
Query Centric Partitioning and Allocation for Partially
Replicated Database Systems

Tilmann Rabl
University of Technology Berlin

Berlin, Germany
rabl@tu-berlin.de

Hans-Arno Jacobsen
University of Toronto

Toronto, Canada
jacobsen@eecg.toronto.edu

ABSTRACT
A key feature of database systems is to provide transparent access
to stored data. In distributed database systems, this includes data
allocation and fragmentation. Transparent access introduces data
dependencies and increases system complexity and inter-process
communication. Therefore, many developers are exchanging trans-
parency for better scalability using sharding and similar techniques.
However, explicitly managing data distribution and data flow re-
quires a deep understanding of the distributed system and the data
access, and it reduces the possibilities for optimizations.

To address this problem, we present an approach for efficient data
allocation that features good scalability while keeping the data dis-
tribution transparent. We propose a workload-aware, query-centric,
heterogeneity-aware analytical model. We formalize our approach
and present an efficient allocation algorithm. The algorithm opti-
mizes the partitioning and data layout for local query execution and
balances the workload on homogeneous and heterogeneous systems
according to the query history. In the evaluation, we demonstrate
that our approach scales well in performance for OLTP- and OLAP-
style workloads and reduces storage requirements significantly over
replicated systems while guaranteeing configurable availability.

1. INTRODUCTION
Today, database systems are a core element of most data inten-

sive systems. However, especially in smaller projects and startups,
there is only a limited budget for data management. This is usually
not an issue, as long as the database workload can be processed by a
single server database system. With modern hardware, single-node
database systems can be scaled up to enormous processing powers
which come at enormous prices. The historically leading system in
the TPC BenchmarkTMC of the Transaction Processing Performance
Council has a total system cost of 30 million dollars1. This is not af-
fordable for most startups, therefore, many projects use open source
database management systems and off-the-shelf hardware. In these
systems, the most difficult step is to transition from a single database
server to a distributed database system.

1Top TPC-C Results - http://www.tpc.org/tpcc/results/tpcc_result_
detail.asp?id=110120201

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’17, May 14 - 19, 2017, Chicago, IL, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4197-4/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3035918.3064052

As the amount of data produced is rapidly growing, shared-nothing
architectures have emerged as a de facto standard [31, 55]. Afford-
able and massive hardware parallelism has led to new programming
paradigms adopted in data processing such as MapReduce [22]. In
general, these approaches exchange fundamental database system
qualities for better scalability. Yet, systems with good scalability,
frequently suffer from poor system resource utilization [36, 9]. The
basis of success of relational database systems is their simple data
model, combined with comprehensible, declarative data access. In
distributed settings, this requires transparent access to the distributed
data. Distributed access introduces dependencies, which have to be
resolved automatically. Efficiency of a distributed system benefits
most from global optimizations [50]. For a distributed database sys-
tem, the data allocation or placement has major impact on overall
performance.

There are several options for data allocation in a shared-nothing
system. A popular approach is full replication [17, 46, 32, 7]. Full
replication is frequently used in Web server setups or enterprise de-
ployments2. Full replication has the advantage of good read scalabil-
ity but suffers from low scalability for workloads with considerable
amount of write access. This is due to the fact that updates have
to be executed on all replicas. Furthermore, full replication is very
space inefficient since the required storage space grows linearly in
the number of nodes. Another alternative is declustering, common
in parallel databases systems (e.g., NonStop SQL [26]), and key-
value stores (e.g., Cassandra [35]). Declustering can scale well for
high write access rates if the workload is balanced. The same is true
for read access. In most systems, this is achieved by a randomized
allocation in form of consistent hashing or round-robin or random
partitioning. In general, this balances the workload, however, at
the cost of data locality. For continuous data access patterns, ran-
domized approaches incur additional network communication. An
alternative approach, which can overcome both downsides is par-
tial replication. In this approach, data is partitioned and replicated
according to its access pattern. Data with high read access is repli-
cated, while data with high write access is distributed. By analyz-
ing the access patterns, a distribution and replication scheme can be
found that maximizes the locality of the data and reduces the network
communication while balancing the workload. In a shared-nothing
environment, the overall system performance is strongly correlated
with locality. This is because communication is expensive and will
eventually always become the bottleneck [3].

In this paper, we present an allocation strategy that computes a
(near) optimal solution to the allocation problem in shared-nothing
and cluster databases. The allocation strategy results in a data layout
that maximizes the throughput according to a theoretical maximum

2A popular example is the Wikimedia Server setup – https://meta.
wikimedia.org/wiki/Wikimedia_servers

and then minimizes the disk consumption and replication overhead.
Based on a partitioning type and query access patterns, an allocation
is computed that processes all queries with known access patterns
locally and balances the workload across the nodes. It minimizes
the overhead introduced by redundant updates, while balancing the
workload and, thus, maximizing the overall throughput. We focus
on deployments with a limited number of nodes, but do not restrict
ourselves to this setting.

Our main contributions are the following: (1) We propose an an-
alytical model for shared-nothing databases that allows us to cal-
culate the theoretical speedup of a database system and enables the
fully automated data allocation. (2) We present an automatic alloca-
tion strategy for homogeneous and heterogeneous deployments that
maximizes the system’s throughput and can be used for a wide area
of database applications. (3) We analyze the performance of our
solution with two industry standard benchmarks. Our evaluation
shows that the proposed solution achieves perfect speedup for read-
heavy workloads while reducing the storage requirements by 65%,
and it achieves good speedup for write-heavy workloads, which out-
performs full replication by a factor of 2.4. (4) We show the flexibil-
ity and elasticity of the our approach using real workload traces.

