces a physical partitioning step between producer and
consumer operators. This partitioning consists of an inter-
mediate data shuffling among n producers and m consumers,
which are mapped to threads. Each producer applies a par-
titioning function (e.g., consistent hashing or round-robin)
after processing a tuple to determine the responsible con-
sumer. In particular, partitioning functions ensure that tu-
ples with the same key are distributed to the same consumer.
In Figure 6(a), we present this common partition-based par-
allelization strategy, which is used by Apache Flink [29],
Apache Spark Streaming [91], and Apache Storm [81].

This strategy leverages queues to exchange data among
producer and consumer operators. Thus, each producer
explicitly pushes its output tuples to the input queue of
its responsible consumer. Although the use of buffers im-
proves the throughput of this strategy (see Section 3.2), we
showed that queues establish a severe bottleneck in a scale-
up SPE. Furthermore, the load balancing on consumer side
highly depends on the quality of the partitioning function.
If data are evenly distributed, the entire system achieves
high throughput. However, an uneven distribution leads to
over-/underutilized parallel instances of an operator.

The processing using upfront partitioning creates inde-
pendent/distinct, thread-local intermediate results on each
consumer. Thus, assembling the final output result requires
only a concatenation of thread local intermediate results.
An SPE can perform this operation in parallel, e.g., by writ-
ing to a distributed file system.

Late Merging. Late Merging divides the processing
among independent threads that pull data by their own.
Leis et al. [62] and Pandis et al. [72] previously applied this
partitioning approach in the context of high-performance,
main memory databases. In this paper, we revise those
techniques in the context of stream processing. In contrast
to upfront partitioning, this strategy requires an additional
merge step at the end of the processing pipeline. In the
following, we introduce two merging strategies: Late Local
Merge and Late Global Merge.

In the Late Local Merge (LM) strategy, each worker
thread buffers its partial results in a local data structure (see
Figure 6(b)). When the processing pipeline reaches a soft
pipeline-breaker (e.g., a windowed aggregation), those par-



tial results have to be merged into a global data structure.
Because each worker potentially has tuples of the entire do-
main, the merge step is more complex compared to the sim-
ple concatenation used by UP. One solution for merging the
results of a soft pipeline-breaker such as an aggregation op-
erator is to use parallel tree aggregation algorithms.

In the Late Global Merge (GM) strategy, all worker
threads collaboratively create a global result during execu-
tion (see Figure 6(c)). In contrast to late local merge, this
strategy omits an additional merging step at the end. In-
stead, this strategy introduces additional synchronization
overhead during run-time. In particular, if the query plan
contains stateful operators, e.g., keyed aggregation, the sys-
tem has to maintain a global state among all stateful op-
erators of a pipeline. To minimize the maintenance costs,
a lock-free data structure should be utilized. Furthermore,
contention can be mitigated among instances of stateful op-
erators through fine-grained updates using atomic compare-
and-swap instructions. Finally, Leis et al. [62] describe a
similar technique in the context of batch processing, whereas
Fernandez et al. [45] provide solutions for scale-out SPEs.

Depending on the characteristics of the streaming query,
an SPE should either select late merge or global merge. If
the query induces high contention on a small set of data val-
ues, e.g., an aggregation with a small group cardinality, lo-
cal merge is beneficial because it reduces synchronization on
the global data structure. In contrast, if a query induces low
contention, e.g., an aggregation with a large group cardinal-
ity, global merge is beneficial because it omits the additional
merging step at the end.

Discussion. In this section, we presented different paral-
lelization strategies. UP builds on top of queues to exchange
data between operators. This strategy is commonly used
in scale-out SPEs in combination with an interpretation-
based model. However, as shown in Section 3.2, queues are
a potential bottleneck for a scale-up optimized SPE. There-
fore, we present two late merging strategies that omit queues
for data exchange. In particular for a scale-up SPE, those
strategies enable a compilation-based execution (see Sec-
tion 4.1). With late merging and a compilation-based query
execution, we expect the same improvements for SPEs that
Neumann achieved for in-memory databases [70].

4.3 Windowing
Windowing is a core feature of streaming systems that

splits the conceptually infinite data stream into finite chunks
of data, i.e., windows. An SPE computes an aggregate for
each window, e.g., the revenue per month. As a main goal,
an efficient windowing mechanism for an SPE on modern
hardware has to minimize the synchronization overhead to
enable a massively parallel processing. To this end, we im-
plement a lock-free continuous windowing mechanism fol-
lowing the ideas in [58, 78, 79]. Our implementation uses
a double-buffer approach and fine-grained synchronization
primitives, i.e., atomic instructions, instead of coarse-grained
locks to minimize synchronization overhead. Moreover, our
implementation induces a smaller memory footprint than
approaches based on aggregate trees [17] as we use on-the-
fly aggregation [79] instead of storing aggregate trees.

Alternating Window Buffers. In Figure 7, we show
our double-buffer implementation based on the ideas in [58,
78, 79]. At its core, it exploits alternating window buffers to
ensure that there is always one active buffer as a destination
of incoming tuples. Furthermore, multiple non-active buffers

Figure 7: Alternating window buffers.

store the results of previous windows. The non-active buffers
can be used to complete the aggregate computation, output
the results, and reinitialize the buffer memory. As a result,
this implementation never defers the processing of the input
stream, which increases the throughput of the window oper-
ation for both parallelization strategies (see Section 4.2). To
implement the buffers, we use lock-free data structures that
exploit atomic compare-and-swap instructions. This enables
concurrent accesses and modification [51, 62, 63]. As a re-
sult, several threads can write to a window buffer in parallel
and thereby aggregate different parts.

