
Rethinking Message Brokers on RDMA and NVM
Hendrik Makait

hendrik.makait@campus.tu-berlin.de
Technische Universität Berlin

ACM Reference Format:
Hendrik Makait. 2020. Rethinking Message Brokers on RDMA and NVM. In
Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3318464.3384403

1 INTRODUCTION
Over the last years, message brokers have become an important part
of enterprise systems. As microservice architectures become more
popular and the need to analyze data produced by the individual
services grows, companies increasingly rely on message brokers
to orchestrate the flow of events between different applications as
well as between data-producing services and stream processing
engines that analyze the data in real-time.

Current state-of-the-art message brokers such as Apache Kafka
[9] or Apache Pulsar [5] were designed for slow networks and
disk-based storage. Consequently, they avoid network traffic and
random writes. In the following, we highlight three challenges that
message brokers face and how their designs tackle these:

Guaranteed Message Delivery: Apache Kafka only provides
weak delivery guarantees based on replication. As an alternative
approach, Apache Pulsar guarantees message delivery by directly
writing all incoming data to a persistent journal.

GuaranteedMessage Order:Apache Kafka and Apache Pulsar
solve this by publishing messages sequentially or accepting them in
a producer-defined order, which influences the overall throughput.

Scalability and Performance: Even though Apache Kafka is
designed for high throughput, it co-locates partition handling and
storage, which can cause issues with skewed partitions and makes
rebalancing partitions an expensive operation. Apache Pulsar de-
couples its computation and storage, but its brokers handle all data
transfer and caching, which creates potential bottlenecks.

Recent advancements in modern hardware change how we can
design distributed systems to face these challenges and as a result,
we introduce the design of a message broker that leverages the ca-
pabilities of remote direct memory access (RDMA) and non-volatile
memory (NVM) to improve the weaknesses of existing message
brokers and further scale these systems. Specifically, our architec-
ture and protocol leverage the high bandwidth and low latency of
RDMA and combine those with the byte-addressability and high
bandwidth of NVM for guaranteed and in-order message delivery
with high throughput. Our contributions are as follows:

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6735-6/20/06.
https://doi.org/10.1145/3318464.3384403

(1) We propose a decoupled message broker architecture and an
accompanying protocol that are both designed to solve the chal-
lenges we identified (Section 3).

(2) We demonstrate the potential for improvement with respect
to message guarantees at the example of Apache Kafka (Section 4).

2 BACKGROUND
In this section, we introduce Apache Kafka as an example of a
state-of-the-art message broker and describe several developments
in modern hardware that we utilize in our architecture.
Apache Kafka [9] is a common choice of message broker used
with stream processing engines. It creates a distributed, replicated
message queue and persists the messages on secondary storage.
Persisting data enables consumers to replay data if needed and
provides configurable guarantees around message delivery. Stream
processing engines such as Apache Flink [4] rely on this feature to
ensure exactly-once semantics in the case of task failure.

Internally, Kafka stores each of its partitions as an independent
append-only log that is written to the page buffer. This design
allows Kafka to achieve high throughput and low latency at the
cost of its messaging guarantees, as we demonstrate in Section 4.
InfiniBand (IB) is a network communications standard used in
modern data centers that will offers bandwidths of up to 600 Gbit/s
(and 1.2 Tbit/s by 2020) and reaches latencies below 2µs [7, 15]. It
enables two different network communication stacks:

IP over InfiniBand (IPoIB) implements the TCP/IP stack and
allows socket-based systems to use IB without any modification.

RemoteDirectMemoryAccess (RDMA) enables applications
to directly access memory on a remote machine with little to no in-
volvement of the remote CPU. The application can directly transfer
data from user-space bypassing the kernel. It offers two different
APIs: One-sided verbs such as read and write operations are ex-
ecuted without any involvement of the remote CPU. Two-sided
verbs enable RPC calls without the overhead of TCP/IP-based com-
munication, but they involve the remote CPU.

Research has shown that distributed systems such as databases
benefit from faster InfiniBand networks compared to Ethernet but
they require significant architectural changes to achieve this goal
[11, 15]. Binnig et al. [3] have demonstrated that purely migrating
existing systems from Ethernet to InfiniBand might even have detri-
mental effects. Instead, the system should be redesigned for RDMA.
By decoupling computation and storage via a network-attached
memory architecture, the authors have significantly improved the
transactional throughput of a distributed DBMS [14].
Non-Volatile Memory (NVM) is a new class of memory devices
that bridges the gap between DRAM and flash-based SSD. It com-
bines the byte-addressable access by the CPU known from DRAM
with persistent writes offered by SSD. Its access latency and band-
width lie within an order of magnitude of DRAM with a capacity
of up to 512 GB, which is 4x higher than available DRAM [8, 13].

https://doi.org/10.1145/3318464.3384403
https://doi.org/10.1145/3318464.3384403


Figure 1: Our architecture separates partition handling by
brokers from the data storage on storage nodes.