The rest of this paper is organized as follows: In the next section,
we describe the cluster database system (CDBS) architecture and
processing model. In Section 3, we present our allocation strategy
in detail. Section 4 shows the performance evaluation and Section 5
describes the extensions we explored. In Section 6, we discuss re-
lated work. In the Appendix, we develop a complete example of
the allocation algorithm, show the linear program formulation for
optimal allocation, and give details on our k-safety extensions that
ensure fault-tolerance in presence of failures of up to k backends.

2. CDBS PROCESSING MODEL
The architecture of a cluster database system is given in Figure 1.

Its three-tiered design is a variant of the client-server model, in which
the server component is further divided. Usually, the controller is a
lightweight middleware system that distributes the incoming queries
to the backends. The backends are completely independent database
systems that each manage either a full replica or a part of the global
database. The backend DBMSs do not share any resources. This de-
sign scales well in the number of nodes if single queries can be pro-
cessed by a single backend. However, for large numbers of nodes,
the controller can become a bottleneck. It is possible to use a hier-
archy of controllers that manage subsets of backends. In this paper,
we focus on single controller systems. To increase the speed of a

Node2Node1

DBS1 DBS2

…

Noden Nodem

DBSn

Master

Client ClientClient

Scheduler

Controller

Slave Slave Slave

Figure 1: Cluster Database System Architecture

single DBMS, some form of parallelism has to be employed. Two
types of processing a single query can be distinguished: intra-query

parallelism and inter-query parallelism. A system with intra-query
parallelism divides a single query into multiple query fragments and
processes the query fragments in parallel. Using inter-query par-
allelism, multiple queries can be processed in parallel. Employing
intra-query parallelism reduces the processing time of a single query,
while inter-query parallelism increases throughput, while keeping
the query processing time constant. Intra-query parallelism intro-
duces dependencies between nodes, which leads to an increase in
network communication. Apart from decision support and scientific
database applications, queries are typically small, which means they
can be processed in reasonable time on a single system. With the
advent of multi-core processors, many DBMSs feature intra-query
parallelism, which speeds up processing of a query on a single node,
mitigating the requirement of intra-query parallelism at the cluster
level.

In our CDBS model, we consider a query as an atomic unit. Each
incoming query is entirely processed by a single backend. We must
ensure that a backend has all input data for the queries it processes.3

Since all queries can be processed locally, there is no need for com-
munication between nodes. Each query can be sent to any back-
end that has all required data for the query. A common approach
in cluster database systems is full replication, so each query can be
processed by each backend. To achieve a balanced load distribution
among nodes, a simple online strategy is applied for query schedul-
ing: the least pending request first strategy sends a query to the back-
end, which at the time has the least queries queued [16]. This strategy
is based on a greedy algorithm for online load balancing [12].

Updates cannot simply be processed by a single backend in all
cases. They have to be executed on each replica of the updated data.
The straightforward approach is, therefore, to send the update to
every backend that holds data that is updated. Combined with the
query processing approach above, this is called the read once/write
all protocol (ROWA) [30]. In order to keep the database in a consis-
tent state, it is important that all backends get the updates in the same
order. Although there are more efficient approaches for update syn-
chronization, such as primary copy [4] and lazy replication [34], we
limit our discussion to the ROWA protocol in this paper due to space
restrictions; other approaches could be easily incorporated into our
model and system. In the following, we give estimations on the per-
formance of a cluster database system using our processing model.

In its simplest form, a cluster database system places a full replica
of the managed database on each backend. This means that each
query can be sent to any backend. If the workload consists only of
read requests, then the throughput of such a system increases linearly
with the number of nodes.

The maximum throughput in a homogeneous system with only
read requests is proportional to the number of nodes. If no addi-
tional overhead is introduced, it is equal to the number of nodes.
However, updates have to be processed on each backend. Therefore,
the throughput of the system decreases with the number of updates.

In a homogeneous, fully replicated system, each update incurs
work on every node. Therefore, each update takes the same time as
if the updates were processed on a single node, while reads (queries)
can be distributed to any node. Thus, in theory, the processing time
of updates is constant, while the processing time of reads is inversely
proportional to the number of nodes. Hence, the speedup decreases
with the processing time of updates. The correlation is defined by
Amdahl’s law [5]:

speedup=
1

parallel
#nodes +serial

(1)

3Note that an actual system may very well support distributed
queries, while it is still aiming for local execution.

A B C

B1

A B

B1

B C

B2

A

B1

A B

B2

B

B3

C

B4

A B 20%C4

C 25%C3

B 25%C2

A 30%C1

Query Classes

1 Backend

2 Backends

4 Backends

Figure 2: Read-Only Allocation on 1 to 4 Backends

In this context, parallel is the fraction of the query processing time
and serial is the fraction of the update processing time. This model
does not consider long running queries and deviations in the query
processing time, which can be introduced by interdependencies of
queries. Nevertheless, it enables a closed form expression for through-
put prediction as can be seen in the evaluation in Section 4.

3. AUTOMATIC ALLOCATION
The primary optimization objective of our allocation strategy is

maximizing throughput, while secondarily minimizing update and
disk consumption overhead due to replication. The transformation
into partitioned relations is calculated by the allocation algorithm di-
rectly based on the fragments and query classes. The algorithm can
also be used with other partitioning schemes that are then treated as
data fragments. Depending on the partitioning strategy used, the al-
gorithm does not lead to balanced data allocation. The deployment
of the allocation in the distributed system is done by cost optimal
matching. The complete allocation process is a four step procedure:
(1) query classification, (2) allocation calculation, (3) allocation im-
provement (optional), and (4) physical allocation.