Detecting Window Ends. We implement an event-
based approach where writer threads check upon the arrival
of a tuple if the current window ended. This implies a very
low latency for high-bandwidth data streams because ar-
riving tuples cause frequent checks for window ends. Dis-
continuous streams [60] may lead to high latencies, because
of the absence of those checks during the discontinuity. In
this case, we switch between our lock-free implementation
and a timer-thread implementation depending on the con-
tinuity of input streams. A timer thread checks for window
ends periodically and, if required, triggers the output. We
implement the switch between timer threads and our event-
driven technique directly at the source by monitoring the
input rate.

Extensions. In order to achieve very low output la-
tencies, we aggregate tuples incrementally whenever possi-
ble [79]. To further improve performance, we can combine
our implementation with stream slicing [31, 61, 64, 82, 83].
Slicing techniques divide a data stream in non-overlapping
chunks of data (slices) such that all windows are combina-
tions of slices. When processing sliding windows, we switch
alternating buffers upon the start of each new slice. We use
time-based windows as an example to simplify the descrip-
tion. However, our windowing technique works with arbi-
trary stream slicing techniques, which enables diverse win-
dow types such as count-based windows [12, 52] and variants
of data-driven and user-defined windows [31, 47, 50].

Discussion. We implement a lock-free windowing mecha-
nism that minimizes the contention between worker threads.
This minimized contention is crucial for a scale-up optimized
SPE on modern hardware. To determine its efficiency, we
run a micro-benchmark using the data set of the Yahoo!
Streaming Benchmark and compare it to a common solution
based on timer threads. Our results show that a double-
buffer approach achieves about 10% higher throughput on a
scale-up SPE on modern hardware.

5. EVALUATION
In this section, we experimentally evaluate design aspects

of an SPE on modern hardware. In Section 5.1, we introduce
our experimental setup including machine configuration and
selected benchmarks. After that, we conduct a series of
experiments in Section 5.2 to understand the reasons for
different throughput values of different implementations and
state-of-the-art SPEs. Finally, we summarize and discuss
our results in Section 5.3.



5.1 Experimental Setup
In the following, we present the hardware and software

configurations used for our analysis as well as the selected
benchmarks and their implementation details.

Hardware and Software. We execute our benchmarks
on an Intel Core i7-6700K processor with 4 GHz and four
physical cores (eight cores using hyper-threading). This pro-
cessor contains a dedicated 32 KB L1 cache for data and
instructions per core. Additionally, each core has a 256 KB
L2 cache and all cores share an 8 MB L3 cache. The test
system has 32 GB of main memory and runs Ubuntu 16.04.
If not stated otherwise, we execute all measurements using
all logical cores, i.e., a degree of parallelism of eight.

The C++ implementations are compiled with GCC 5.4
and O3 optimization as well as the mtune flags to produce
specific code for the underlying CPU. The Java implemen-
tations run on the HotSpot VM in version 1.8.0 131. We
use Apache Flink 1.3.2, Apache Spark Streaming 2.2.0, and
Apache Storm 1.0.0 as scale-out SPEs. We disable fault-
tolerance mechanisms (e.g., checkpointing) to minimize the
overhead of those frameworks. We use the Streambox (writ-
ten in C++) release of March 10th and Saber (written in
Java) in version 0.0.1 as representative scale-up SPEs. We
measure hardware performance counters using Intel VTune
Amplifier XE 2017 and the PAPI library 5.5.1.

The JVM-based scale-out SPEs have to serialize and de-
serialize tuples to send them over the network. The (de)-
serialization requires a function call and a memory copy
from/to the buffer for each field of the tuple, which adds
extra overhead for JVM-based SPEs [84]. In contrast, a
scale-up C++ based SPE accesses tuples directly in dense
in-memory data structures.

Strategies Considered. We implement each bench-
mark query using the three previously discussed paralleliza-
tion strategies: upfront partitioning as well as late merg-
ing with Local Merge and Global Merge (see Section 4.2).
The upfront partitioning uses an interpretation-based exe-
cution strategy and both Late Merge implementations use
a compilation-based execution. Furthermore, all implemen-
tations use the lock-free windowing mechanism described in
Section 4.3. For each strategy and benchmark, we provide
a Java and a C++ implementation.

The upfront partitioning strategy follows the design of
state-of-the-art scale-out SPEs. Thus, it uses message pass-
ing via queues to exchange tuples among operators. In con-
trast, both Late Merge strategies omit queues and fuse oper-
ators where possible. Furthermore, we pass tuples via local
variables in CPU registers. In the following, we refer to Late
Local Merge and Late Global Merge as Local Merge (LM)
and Global Merge (GM), respectively.

In our experiments, we use the memory bandwidth as an
upper bound for the input rate. However, future network
technologies will increase this boundary [22]. To achieve a
data ingestion at memory speed, we ingest streams to our
implementations using an in-memory structure. Each in-
memory structure is thread-local and contains a pre-gene-
rated, disjoint partition of the input. We parallelize query
processing by assigning each thread to a different input par-
tition. At run-time, each implementation reads data from
an in-memory structure, applies its processing, and outputs
its results in an in-memory structure through a sink. Thus,
we exclude network I/O and disks from our experiments.