NVM can be used as an alternative to disks or flash-based SSDs
for durable storage. Several approaches have been proposed to use it
as part of a storage hierarchy for databases [1, 2, 10, 12]. In particular,
Huang et al. [6] propose NVM-based logging for transactions.

3 RETHINKING THE ARCHITECTURE
Figure 1 illustrates the separation of partition handling and stor-
age in our architecture. In this section, we present the individual
components and argue how they solve the issues from Section 1.

Storage. Partitions are split into individual segments that are
stored across all storage nodes. Conceptually, the storage nodes
form one large data region, in which brokers can allocate space
for individual segments. This allows us to scale the system by
adding another storage node without moving any data. Moreover,
incoming data is written into NVM where it is directly persisted.
This solves the challenge of message delivery without the additional
latency and reduced throughput of fragmented and small writes to
secondary storage or the overhead of keeping an additional journal.
Given that our protocol is designed to minimize the involvement of
the storage node’s CPU, a node may be co-located with compute-
heavy workloads without significantly affecting their performance.
Nonetheless, storage nodes need to track the usage of their memory
segments, provide new ones for brokers and free outdated ones.

In our architecture, NVM can either store all data or serve as an
intermediate layer combined with SSDs or disks. Both approaches
have different trade-offs and should be evaluated in future work.

Partition handling. For each partition, the write/read requests
are handled by a designated broker. Using the RDMA-based protocol
we introduce later, the broker provides producers and consumers
with the location where data can be read from or written to on
a storage node. Further, the broker is responsible for allocating
new segments that can be written on storage nodes, handling time-
outs by producers and inconsistencies between partitions. Since all
data required by the broker are stored on storage nodes, partition
handling can be moved to a different broker without much effort.

Co-location. While all data are conceptually stored in remote
storage, the co-location of data with their users is a viable optimiza-
tion. As an example, to reduce latency, the data structures managing
a partition should be co-located with their respective broker.

Protocol. For efficient communication within the system, the
protocol we propose relies on RDMA verbs to move data between
producers, brokers, storage, and consumers. As mentioned before,
the protocol is designed to minimize the active involvement of both
the broker and the storage nodes in order to avoid bottlenecks. The

Figure 2: Message delivery and ordering guarantees signifi-
cantly reduces Kafka’s overall throughput.
protocol contains multiple steps for both writing and reading data,
which we outline in the following.

Writing. To write messages to a partition, a producer first re-
serves a memory area within the currently written segment (and
its replicas) using the two-sided RDMA verbs. To ensure message
ordering, these requests need to be issued sequentially to the bro-
ker. Given the request size, however, we expect the latency to be
small enough to not become a bottleneck. Binnig et al. [3] showed a
latency of around 1µs for send/recv verbs with message sizes below
256B. In the next step, the producer uses one-sided RDMA writes
to store the messages directly in NVM at the locations it receives
in the previous step. Since these writes are byte-addressable, they
can be performed in parallel and out-of-order without changing
the order of the messages in the partition. Finally, the producer
commits its write to the broker to ensure consistency.

Reading. Analogous to writing, a consumer initially requests
a memory location on a storage node from which it can read a
sequence of messages given a message offset. This request is per-
formed using two-sided RDMA verbs, which allows the broker to
perform load balancing or trigger a storage node to load a segment
into NVM. It then uses a one-sided RDMA read to load the data
into its own memory without the involvement of the storage node.

4 EVALUATION AND DISCUSSION
Figure 2 demonstrates the potential for improving performance
with delivery guarantees at the example of Apache Kafka. In this
experiment, a single broker hosts one topic with 24 partitions on 3
SSDs. For each partition, one dedicated producer generates data at
the maximum rate.Without any guarantees, the write throughput is
within 20% of the maximum write throughput to the SSDs. Guaran-
teed message order reduces the throughput by 25%, and guaranteed
delivery, as well as the combination of both, cause a decrease by a
factor of more than 250x. By enabling parallel message transfer and
using byte-addressable writes to NVM with high throughput, we
expect our approach to avoid such a degradation in performance.