In the first step, a query history or journal is analyzed; queries may
be read or update requests. The analysis performs a classification of
the queries. Queries are grouped according to the data they access.
The classification determines the partitioning. If queries are grouped
according to the tables they access, the allocation has no partitioning.
If the queries are grouped according to the columns they access, the
allocation has vertical partitioning. Finally, it is possible to group
the queries based on their predicates and, thus, create a horizontal
partitioning. It is also possible to use other partitioning strategies.

Based on the classification and on the set of nodes, the allocation
is calculated. Each class of similar queries, i.e., each query class, is
assigned to one or more backends, so that each backend has about
the same amount of work in a homogeneous system and replication
is reduced. The allocation does not guarantee a balanced data size,
which is generally not achievable for a homogeneous workload as-
signment with minimized replication as can be seen in the examples
below. The calculated allocation does not consider the existing data
layout on the backends. To keep the overhead of the reallocation as
small as possible, an optimal matching of the current and the calcu-
lated allocation is computed.

In the following, we give an example of our allocation strategy.
The example shows a read-only database and an optimal allocation
across different cluster sizes. In Appendix A, we provide a complete
example of allocation with updates. In Figure 2, a database with
three relations A, B and C is allocated with partial replication, but
without partitioning. For sake of simplicity, the size of all relations
is kept equal. The database is accessed with four types of read re-
quests C1, ... ,C4. The read request types abstract actual database
queries. In this example, queries are classified by the relations they

reference. The first type of queries references relationA and makes
up 30% of the query workload. C2 references relationB and makes
up 25% of the workload, C3 references relation C with 25% of the
workload andC4 references relationsA andB, and it makes up 20%
of the workload. The distributed database consists of 1 to 4 backends
B1,...,B4, which all have equal processing power.

Three scales of a distributed database system can be seen. First, a
single database backendB1: It has to contain all three relations. For
two backends, the workload can be evenly distributed. The query
types C1 and C4 together make up 50% of the query load, as do
C2 and C3. Hence, a possible solution is to allocate relations A to
backend B1 and relation C to backend B2 and replicate B on both
backends. With this allocation, both backends get an equal share
of the workload and achieve the theoretical speedup of 2. It is easy
to see that this configuration is optimal in terms of space efficiency.
The load distribution is shown in the following table.

C1 C2 C3 C4 Overall
B1 30% 0% 0% 20% 50%
B2 0% 25% 25% 0% 50%

The same speedup can be achieved in the read-only case by using
full replication, however, with the exemplified allocation only one
relation has to be replicated instead of all three relations. For four
backends, each backend gets 25% of the workload. Query class
C1 has more than 25% of the workload and therefore it has to be
assigned to more than one backend, so relation A is replicated on
backendsB1 andB2. C2 andC3 fit directly on a backend so they are
allocated onB3 andB4, respectively. C4 can be assigned to backend
B2 since it still has processing capacities. The resulting allocation
has a theoretically optimal speedup of 4, while replicating only two
tables. The load distribution is given below.

C1 C2 C3 C4 Overall
B1 25% 0% 0% 0% 25%
B2 5% 0% 0% 20% 25%
B3 0% 25% 0% 0% 25%
B4 0% 5% 25% 0% 25%

We describe the individual steps of the allocation in detail below.

3.1 Classification
The basis of the classification is a query journal J . The journal

is a sequence of executed queries q. It does not need to contain ev-
ery query executed, but it should be representative4. The domain of
J is the set of all distinguishable queries Q, where two queries are
distinguishable if they are not textually identical. Therefore, every
q∈Qmay appear multiple times in J . Since the order of elements
is not important, we interpret J as a multiset with support Q and
characteristic function j, i.e., the function j returns the number of
occurrences of each query in the journal (we adopt the multiset for-
malism of [58]). Each query q∈Q accesses a set of data fragments.
Depending on the classification method, a data fragment f may be
a relation, an attribute of a relation (or column) or a range or set of
tuples (determined by predicates). Each query is classified to a sin-
gle query class C ∈ C, where the set of all query classes is a subset
of the power set, C ⊆ P(F) of all data fragments. The set of all
data fragments can be the set of all tables (no partitioning), the set
of all columns (vertical partitioning), a set of horizontal partitions,
or a mixture of the above (hybrid partitioning). The granularity of
the partitioning also determines the size of the data fragments. The

4For the sake of simplicity, we require a journal to contain queries
of all occurring classes.

classification is defined formally as a function:

classify(q)=C,C={f ∈F |q references f} (2)

The classify function assigns a query q to a query class C, where C
is the set of data fragments referenced by q. In the case of partial
replication without partitioning these are the tables accessed by the
query. If query classes are classified column-based, they contain a
candidate key to ensure lossless reconstruction of all data. For sim-
plicity, we presume this in the following. In the definition above,
reads and updates are not differentiated. For update intensive work-
loads, the journal is divided into update requests and read requests.
For an easier identification of read and update query classes, we de-
note read query classes withQ and update query classes withU . The
classification is analogous to the definitions above. It results in two
sets of query classes CU and CQ:

classify(q)=C,C∈
{
CQ, if q is read
CU , else (3)

where CQ∪CU = C. Strictly speaking, C is a multiset, however, we
treat it as a regular set here for simplicity. To calculate the allocation,
the fraction of the overall workload produced by each query class,
i.e., its weight, is needed. This can be calculated by summing up
the execution times or a cost estimation (e.g., from the query opti-
mizer as proposed in [43]). Using the following function, the relative
weight of a query class is computed:

weight(C)=

∑
q∈{x∈Q|classify(x)=C}j(q)·weight(q)∑

q∈Qj(q)·weight(q)
(4)

The classification determines the partitioning calculated by the al-
location algorithm. If all queries are classified to a single class, the
resulting allocation is a full replication.