Java Optimizations. We optimize our Java implemen-
tations and the JVM to overcome well-known performance

issues. We ensure that the just-in-time compiler is warmed-
up [66] by repeating the benchmark 30 times. We achieve
efficient memory utilization by avoiding unnecessary mem-
ory copy, object allocations, GC cycles, and pointer chasing
operations [28]. Furthermore, we set the heap size to 28 GB
to avoid GC overhead, use primitive data types and byte
buffer for pure-java implementations and off-heap memory
for the scale-out SPEs [43, 87]. Finally, we use the Garbage-
First (G1GC) garbage collector which performs best for our
examined benchmarks [10].

Benchmarks. We select the Yahoo! Streaming Bench-
mark (YSB), the Linear Road Benchmark (LRB), and a
query on the New York City Taxi (NYT) dataset to as-
sess the performance of different design aspects for modern
SPEs. YSB simulates a real-word advertisement analytics
task and its main goal is to assess the performance of win-
dowed aggregation operators [38, 39]. We implement YSB
[38] using 10K campaigns based on the codebase provided
by [49, 39]. Following these implementations, we omit a
dedicated key/value store and perform the join directly in
the engine [49, 39].

LRB simulates a highway toll system [16]. It is widely
adopted to benchmark diverse systems such as relational
databases [16, 25, 65, 77], specialized streaming systems [12,
16, 54, 46], distributed systems [24, 92, 93], and cloud-based
systems [32, 37]. We implement the accident detection and
the toll calculation for the LRB benchmark [16] as a sub-set
of the queries.

The New York City Taxi dataset covers 1.1 billion indi-
vidual taxi trips in New York from January 2009 through
June 2015 [76]. Besides pickup and drop-off locations, it
provides additional informations such as the trip time or
distance, the fare, or the number of passengers. We divided
the area of NY into 1000 distinct regions and formulate the
following business relevant query: What are the number of
trips and their average distance for the VTS vendor per re-
gion for rides more than 5 miles over the last two seconds?
The answer to this query would provide a value information
for taxi drivers in which region they should cruise to get a
profitable ride.

YSB, LRB, and NYT are three representative workloads
for todays SPEs. However, we expect the analysis of other
benchmarks would obtain similar results. We implement
all three benchmarks in Flink, Storm, Spark Streaming,
Streambox, and Saber. Note that for SABER, we use the
YSB implementation provided in [73] and implement the
LRB benchmark and NYT query accordingly. Finally, we
provide hand-coded Java and C++ implementations for the
three parallelization strategies presented in Section 4.2. In
our experiments, we exclude the preliminary step of pre-
loading data into memory from our measurements.

Experiments. In total, we conduct six experiments.
First, we evaluate the throughput of the design alternatives
showed in this paper to get an understanding of their over-
all performance. In particular, we examine the through-
put of the design alternatives for the YSB and LRB (see
Section 5.2.1). Second, we break down the execution time
of the design alternatives to identify the CPU component
that consumes the majority of the execution time (see Sec-
tion 5.2.2). Third, we sample data and cache-related perfor-
mance counters to compare the resource utilization in detail
(see Section 5.2.3). Fourth, we compare our scale-out op-
timized implementations of the YSB with published bench-
mark results of state-of-the-art SPEs running in a cluster
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Figure 8: YSB single node.
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Figure 9: LRB single node.
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Figure 10: NYT query single node.

(see Section 5.2.4). Fifth, we show how scale-out optimiza-
tions perform in a distributed execution using a high-speed
InfiniBand in Section 5.2.5. Finally, we evaluate the impact
of design alternatives on latency (see Section 5.2.6).

5.2 Results
In this section, we present the results of the series of ex-

periments presented in the previous section. The goal is to
understand the differences in performance of state-of-the-art
SPEs and design alternatives presented in this paper.

5.2.1 Throughput
To understand the overall efficiency of the design alterna-

tives presented in this paper, we measure their throughput
in million records per second for both benchmarks in Fig-
ures 8 and 9. Additionally, we relate their throughput to
the physically possible memory bandwidth, which could be
achieved by only reading data from an in-memory structure
without processing it.

YSB Benchmark. The scale-out optimized SPEs Flink,
Spark Streaming, and Storm exploit only a small fraction
of physical limit, i.e., 1.5% (Flink), 0.8% (Spark Stream-
ing), and 0.07% (Storm). The scale-up optimized Streambox
(written in C++) achieves about 17% and Saber (written in
Java) achieves 6.6% of the theoretically possible throughput.
In contrast, the C++ implementations achieve a throughput
of 68.5% (Upfront Partitioning), 91.4% (Local Merge), and
91% (Global Merge) compared to memory bandwidth. For
Local and Global Merge, these numbers are a strong indica-
tor that they are bounded by memory bandwidth. We ap-
proximate the overhead for using a JVM compared to C++
to a factor of 15 (Upfront Partitioning), 16 (Local Merge),
and 13 (Global Merge). We analyze the implementations in-
depth in Section 5.2.2 and 5.2.3 to identify causes of these
large differences in performance.

As shown in Figure 8, Local and Global Merge outper-
form the Upfront Partitioning strategy by a factor of 1.34
and 1.33. The main reason for the sub-optimal scaling of
Upfront Partitioning is the use of queues. First, queues rep-
resent a bottleneck if their maximum throughput is reached
(see Section 3.2). Second, queues require the compiler to
generate two distinct code segments that are executed by
different threads such that tuples cannot be passed via reg-
isters. Thus, queues lead to less efficient code, which we
investigate in detail in Section 5.2.3. In contrast, Local and
Global Merge perform similar for YSB and almost reach the
physical memory limit of a single node. The main reason
is that threads work independently from each other because
the overall synchronization among threads is minimal.