In conclusion, we propose a message broker architecture that
decouples partition handling and storage for improved scaling of
storage and load balancing between different storage nodes or
brokers. Its protocol ensures message ordering even in the event of
retries for parallel messages by utilizing byte-addressable RDMA
writes. To ensure message delivery, producers write messages to
NVM. Finally, direct transfer of message payloads to or from storage
nodes using one-sided RDMA-verbs reduces the CPU overhead on
storage nodes and the involvement of brokers. In the future, we
plan to implement this architecture and evaluate it in detail.



REFERENCES
[1] Joy Arulraj and Andrew Pavlo. 2017. How to Build a Non-Volatile Memory

Database Management System. In Proceedings of the 2017 ACM International
Conference on Management of Data - SIGMOD ’17. ACM Press, Chicago, Illinois,
USA, 1753–1758. https://doi.org/10.1145/3035918.3054780

[2] Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s Talk About
Storage & Recovery Methods for Non-Volatile Memory Database Systems. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data - SIGMOD ’15. ACM Press, Melbourne, Victoria, Australia, 707–722.
https://doi.org/10.1145/2723372.2749441

[3] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The end of slow networks: it’s time for a redesign. Proceedings of the VLDB
Endowment 9, 7 (March 2016), 528–539. https://doi.org/10.14778/2904483.2904485

[4] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache Flink™: Stream and Batch Processing in a
Single Engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015), 12.

[5] The Apache Software Foundation. 2019. Apache Pulsar. https://pulsar.apache.
org/

[6] Jian Huang, Karsten Schwan, and Moinuddin K. Qureshi. 2014. NVRAM-aware
logging in transaction systems. Proceedings of the VLDB Endowment 8, 4 (Dec.
2014), 389–400. https://doi.org/10.14778/2735496.2735502

[7] InfiniBand Trade Association. 2019. InfiniBand Roadmap - Advancing InfiniBand.
https://www.infinibandta.org/infiniband-roadmap/

[8] Intel Corporation. 2019. Intel® Optane™ DC Persistent Memory Product
Brief. https://www.intel.com/content/www/us/en/products/docs/memory-

storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
[9] Jay Kreps, Neha Narkhede, and Jun Rao. 2011. Kafka: A Distributed Messaging

System for Log Processing. 1–7.
[10] Steven Pelley, Thomas F. Wenisch, Brian T. Gold, and Bill Bridge. 2013. Storage

management in the NVRAM era. Proceedings of the VLDB Endowment 7, 2 (Oct.
2013), 121–132. https://doi.org/10.14778/2732228.2732231

[11] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler,
Ioannis Koltsidas, and Nikolas Ioannou. 2016. On the [ir] relevance of network
performance for data processing. In 8th {USENIX} Workshop on Hot Topics in
Cloud Computing (HotCloud 16).

[12] Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann, Takushi
Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru Sato. 2018.
Managing Non-Volatile Memory in Database Systems. In Proceedings of the 2018
International Conference on Management of Data - SIGMOD ’18. ACM Press,
Houston, TX, USA, 1541–1555. https://doi.org/10.1145/3183713.3196897

[13] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent Memory I/O Primitives. arXiv:1904.01614 [cs] (April
2019). http://arxiv.org/abs/1904.01614 arXiv: 1904.01614.

[14] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The end of
a myth: distributed transactions can scale. Proceedings of the VLDB Endowment
10, 6 (Feb. 2017), 685–696. https://doi.org/10.14778/3055330.3055335

[15] Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, and Volker Markl. 2019. Ana-
lyzing efficient stream processing on modern hardware. Proceedings of the VLDB
Endowment 12, 5 (Jan. 2019), 516–530. https://doi.org/10.14778/3303753.3303758

https://doi.org/10.1145/3035918.3054780
https://doi.org/10.1145/2723372.2749441
https://doi.org/10.14778/2904483.2904485
https://pulsar.apache.org/
https://pulsar.apache.org/
https://doi.org/10.14778/2735496.2735502
https://www.infinibandta.org/infiniband-roadmap/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://doi.org/10.14778/2732228.2732231
https://doi.org/10.1145/3183713.3196897
http://arxiv.org/abs/1904.01614
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3303753.3303758

	1 Introduction
	2 Background
	3 Rethinking the Architecture
	4 Evaluation and Discussion
	References