3.2 Allocation
Given a set of query classes and their weight, the task of the al-

location is to distribute the data fragments in a way that queries can
be answered locally by one of the backends. To ensure maximum
efficiency, the allocation has to balance the load of all query classes
across all backends and minimize replication in case of updates. A
secondary goal of the allocation is to reduce overall data consump-
tion. In this section, we define this form of allocation formally in a
way that it can be directly translated into a linear program computing
an optimal allocation. The formulation of the optimal allocation can
be found in Appendix B. The allocation can be formally described
as a function that assigns data fragments f ∈F to backend databases
B∈B. Because we aim for a balanced load, we distinguish backends
by their query processing performance. This measure is given in re-
lation to the sum of the query processing performances of all back-
ends. Thus, the domain of the relative performance is [0,1]. Since
the basis of our allocation is a classification, input to the allocation
are the query classes C ∈ C. Alternatively, an existing partitioning
scheme could be given as input, e.g., [21, 45, 47]. The result is a par-
tial replication. A partial replication can be represented as a multiset
of backends. P(F)×[0,1], A backend is a pair 〈B∗,l〉, comprised of
a set of fragmentsB∗⊆F and a maximum load (capacity) l∈ [0,1].
The basis of the allocation for workloads with updates is a classifi-
cation that distinguishes between update and read requests. Hence,
input for the allocation are two sets of query classes, update query
classes CU and read query classes CQ, where C=CQ∪CU .

allocation(CQ,CU)= B, ∀C∈C, ∃B∈B :

f ∈C⇒f ∈ fragments(B)
(5)

The function fragments specifies the set of fragments of a backend:

fragments(〈B∗,l〉)=B∗ (6)

The allocation definition does not ensure that the load is balanced.
In the case of read and update requests, a balanced load cannot gen-
erally be guaranteed for an optimal allocation. In a homogeneous
environment, all backends obtain — if possible — the same share
of the overall workload. In a heterogeneous environment, the shares
of the workload that backends handle differ. To simplify the follow-
ing equations, we introduce the function load, which specifies the
relative performance of a backend:

load(〈B∗,l〉)= l where
∑
B∈B

load(B)=1 (7)

In a homogeneous cluster of s nodes, the relative load is 1
s

. To ex-
press the part of the weight of a query that is assigned to a backend,
the assign function is used:

assign(C,B)>0⇒C⊆ fragments(B) (8)

An allocation that considers updates is valid if all query classes are
allocated and if every update query class is allocated to all backends
that store its referenced data. The following constraints must be
satisfied:

∀C∈CQ :
∑
B∈B

assign(C,B)=weight(C) (9)

∀C∈CU ,∀B∈B,C∩fragments(B) 6=∅ :

assign(C,B)=weight(C)
(10)

∀C∈CU :
∑
B∈B

assign(C,B)≥weight(C) (11)

If the first constraint is satisfied, all read queries are completely as-
signed. The second constraint guarantees that the update queries are
assigned to every backend that contains referenced data. If the third
constraint is satisfied, every update query is assigned to at least one
backend. These constraints ensure that the allocation is valid. To en-
sure that the backends are as balanced as possible, first the functions
updates and updateWeight are defined:

updates(C)={CU ∈CU |C∩CU 6=∅} (12)

updateWeight(B,C)=
∑

CU∈updates(C)

assign(CU ,B) (13)

The updates function specifies the set of update query classes that
reference related data for a query class. The output of the updateWeights
function is the sum of weights of update query classes that are al-
ready allocated to backendB, which have an overlapping data set to
read query class C. The function is used to calculate the additional
update load a read query class causes on a backend. To simplify the
following equations, the sum of assigned workloads for a backend is
defined as its assignedLoad:

assignedLoad(B)=
∑
C∈C

assign(C,B) (14)

In a heterogeneous environment, the maximum load of each back-
end has to be considered. The sum of assigned workloads for an
allocation considering updates with replicated update query classes
is greater than 1. Hence, the maximum load for each backend must
be scaled:

scaledLoad(B)= load(B)∗
{
scale, if scale>1
1, else (15)

where scale=maxB′∈B
assignedLoad(B′)

load(B′) . For an optimal allocation
in the sense of throughput, scalemust be minimized. This is ensured
by the following constraint:

∀B,B′∈B,B 6=B′,@C∈C,assign(C,B)>0:

scaledLoad(B)−assignedLoad(B)≥
scaledLoad(B′)−assignedLoad(B′)−
updateWeigth(B,CQ)+updateWeigth(B′,CQ)

(16)

This constraint ensures that no pair of backends differ in weight such
that a query class could be shifted between them to balance the load.
This does not guarantee a fully-balanced load, it only guarantees that
the difference is as small as possible. The constraint is stricter than
it would have to be for obtaining an optimized throughput. It would
be enough to ensure that no query class could be shifted away from
a backendB with scaledLoad(B)=assignedLoad(B).