LRB Benchmark. In Figure 9, we present throughput
results for the LRB benchmark. Flink, Spark Streaming,
and Storm exploit only a small fraction of physical limit,

i.e., 0.27% (Flink), 0.03% (Spark Streaming), and 0.01%
(Storm). We approximate the overhead of each framework
by comparing their throughput with the Java implementa-
tion of the upfront partitioning. Such overhead ranges from
a factor of 2.7 (Flink), over a factor of 9 (Spark Streaming),
to a factor of 39 (Storm). Note that, Spark Streaming pro-
cesses data streams in micro-batches [90]. We observe that
the scheduling overhead for many small micro-batch jobs
negatively affects the overall throughput.

The scale-up optimized SPEs Streambox (written in C++)
and Saber (written in Java) achieves about 9% and less than
1% of the theoretically possible throughput, respectively. In
contrast, the C++ implementations achieve a throughput of
15% (UP), 48% (LM), and 67% (GM) of the physical limit.
We approximate the overhead of a JVM compared to C++
to a factor of 20 (UP), 40 (LM), and 55 (GM).

Compared to YSB, the overall throughput of the LRB is
lower because it is more complex, requires more synchroniza-
tion, and larger operator states. In particular, the consumer
requires lookups in multiple data structures compared to a
single aggregation in the YSB. As a result, concurrent access
by different threads to multiple data structures introduces
cache thrashing and thus prevents the LRB implementations
from achieving a throughput close to the physical limit.

Overall, the Global Merge strategy achieves the highest
throughput because it writes in a shared data structure
when windows end. In particular, we use a lock-free hash
table based on atomic compare-and-swap instructions and
open-addressing [51]. Thus, each processing thread writes
its results for a range of disjoint keys, which leads to lower
contention on the cells of the hash table. As a result, the
C++ implementation of the Global Merge outperforms the
Java implementation by a factor of 54 because it uses fine-
grained atomic instructions (assembly instructions) that are
not available in Java. In contrast, the C++ late Merge
implementation is slower than Global Merge by a factor of
1.4. The main reason is that the additional merging step at
the end of a window introduces extra overhead in terms of
thread synchronization. Furthermore, the Java implementa-
tion of the Local Merge and Global Merge perform similarly
because they implement the same atomic primitives.

The upfront partitioning is slower than Local Merge by
a factor of 3.2 because it utilizes queues, buffers, and extra
threads, which introduce extra overhead. An analysis of the
execution reveals that the increased code complexity results
in a larger code footprint. Furthermore, the upfront parti-
tioning materializes input tuples on both sides of the queue.
As a result, the Java implementation of upfront partitioning
is slower than the C++ counterpart by a factor of 20.

In the remainder of this evaluation, we use Flink and
Streambox as representative baselines for state-of-the-art
scale-up and scale-out SPEs. Furthermore, we restrict the
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Figure 11: Execution time breakdown YSB.

in-depth performance analysis to the YSB because the over-
all results of YSB and LRB are similar.

New York Taxi Query In Figure 10, we present the
throughput results for the NYT query. As shown, Flink,
Spark Streaming, and Storm exploit only a small fraction of
physical limit, i.e., 0.5% (Flink), 0.37% (Spark Streaming),
and 0.34% (Storm). The pure Java implementations per-
form faster and exploit 16% (Java UP), 29% (Java LM), and
20% (Java GM) of the available memory bandwidth. In con-
trast, the C++ based implementation achieve a much higher
bandwidth utilization of 69% (C++ UP), 80% (C++ LM),
and 94% (C++ GM). Finally, the scale-out optimized SPEs
Streambox (17%) and Saber (6%) perform better than the
scale-out optimized SPEs. Compared to the YSB, this query
induces simpler instructions but each tuple is larger, which
leads to better performing pure-Java implementations. How-
ever, the the C++ implementations are utilizing the mem-
ory bandwidth more efficiently and the best variant (GM)
achieves throughput values near the physical memory limit.

5.2.2 Execution Time Breakdown
In this section, we break down the execution time for

different CPU components following the Intel optimization
guide [41]. This time breakdown allows us to identify which
parts of the micro-architecture are the bottleneck.

Metrics. Intel provides special counters to monitor
buffers that feed micro-ops supplied by the front-end to the
out-of-order back-end. Using these counters, we are able
to derive which CPU component stalls the CPU pipeline
and for how long. In the following, we describe these com-
ponents in detail. First, the front-end delivers up to four
micro-ops per cycle to the back-end. If the front-end stalls,
the rename/allocate part of the out-of order engine starves
and thus execution becomes front-end bound. Second, the
back-end processes instructions issued by the front-end. If
the back-end stalls because all processing resources are occu-
pied, the execution becomes back-end bound. Furthermore,
we divide back-end stalls into stalls related to the memory
sub-system (called Memory bound) and stalls related to the
execution units (called Core bound). Third, bad speculation
summarizes the time that the pipeline executes speculative
micro-ops that never successfully retire. This time repre-
sents the amount of work that is wasted by branch mispre-
dictions. Fourth, retiring refers to the number of cycles that
are actually used to execute useful instructions. This time
represents the amount of useful work done by the CPU.

Experiment. In Figure 11, we breakdown the execution
of cycles spent in the aforementioned five CPU components
based on the Intel optimization guide [41].