3.2.1 Maximum Speedup
As stated above, for a read-only workload, the theoretical speedup

is always linear. In this section, we discuss the speedup for partially
replicated allocations. The basis the general formulation of Am-
dahl’s law (see Equation 1). To apply this law to the workload of
a CDBS, the serial and parallel fractions of a query workload have
to be identified. The read load can be parallelized completely. The
update load can also be parallelized, by allocating unrelated query
classes to different backends. However, single update queries have
to be processed by every backend they are allocated to. Hence, the
maximum speedup of a workload is bound by:

speedupmax≤
1

maxC∈C
∑

CU∈updates(C)weight(CU)
(17)

To calculate the speedup of a specified allocation, the serial part of
the workload has to be specified. Since all query requests and update
requests are processed in parallel, the serial part is in general always
0. However, if an update class is allocated to two backends, the up-
dates that are part of the class have to be executed on both backends.
Hence, the workload that the two backends can process is reduced
by the weight of the update class. To allow all query classes to be
processed, the overall workload is increased by at least the weight
of the update class. Accordingly, the workload each backend has to
process is increased. This corresponds to the scaledLoad as defined
above. The scaledLoad of a backend is the load plus the backend’s
share of the additional weight of the replicated update classes. In
a homogeneous environment, the load is 1

|B| which corresponds to
1

#nodes . The scaledLoad is defined as load×scale, where scale can
be interpreted as the increased workload. Using this information,
Equation 1 is modified to:

speeduphom =
1

serial+ parallel
#nodes

=
1

0+ scale
#nodes

=
1

scaledLoad

(18)

In a heterogeneous environment, the scaledLoad is not equal for all
backends. To obtain a meaningful measurement for the speedup,
the average throughput per backend must be considered. Since the
overall load is 1, the average load is 1

|B| . Using the scale factor, the
speedup in the heterogeneous environment is defined as:

speedup=
1

scale
|B|

=
|B|
scale

(19)

Thus, an allocation with maximum speedup is found by minimiz-
ing the maximum scaledLoad, or, more generally, the scale of an al-

location. This is done using a linear program, a formulation directly
derived from the above definitions can be found in Appendix B.
Given the optimal scale, the replication can be minimized with a
second linear program. In a read-only environment, the optimiza-
tion of scale is unnecessary since it always is 1.

3.3 Allocation Algorithm
The allocation problem formulated above is NP-hard and cannot

be solved for realistic problem sizes [48]; therefore, a heuristic is
needed. In the following, we present a greedy algorithm and a meta-
heuristic algorithm. The allocation problem is similar to bin pack-
ing. Query classes with the highest weight and the largest data size,
potentially create the most replication if scheduled late. Therefore,
we use a first-fit strategy to calculate the allocation in polynomial
time [19]. Input to the algorithm is the classification and an empty
set of backends; output is the set of backends with allocated query
classes. While this strategy does not consider previous allocations,
the matching presented in Section 3.4 guarantees a cost minimal im-
plementation. The complete algorithm is depicted in pseudo-code in
Algorithm 1. The greedy algorithm starts by calculating the set C∗:

C∗=CQ∪{CU ∈CU |@CQ∈CQ :CU∩CQ 6=∅} (20)

It is the set of query classes that have to be assigned explicitly. This
includes all members of CQ as well as members of CU that reference
no data referenced by a read query. The members of C∗ are sorted
in descending order according to the product of the data size and the
weight they impose on the backend; this includes the update query
classes with overlapping data, which need to be allocated with the
class. The result is stored in the sequenceC in Line 2. Then auxiliary
variables for the current load of a backend, the scaled maximum
load of a backend, and the unassigned weight of a query class are
introduced in Lines 3 to 5.

For each query class in C, the weight that has to be assigned is
stored. This is done in the while loop starting in Line 6. The query
class which produces the most weight on a backend is allocated first.
If all backends are already at their maximum capacity, their relative
load is scaled. The difference to all backends is calculated in the
foreach loop starting in Line 10. It is the size of the newly allocated
data fragments or 0 if the backend is empty or∞ if the backend is
full.

Then, the query class is allocated to the backend with the least
difference (Lines 17 to 32). First, the fragments are allocated to the
backend (Line 18), then, the complete update load of the query class
that is not yet allocated to the backend’s load is added (Line 19). If
the current query class is an update query class (Line 19), the query
class is removed from the classes that need to be allocated, since fur-
ther allocation of an update query class results in less throughput. If
the current load of the backend is larger than its scaled load, scaled-
Load is adapted. We omitted the adaption of the scaled load of the
other backends; this is done according to Equation 15.

When the query class is a read query class (Line 24), the maximum
load of the backend has to be scaled if the backend is already full or
overloaded with the updates in question (Line 25). It is increased,
such that the backend can hold a share matching its relative load.
Then, two cases have to be considered: If the remaining weight of
the query class does not fit on the backend (Line 27), as much weight
of the query class as possible is assigned to the backend and the
query class has to be assigned to other backends. If it does fit on
the backend (Line 30), the remaining weight of the query class is
added to the backend, the query class is processed entirely, and it is
removed from the query classes that have to be allocated.

At the end of the while loop (Line 33), the sequence of query

Input: Classification C, set of empty backendsB
Output: Heuristic allocationB

1 C∗←CQ∪{CU ∈CU |@CQ∈CQ :CU∩CQ 6=∅};
2 C← sortC∈C∗ descending to

weight(C∪updates(C))×size(C∪updates(C));
3 currentLoad(B)←0;
4 scaledLoad(B)← load(B);
5 restWeight(C)←weight(C);

6 whileC∈C do
7 if all backends are full then
8 foreachB∈B do
9 scaledLoad(B)←

currentLoad(B)+load(B)·weight(C);
10 foreachB∈B do
11 if currentLoad(B)=scaledLoad(B) then
12 difference(C,B)←∞;
13 else if currentLoad(B)=0 then
14 difference(C,B)←0;
15 else
16 difference(C,B)←

size((C∪updates(C))\fragments(B));
17 B←B∈B with difference(C,B) minimal;
18 fragments(B)← fragments(B)∪C∪updates(C);
19 currentLoad(B)←currentLoad(B)+

weight(updates(C))−updateWeight(B,C);
20 ifC∈CU then
21 if currentLoad(B)>scaledLoad(B) then
22 scaledLoad(B)←currentLoad(B);
23 C←C\{C};
24 else
25 if currentLoad(B)≥scaledLoad(B) then
26 scaledLoad(B)←

currentLoad(B)+load(B)·weight(C);
27 if restWeight(C)>scaledLoad(B)−currentLoad(B)

then
28 restWeight(C)← restWeight(C)−

(scaledLoad(B)−currentLoad(B));
29 currentLoad(B)←scaledLoad(B);
30 else
31 currentLoad(B)←

currentLoad(B)+restWeight(C);
32 C←C\{C};
33 sort(C) descending to restWeight and size;
34 returnB

Algorithm 1: Greedy Allocation Algorithm

classes is sorted again as in Line 2. When all query classes have
been completely allocated, the algorithm terminates.

Meta Heuristic In general, the greedy heuristic computes a valid,
but not an optimal solution. By altering the heuristically found so-
lution, it is possible to generate a better solution. Since the search
space is exponential, not all possible solutions can be tested. A com-
mon approach is to randomly generate valid mutations of the initial
solution. To control the number and order of the mutations, a meta
heuristic is used. Many meta heuristics follow a similar 5 step ap-
proach. (1) Initialization: an initial solution is generated randomly
or deterministically; (2) mutation: a number of mutations is gener-
ated randomly; (3) evaluation: the mutations are evaluated accord-
ing to a cost function; (4) selection: a new solution is selected from
the mutations and the initial solution; termination: after a predeter-
mined number of iterations or a defined stopping condition, the best
solution is returned.

The algorithms differ mostly in the way in which the mutations are
selected. An overview of different approaches can be found in [59].

For the allocation problem, an evolutionary programming approach
was chosen. Evolutionary programming differs from other evolu-
tionary approaches, such as genetic algorithms and evolution strate-
gies, in that it does not recombine solutions [10]. Since we also use
local improvements, the algorithm is classified asa hybrid heuristic
or a memetic algorithm [39]. Evolutionary algorithms use a set of
solutions that store the current population. For each iteration, a new
population P with a determined number of old solutions and muta-
tions is generated. After a fixed number of iterations or a stopping
condition, the best solution is returned. The pseudo-code is given in
Algorithm 2. The algorithm starts with the generation of the initial

Input: Initial solution Sinit =(A,L), size of the population p
Output: Optimized solutions Smin

1 P←{Sinit} ;

2 for number of iterations do
3 P′←mutate(P,p);
4 P←select(P, 2

3
,best)∪select(P′, 1

3
,best);

5 I←select(P, 1
3
,random);

6 P←P\I;
7 foreach S∈I do
8 S← improve(S);
9 P←P∪I;

10 Smin←{S∈P|weight(S)=minS′∈Pweight(S′)};
11 return Smin

Algorithm 2: Evolutionary strategy

population in Line 1. In general, this can be a set of randomly gener-
ated allocations or simply a full replication. For a faster convergence
of the algorithm, we start with the solution of the greedy heuristic.
In the loop, in Line 2, the evolutionary process is executed, and the
number of iterations determines the runtime. Another common stop-
ping criterion is to stop if for a certain number of iterations, no better
solutions have been found. However, this makes the runtime of the
algorithm non-deterministic. The first step in the evolutionary ap-
proach is to mutate the population to generate the offspring (Line 3).
In this step, a new set of valid allocations is generated by randomly
altering the current population. As is common in evolutionary pro-
gramming, the mutation is based on a single parent instead of com-
bining parents. After that, the new population is chosen (Line 4).
The strategy is a so-called (λ+µ) approach [53]. This means that
parents and offspring are mixed for the new population, instead of
only using the offspring. The function select(X,y,Θ) chooses a
fraction y of the set X using the operator Θ. For the new popula-
tion, the best 2

3
of the old population and the best 1

3
of the offspring

survive (thus, ensuring convergence). In contrast to a classic evolu-
tionary program, the memetic algorithm now chooses randomly 1

3
of the new population that is improved using a local search (Lines 5
- 9).

We employ two local search strategies. The first strategy searches
for backends with common pairs of allocated query and update classes.
By shifting the query weight between backends, replicated update
classes can potentially be omitted. The necessary constraints are
shown below:

|{C∈CQ|assign(C,B1)>0}∩
{C∈CQ|assign(C,B2)>0}|≥2

(21)

C1 6=C2∈{C∈CQ|assign(C,B1)>0∧
assign(C,B2)>0} :updates(C1) 6=updates(C2)

(22)

If these constraints hold, it is possible to reduce the number of allo-
cated update query classes, by shifting the query classes and there-

fore potentially improve the throughput. This strategy can be ap-
plied to an allocation inO(|Q|2×|B|), since for each pair of query
classes, all backends have to be analyzed. In some cases, where
query classes are replicated, changing the distributed query class
improves the allocation. The second strategy searches for pairs of
update classes, where the replication of heavier update classes is re-
duced by increasing the replication of lighter update classes. The
general formulation is:

CU1∈{C∈CU |assign(C,B1)>0∧assign(C,B2)>0} (23)

CU2∈{C∈CU |assign(C,B1)>0} :

weight(CU2)<weight(CU1)
(24)

∑
{C∈CQ|C∩CU2 6=∅}

assign(C,B1)≥

∑
{C∈CQ|C∩CU1 6=∅}

assign(C,B2)
(25)

∑
C∈

⋃
{C′∈CQ|assign(C′,B1)>0∧C′∩CU2 6=∅}

updates(C′)

weight(C)

<weight(CU1)

(26)

The first constraint selects the replicated update class CU1; it is an
update class that is allocated to at least two backends (B1 and B2).
The second constraint selects an update class CU2 on backend B1

that has less weight than CU1. The third constraint ensures that
CU1 and the corresponding read query classes can be shifted com-
pletely to backend B2. The last constraint ensures, that the repli-
cation does not increase the replicated updates due to other update
classes that have to be replicated with CU2. This improvement also
lies inO(|Q|2×|B|), since for each pair of query classes, all back-
ends have to be checked.