Flink is significantly bounded by the front-end and bad
speculation (up to 37%). Furthermore, it spends only a
small portion of its cycles waiting on data (23%). This in-

Table 1: Resource utilization of design alternatives.
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Instr. Exec./
Input Tuple
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dicates that Flink is CPU bound. In contrast, Streambox
is largely core bounded which indicates that the generated
code does not use the available CPU resources efficiently.

All Java implementations are less front-end bound and
induce less bad speculation and more retiring instructions
compared to their respective C++ implementations. In par-
ticular, the Java implementations spend only few cycles in
the front-end or due to bad speculation (5%-11%). The re-
maining time is spent in the back-end (23%-28%) by waiting
for functional units of the out-of-order engine. The main
reason for that is that Java code accesses tuples using a
random access pattern and thus spend the majority of time
waiting for data. Therefore, an instruction related stall time
is mainly overlapped by long lasting data transfers. In con-
trast, C++ implementations supply data much faster to the
CPU such that the front-end related stall time becomes more
predominant. We conclude that Java implementations are
significantly core bound. LRB induces similar cycle distri-
butions and is therefore not shown.

All C++ implementations are more memory bound (43%-
70%) compared to their respective Java implementations
(33%-40%). To further investigate the memory component,
we analyze the exploited memory bandwidth. Flink and
Streambox utilize only 20% of the available memory band-
width. In contrast, C++ implementations utilize up to
90% of the memory bandwidth and Java implementations
up to 65%. In particular, the Java implementations exploit
roughly 70% of the memory bandwidth of their respective
C++ implementations. Therefore, other bottlenecks like in-
efficient resource utilization inside the CPU may prevent a
higher record throughput. Finally, the more complex code
of LRB results in 20% lower memory bandwidth among all
implementations (not shown here). We conclude that C++
implementations are memory bound.

Outlook. The memory bound C++ implementations can
benefit from an increased bandwidth offered by future net-
work and memory technologies. In contrast, Java implemen-
tations would benefit less from this trend because they are
more core bound compared to the C++ implementations.
In particular, a CPU becomes core bound if its computing
resources are inefficiently utilized by resource starvation or
non-optimal execution ports utilization. In the same way,
state-of-the-art scale-out SPEs would benefit less from in-
creased bandwidth because they are significantly front-end
bound. In contrast, Streambox as a scale-up SPE would
benefit from an improved code generation that utilizes the
available resources more efficiently. Overall, Java and cur-
rent SPEs would benefit from additional resources inside the
CPU, e.g., register or compute units, and from code that
utilizes the existing resources more efficiently.



5.2.3 Analysis of Resource Utilization
In this section, we analyze different implementations of

YSB regarding their resource utilization. In Table 1, we
present sampling results for Flink and Streambox as well as
Upfront Partitioning (Part.), Local Merge (LM), and Global
Merge (GM) implementations in Java and C++. Each im-
plementation processes 10M records per thread and the sam-
pling results reflect the pure execution of the workload with-
out any preliminary setup.

Control Flow. The first block of results presents the
number of branches and branch mispredictions. These coun-
ters are used to evaluate the control flow of an implemen-
tation. As shown, the C++ implementations induce only
few branches as well as branch mispredictions compared to
the Java implementations (up to a factor of 3) and Flink
(up to a factor of 5). However, all C++ implementations
induce the same number of branch mispredictions but dif-
ferent number of branches. The main reason for that is that
UP induces additional branches for looping over the buffer.
Since loops induce only few mispredictions, the number of
mispredictions does not increase significantly.

Overall, C++ implementations induce a lower branch mis-
prediction rate that wastes fewer cycles for executing mispre-
dicted instructions and loads less unused data. Furthermore,
a low branch misprediction rate increases code locality. Re-
garding the state-of-the-art SPEs, Streambox induces less
branches but more branch mispredictions.

Data Locality. The second block presents data cache
related counters which can be used to evaluate the data lo-
cality of an implementation. Note that, YSB induces no
tuple reuse because a tuple is processed once and is never
reloaded. Therefore, data-related cache misses are rather
high for all implementations. As shown, the C++ imple-
mentations outperform the Java based implementations by
inducing the least amount of data cache misses per input
tuple in all three cache levels. The main reason is the ran-
dom memory access pattern that is introduced by object
scattering in memory for JVM-based implementations. Fur-
thermore, all C++ implementations produce similar num-
bers but the Java implementations differ significantly. In-
terestingly, the Java Upfront Partitioning implementation
and Flink induce a significantly higher number of misses in
the data TLB cache, which correlates directly to their low
throughput (see Figure 8). Additionally, Streambox induces
the most data related cache and TLB misses which indicates
that they utilize a sub-optimal data layout.

Overall, C++ implementations induce up to 9 times less
cache misses per input tuple which leads to a higher data
locality. This higher data locality results in shorter access la-
tencies for tuples and thus speeds up execution significantly.

Code Locality. The third block presents instruction
cache related counters, which can be used to evaluate the
code locality of an implementation. The numbers show that
the C++ implementations create more efficient code that
exhibits a high instruction locality with just a few instruc-
tion cache misses. The high instruction locality originates
from a small instruction footprint and only few mispredicted
branches. This indicates that the instructions footprint of
the C++ implementations of YSB fits into the instruction
cache of a modern CPU. Furthermore, the late merging
strategies produce significantly fewer cache misses compared
to the Upfront Partitioning strategy. The misses in the in-
struction TLB follow this behavior.