After a certain number of iterations, the best solutions, i.e., all
solutions with minimal costs, are returned.

3.4 Physical Allocation
The allocation algorithm above calculates an allocation based only

on the query history and the cluster environment. The algorithm does
not take a previous allocation into account. Therefore, a new alloca-
tion has to be implemented on the existing database cost-efficiently.
Several factors contribute to the cost of a physical allocation. Basi-
cally, it is an ETL process, i.e., data extraction, data transport, and
data loading have to be considered. Data that is already allocated
to a certain backend does not create any additional cost. However,
data that has to be transferred to a new backend and imported into
the database system does create noticeable cost. This cost is mainly
related to the size of the data. Hence, a good approach is to reduce
the amount of transferred data. In order to materialize the allocation
in the system, a matching between the newly calculated allocation
and currently installed allocation has to be found.

The problem can be modeled using a complete, weighted bipartite
graphG=(B′∪B,E). NodesB′ represent the backends in the new
allocation and nodesB the backends in the old allocation. Both node
sets have the same size n. Each node inB′ is connected with every
node in B with an edge e∈E. The weight of an edge evu between
node B′v ∈ B′ and node Bu ∈ B is the cost of allocating the data
fragments in B′v to Bu. Usually, this cost is mainly dependent on
the size of the data that has to be transferred and imported. Hence,
in many cases, a valid approximation of the weight is the sum of the
sizes of data fragments which have to be additionally allocated to the

backend. This can be calculated by the following equation:

weight(euv)=
∑

f∈fragments(B′v)\fragments(Bu)

size(f) (27)

Matching is a well studied problem; it is known as the assignment
problem [13] which is a special form of linear optimization that is
strongly polynomial. To generate a cost-minimal perfect matching,
the Hungarian method is used [33, 40]. This algorithm calculates an
optimal matching inO(n3).

4. EVALUATION
We implemented a prototype to test the allocation algorithms. It

consists of a controller that encapsulates all logic. The architec-
ture can be seen in Figure 3. The controller has two modes of op-
eration: allocation and query processing. In the query processing
mode, the controller starts the driver that issues SQL requests. The
requests are sent to the scheduler that holds a queue for each back-
end. The scheduler inserts incoming requests into the queues ac-
cording to the least pending request first order. If the database is
partially replicated across the backends, the scheduler also decides,
which backend can handle a request. The data allocation is stored
in the schema. For each queue, multiple connections are opened
to the according database system and each connection holds a sin-
gle request at a time. PostgreSQLand MySQLare used as backend
database systems. Each processed request is stored in the query his-
tory along with its processing time. Furthermore, statistical data is
stored in an embedded database for performance analysis. After a

Backend Backend Backend

Allocator

Scheduler

Queue Queue Queue

Driver

Query
History

Schema
Statistics

Controller

Figure 3: Architecture of the Prototype

test run, i.e., after a predefined number of requests, the controller
changes to allocation mode. The allocator stops all backends, reads
the query history and calculates an allocation according to the num-
ber of backends and the query history. Based on this allocation, the
allocator assigns the data to the backends and starts them. Currently,
full replication, table-based allocation, and column-based allocation
are supported. The allocator waits until all backends have finished
the bulk loading of the data. Then, the controller switches to query
processing mode.

In order to guarantee comparable results, we do not further opti-
mize the data layout. Therefore, the schema only includes indexes
that are generated automatically (i.e., indexes on the primary keys).
All tests are run on a 16 node high performance computing clus-
ter. Each node has two Intel Xeon QuadCore processors with 2 GHz
clock rate, 16 GB RAM and two 74 GB SATA hard disks with a
RAID 0 configuration. We use separate nodes for the controller and
the database backends. We tested our algorithms with TPC-H and
TPC-App style benchmarks. For the scaling experiments with larger
data sets, we used a 20 node virtualized cluster. The VMs are hosted
on physical machines with each 2 Intel Xeon E5-2630 v3 CPUs, 128
GB RAM, and 2 600 GB SAS hard disks with RAID 1 configuration.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10
 0

 2

 4

 6

 8

 10

Th
ro

ug
hp

ut
 (Q

ue
rie

s/
se

c)

Sp
ee

du
p

Number of Backends

Full Replication
Table Based Allocation
Column Based Allocation
Random Allocation

(a) TPC-H Throughput

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10
 0

 2

 4

 6

 8

 10

Th
ro

ug
hp

ut
 (Q

ue
rie

s/
se

c)

Sp
ee

d-
U

p

Number of Backends

Average
Minimum
Maximum

(b) TPC-H Throughput Deviation

 0

 2

 4

 6

 8

 10

 2 4 6 8 10

D
eg

re
e

of
 R

ep
lic

at
io

n

Number of Backends

Full Replication
Table Based Allocation
Column Based Allocation
Optimal Column Based Allocation

(c) TPC-H Degree of Replication

 0

 1

 2

 3

 4

 5

 1 2 3 4 5 6 7

Al
lo

ca
tio

n
Ti

m
e

(m
in

)

Number of Backends

Full Replication
Column Based Allocation

(d) TPC-H Duration of the Allocation

 0

 2

 4

 6

 8

 10

 5 10
R

el
at

iv
e

Th
ro

ug
hp

ut

Number of Backends

Full Replication SF1
Full Replication SF10
Table-Based Replication SF1
Table-Based Replication SF10
Column-Based Replication SF1
Column-Based Replication SF10