0

100

200

300

400

2 15
65

T
h
ro

u
g
h
p
u
t

[M
re

co
rd

s/
s]

Kafka Streams

Flink

Spark

(a) 10 Nodes [49]

0.4 3 15

Storm+Kafka

Flink+Kafka

Flink w/o Kafka

(b) 10 Nodes [18]

79

12

SABER
Streambox

(c) 1 Node [88]

384

C++ LM

(d) optimized

Figure 12: YSB reported throughput.

The last block presents the number of executed instruc-
tions per input tuple which also impacts the code locality.
Again, the C++ implementations execute significantly fewer
instructions compared to Java implementations. Further-
more, the late merging strategies execute fewer instructions
than the UP. This is also reflected in the throughput num-
bers in Figure 8. Since the C++ implementations induce
fewer instruction cache misses compared to the respective
Java implementations, we conclude a larger code footprint
and the virtual function calls of a JVM are responsible for
that. Interestingly, Flink executes almost as many instruc-
tions as Streambox but achieves a much lower throughput.

For all instruction related cache counters, Flink induces
significantly more instruction cache misses compared to Java
implementations by up to three orders of magnitude. The
main reason for this is that the code footprint of the gener-
ated UDF code exceeds the size of the instruction cache. In
contrast, Streambox generates smaller code footprints and
thus induces less instruction related cache misses.

Summary. All C++ implementations induce a better
control flow, as well as a higher data and instruction locality.
In contrast, Java-based implementations suffer from JVM
overheads such as pointer chasing and transparent memory
management. Overall, both late merging strategies outper-
form Upfront Partitioning. Finally, Flink and Streambox
are not able to exploit modern CPUs efficiently.

5.2.4 Comparison to Cluster Execution
In this section, we compare our hand-written implementa-

tions with scale-out optimized SPEs on a cluster of comput-
ing nodes. Additionally, we present published results from
the scale-up SPEs SABER and Streambox. In Figure 12,
we show published benchmarking results of YSB on a clus-
ter [49, 18, 88]. We choose to use external numbers because
the vendors carefully tuned their systems to run the bench-
mark as efficiently as possible on their cluster.

The first three numbers are reported by databricks [18] on
a cluster of 10 nodes. They show that Structured Stream-
ing, an upcoming version of Apache Spark, significantly im-
proves the throughput (65M rec/sec) compared to Kafka
Streams (2M rec/sec) and Flink (15M rec/sec). The next
three numbers are reported by dataArtisans [49] on a cluster
of 10 nodes. They show that Storm with Kafka achieves only
400K recs/sec and Flink using Kafka achieves 3M rec/sec-
ond. However, if they omit Kafka as the main bottleneck
and move data generation directly into Flink, they increase
throughput up to 15M recs/sec.

Figure 12 shows, even when using 10 compute nodes, the
throughput is significantly below the best performing single
node execution that we present in this paper (C++ LM).
The major reason for this inefficient scale-out is the par-
titioning step involved in distributed processing. As the
number of nodes increases, the network traffic also increases.
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Therefore, the network bandwidth becomes the bottleneck
and limits the overall throughput of the distributed exe-
cution. However, even without the limitations on network
bandwidth by using one node and main memory, state-of-
the-art SPEs cannot utilize modern CPUs efficiently (see
Figure 8). One major reason for this is that their optimiza-
tion decisions are focused on scale-out instead of scale-up.

The next two benchmarking results are reported in [73]
which measure the throughput of SABER and Streambox
on one node. Although they achieve a higher throughput
compared to scale-out SPEs, they still do not exploit the
capabilities of modern CPUs entirely. Note that the num-
bers reported in [73] differ from our numbers because we use
different hardware. Furthermore, we change the implemen-
tation of YSB on Streambox to process characters instead of
strings and optimize the parameter configuration such that
we can improve the throughput to 71M rec/sec (see Fig-
ure 8). The last benchmarking result reports the best per-
forming hand-coded C++ implementation presented in this
paper which achieves a throughput of up to 384M rec/sec.

As a second experiment, we demonstrate the scale-out
performance of Flink on the YSB, LRB, and NYT and com-
pare it to a single node implementation. Note that, we did
the same scale-out experiments for all queries on Spark and
Storm and they show the same behaviour; therefore, we omit
them in Figure 13. We execute the benchmarks on up to
16 nodes, whereas each node contains a 16-core Intel Xeon
CPU (E5620 2.40GHz) and all nodes are connected via 1Gb
Ethernet. In Figure 13, we compare our single node op-
timized version (DOP=1) with the the scale-out execution
(DOP 2-16). As shown, YSB scales to up four nodes with a
maximum throughput of 8.2M recs/sec. In contrast, NYT
scales to up eight nodes with a maximum throughput of
7.4M recs/sec. The main reason for this sub-optimal scaling
is that the benchmarks are network-bound. Flink generates
the input data inside the engine and uses its state manage-
ment APIs to save the intermediate state. However, the in-
duced partitioning utilizes the available network bandwidth
entirely. In contrast, LRB does increase the throughput for
each additional node but the overall increase is only minor.

Overall, Figure 13 reveals that even if we scale-out to a
large cluster of nodes, we are not able to provide the same
throughput as a hand-tuned single node solution. However,
a recent study shows that as the network bandwidth in-
creases, the data processing for distributed engines becomes
CPU-bound [84]. The authors conclude that current data
processing systems, including Apache Spark and Apache
Flink need systematic changes.

5.2.5 RDMA
In this experiment, we want to examine if hand-written

Java or C++ implementations are capable of utilizing the
ever rising available network bandwidth in the future. To
this end, we extend the YSB Benchmark such that one node
produces the data, as it will be the case in the streaming sce-
nario, and one node gets the stream of data via Infiniband
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and RDMA. In Figure 14, we show the throughput of our
hand-written implementation of the YSB using Java and
C++ on an E7-4850v4 CPU and an InfiniBand FDR net-
work. With physical limit, we refer to the maximum band-
width following the specification of 56 Gbit/s (FDR 4x).
For Java as well as for C++, we implement one version that
just sends data via the network without processing it, i.e.,
read only, and one version that includes the processing of the
YSB, i.e., with proc. As shown, a C++ implementation that
sends data over a high-speed InfiniBand network and pro-
cesses it is able to reach nearly the same throughput as the
implementation without processing. In contrast, the Java
implementation with processing achieves only 22% of the
throughput without processing. This indicates that the Java
implementation is bounded by the processing instead of the
network transfer. This is in line with the results presented
in the previous sections. Overall, the C++ implementation
is able to exploit 70% of the theoretical bandwidth without
processing compared to 38% using Java.

5.2.6 Latency
In this experiment, we compare the latencies of the Up-

front Partitioning and the Global Merge parallelization strat-
egy for a C++ implementations processing and 10M YSB
input tuples. With latency, we refer to the time span be-
tween the end of a window and the materialization of the
window at the sink. Our results show, that the Global Merge
exhibits an average latency of 57ns (min: 38ns; max: 149ns).
In contrast, Upfront Partitioning induces a one order of mag-
nitude higher latency of 116µs (min: 112µs; max: 122µs).
The main reason for this is the delay introduced by queues
and buffers.

In all our experiments, Global Merge implementations
achieve very low latencies in the order of a hundred nanosec-
onds. This is in contrast to state-of-the-art streaming sys-
tems which use Upfront Partitioning [29, 81, 91]. In par-
ticular, these systems have higher latencies (in the order of
ms) for the YSB [39, 49, 88]. The Linear Road Benchmark
defines a fixed latency upper bound of 5 seconds which our
implementation satisfies by far.

5.3 Discussion
Our work is driven by the key observation that emerg-

ing network technologies allow us to ingest data with main
memory bandwidth on a single scale-up server [22]. We in-
vestigate design aspects of an SPE optimized for scale-up.
The results of our extensive experimental analysis are the
following key insights:

Avoid high level languages. Implementing the criti-
cal code path or the performance critical data structures in
Java results in a larger portion of random memory accesses
and virtual function calls. These issues slow down Java im-
plementations up by a factor of 54 compared to our C++
implementation. Furthermore, our profiling results provide
strong indication that current SPEs are CPU-bound.

Avoid queuing and apply operator fusion. An SPE
using queues as a mean to exchange data between operators



is not able to fully exploit the memory bandwidth. Thus,
data exchange should be replaced by operator fusion, which
is enabled by query compilation techniques [70].

Use Late Merge parallelization. The parallelization
based on Upfront Partitioning introduces an overhead by up
to a factor of 4.5 compared to late merging that is based on
logically dividing the stream in blocks. The key factor that
makes working on blocks applicable in an SPE is that the
network layer performs batching on a physical level already.

Use lock-free windowing. Our experiments reveal that
a lock-free windowing implementation achieves a high
throughput for a SPE on modern hardware. Furthermore,
our approach enables queue-less late merging.

Scale-Up is an alternative. In our experiments, a sin-
gle node using an optimized C++ implementation outper-
forms a 10 node cluster running state-of-the-art streaming
systems. We conclude that scale-up is a viable way of achiev-
ing high throughput and low latency stream processing.

6. RELATED WORK
In this section, we cover additional related work that we

did not discuss already. We group related work by topics.
Stream Processing Engines (SPEs). The first gen-

eration of streaming systems has built the foundation for
today’s state-of-the-art SPEs [12, 11, 20, 35, 36]. While
the first generation of SPEs explores the design space of
stream processing in general, state-of-the-art systems fo-
cus on throughput and latency optimizations for high ve-
locity data streams [13, 21, 29, 32, 69, 81, 86, 91]. Apache
Flink [29], Apache Spark [91], and Apache Storm [81] are the
most popular and mature open-source SPEs. These SPEs
optimize the execution to scaling-out on shared-nothing ar-
chitectures. In contrast, another line of research focuses on
scaling-up the execution on a single machine. Their goal is to
exploit the capabilities of one high-end machine efficiently.
Recently proposed SPEs in this category are Streambox [67],
Trill [34], or Saber [58]. In this paper, we examine the
data-related and processing-related design space of scale-up
and scale-out SPEs in regards to the exploitation of modern
hardware. We showcase design changes that are applicable
in many SPEs to achieve higher throughput on current and
future hardware technologies. In particular, we lay the foun-
dation by providing building blocks for a third generation
SPE, which runs on modern hardware efficiently.

Data Processing on Modern Hardware. In-memory
databases explore fast data processing near memory band-
width speed [23, 27, 70, 44, 95]. Although in-memory data-
bases support fast state access [57, 26], their overall stream
processing capabilities are limited. In this paper, we widen
the scope of modern hardware exploitation to more com-
plex stream processing applications such as LRB, YSB, and
NYT. In this field, SABER also processes complex streaming
workloads on modern hardware [58]. However, it combines a
Java-based SPE with GPGPU acceleration. In contrast, we
focus on outlining the disadvantages of a Java-based SPEs.
Nevertheless, the design changes proposed in this paper are
partially applicable for JVM-based SPEs.

Performance Analysis of SPE. Zhang et al. [94] deeply
analyze the performance characteristics of Storm and Flink.
They contribute a NUMA-aware scheduler as well as a sys-
tem-agnostic not-blocking tuple buffering technique. Com-
plementary to the work of Zhang, we investigate fundamen-
tal design alternatives for SPEs, specifically data passing,
processing models, parallelization strategies, and an efficient

windowing technique. Furthermore, we consider upcoming
networking technologies and existing scale-up systems.

Ousterhout et al. [71] analyze Spark and reveal that many
workloads are CPU-bound and not disk-bound. In contrast,
our work focuses on understanding why existing engines are
CPU-bound and on systematically exploring means to over-
come these bottlenecks by applying scale-up optimizations.

Trivedi et al. assess the performance-wise importance of
the network for modern distributed data processing systems
such as Spark and Flink [84]. They analyze query runtime
and profile the systems regarding the time spent in each
major function call. In contrast, we perform a more fine-
grained analysis of hardware usage of those and other SPEs
and native implementations.

Query Processing and Compilation. In this paper,
we used hand-coded queries to show potential performance
advantages for SPEs using query compilation. Using estab-
lished code generation techniques proposed by Krikellas [59]
or Neumann [70] allows us to build systems that generate
optimized code for any query, i.e., also streaming queries.
However, as opposed to a batch-style system, input tuples
are not immediately available in streaming systems. Fur-
thermore, the unique requirements of windowing semantics
introduce new challenges for a query compiler. Similarly
to Spark, we adopt code generation to increase through-
put. In contrast, we directly generate efficient machine code
instead of byte code, which requires an additional interpre-
tation step for the execution.

7. CONCLUSION
In this paper, we analyze the design space of SPEs opti-

mized for scale-up. Our experimental analysis reveals that
the design of current SPEs cannot exploit the full memory
bandwidth and computational power of modern hardware.
In particular, SPEs written in Java cause a larger number
of random memory accesses and virtual function calls com-
pared to C++ implementations.

Our hand-written implementations that use appropriate
streaming optimizations for modern hardware achieve near
memory bandwidth and outperform existing SPEs in terms
of throughput by up to two orders of magnitude on three
common streaming benchmarks. Furthermore, we show that
carefully-tuned single node implementations outperform ex-
isting SPEs even if they run on a cluster. Emerging network
technologies can deliver similar or even higher bandwidth
compared to main memory. Current systems cannot fully
utilize the current memory bandwidth and, thus, also can-
not exploit faster networks in the future.

With this paper, we lay the foundation for a scale-up SPE
by exploring design alternatives in-depth and describing a
set of design changes that can be incorporated into current
and future SPEs. In particular, we show that a queue-less
execution engine based on query compilation, which elimi-
nates tuple queues as a mean to exchange intermediate re-
sults between operators, is highly suitable for an SPE on
modern hardware. Furthermore, we suggest to replace Up-
front Partitioning with Late Merging strategies. Overall, we
conclude that with emerging hardware, scale-up is a viable
alternative to scale-out.
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A. Katsifodimos, T. Rabl, and V. Markl. Efficient
window aggregation with general stream slicing. In
22nd International Conference on Extending Database
Technology (EDBT), 2019.

[83] J. Traub, P. M. Grulich, A. R. Cuellar, S. Breß,
A. Katsifodimos, T. Rabl, and V. Markl. Scotty:
Efficient window aggregation for out-of-order stream
processing. In 34th International Conference on Data
Engineering (ICDE), pages 1300–1303. IEEE, 2018.

[84] A. Trivedi, P. Stuedi, J. Pfefferle, R. Stoica,
B. Metzler, I. Koltsidas, and N. Ioannou. On the
[ir]relevance of network performance for data
processing. In USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 16). USENIX
Association, 2016.

[85] D. Vyukov. Single-producer/single-consumer queue.
Intel Developer Zonw, URL software.intel.com/en-
us/articles/single-producer-single-consumer-queue,
2015.

[86] Y. Wu and K.-L. Tan. Chronostream: Elastic stateful
stream computation in the cloud. In ICDE, pages
723–734. IEEE, 2015.

[87] R. Xin and J. Rosen. Project tungsten: Bringing
apache spark closer to bare metal, 2015. Retrieved
November 2, 2018, from URL
https://databricks.com/blog/2015/04/28/project-
tungsten-bringing-spark-closer-to-bare-metal.html.

[88] B. Yavuz. Benchmarking structured streaming on
databricks runtime against state-of-the-art streaming
systems, 2017.

[89] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In NSDI, pages 2–2. 2012.

[90] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and
I. Stoica. Discretized streams: Fault-tolerant
streaming computation at scale. In SOSP, pages
423–438. ACM, 2013.

[91] M. Zaharia, R. S. Xin, P. Wendell, T. Das,
M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, et al. Apache spark:
A unified engine for big data processing.
Communications of the ACM, 59(11):56–65, 2016.

[92] E. Zeitler and T. Risch. Scalable splitting of massive
data streams. In DASFAA, pages 184–198. 2010.

[93] E. Zeitler and T. Risch. Massive scale-out of expensive
continuous queries. PVLDB, 4(11):1181–1188, 2011.

[94] S. Zhang, B. He, D. Dahlmeier, A. C. Zhou, and
T. Heinze. Revisiting the design of data stream
processing systems on multi-core processors. In ICDE,
pages 659–670. 2017.

[95] M. Zukowski, P. A. Boncz, et al. Vectorwise: Beyond
column stores. IEEE Data Eng. Bull., 2012.