(e) TPC-H Scaling

 0

 1

 2

 3

 4

 5

 6

 2 4 6 8 10

Sp
ee

du
p

Number of Backends

Column Based Allocation
Table Based Allocation
Full Replication

(f) TPC-APP Speedup

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10

Th
ro

ug
hp

ut
 (Q

ue
rie

s/
se

c)

Number of Backends

Column Based Allocation
Table Based Allocation
Full Replication

(g) TPC-App Throughput

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 2 4 6 8 10

Th
ro

ug
hp

ut
 (Q

ue
rie

s/
se

c)

Number of Backends

Average
Minimum
Maximum

(h) TPC-App Throughput Deviation

 0

 1

 2

 3

 4

 5

 5 10

R
el

at
iv

e
Th

ro
ug

hp
ut

Number of Backends

Full Replication
Table-Based Replication
Column-Based Replication

(i) TPC-App Large Scale

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

D
ev

ia
tio

n
fro

m
 B

al
an

ce

Number of Replicas

TPC-H
TPC-App

(j) Relative Load Balance TPC-H vs. -App

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

Fr
eq

ue
nc

y

Number of Replicas

TPC-H
TPC-App

(k) Replication Histogram (Table-Based)

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9 10

Fr
eq

ue
nc

y

Number of Replicas

TPC-H
TPC-App

(l) Replication Histogram (Column-Based)

4.1 Read-Only Allocation Evaluation
Although TPC-H defines update statements, we used the bench-

mark without these to test our algorithm in a read only environment.
PostgreSQL and MySQL have problems with the complexity of the
queries in TPC-H. Since queries 17, 20, and 21 are disproportion-
ately slow in PostgreSQL, we omitted them in the test. We used
Scale Factor 1, which results in a 1 GB data set, since larger scale
factors further limit the number of processable queries. We ran tests
for full replication, table-based allocation, column-based allocation,
and a random allocation. The random allocation randomly allocates
column-based query classes on backends. Each test consisted of 10
runs on each number of backends. For the allocation test, we started
with full replication for each scale in order to get an initial weight
distribution for the queries. In each test, 10000 queries were sent
to the database, created by the official TPC-H query generator. In
Figure 4(a) the average of the runs can be seen.

It can be seen that all configurations scale linearly, except for the
random placement. The random allocation throughput levels out
at a speedup of 2.5, this is due to the imbalanced load. Both, the ta-
ble and the column-based allocation, outperform the full replication.
Since query classes differ considerably in their weight, some heavy

classes are allocated exclusively to multiple backends. Because the
backends are specialized on single query classes, less data is stored
on the nodes and, hence, the caching on these backends improves.
For the column-based allocation, the throughput further increases,
since vertical partitioning improves the data transfer speed from the
disk. The quality of the allocation is highly dependent on the qual-
ity of the classification and estimation of the weight of the query
classes. In Figure 4(b) the minimum and maximum throughput of
the column based allocation in the 10 test runs is shown. Although
the column based allocation has the largest deviation in throughput,
it is still never above 6%. This shows that the sum of the execution
times of the queries is an excellent measure for the weight of a query
class.

Table-based and column-based allocation reduce the amount of
replication substantially. Figure 4(c) shows the degree of replication
for full replication, table-based allocation, column-based allocation,
and optimal column-based allocation. The degree of replication r
for an allocationB is calculated as follows:

r(B)=

∑
B∈B

∑
f∈Bsize(f)∑

f∈F size(f)
(28)

The degree of replication for full replication matches the number
of backends. The table-based allocation has a slightly reduced de-
gree of replication. The data model in TPC-H is a data warehouse
and nearly all queries reference the two big fact tables tables, which
amount to 80% of the data. Therefore, it is not surprising that the
table-based allocation uses over 80% of disk space of the full repli-
cation. Since the fact tables in TPC-H have many columns, column-
based allocation leads to a considerable reduction of replication. For
ten backends, the degree of replication is only 3.5. As a comparison,
the result of an optimal allocation computed by a linear program is
shown. Because of the high number of variables and constraints, the
optimal allocation can only be calculated for up to 7 backends. It can
be seen that the heuristically computed allocation is very close to the
optimal allocation. For seven backends the difference in the degree
of replication is 0.03. A positive side effect of the reduced degree of
replication is an increased allocation speed. Figure 4(d) shows the
duration of the allocation procedure for full replication and column
based replication. The time measured includes the preparation of
the table fragments, network transfer, and data load. Although full
replication does not need the fragmentation, the reduced replication
and thus reduced data transfer and load time outweigh the initial
overhead.

To evaluate the behavior of the allocation for larger data sets, we
run additional experiments with Scale Factors 3, 10, and 30. In Fig-
ure 4(e) the scaling behavior of the table based allocation and the
column based allocation for TPC-H can be seen. The graphs show
the relative performance of a 1, 5, and 10 backend setup for 1 and
10 GB results. Baseline is the performance of a single node with the
same data set in all experiments. We increase the runtime of the ex-
periments for larger setups in the order of the scale factor to reduce
the impact of the different execution times at larger scale factors. As
can be seen in the Figure, all allocation strategies show good scaling
behavior with column-based allocation being as fast as full replica-
tion. Scale Factors 3 and 30 behave similarly.

4.2 Update-Sensitive Allocation Evaluation
To test the allocation on a workload with updates, we used a cus-

tom implementation of the TPC-App benchmark. TPC-App is a
simulation of an online bookseller which is implemented using web
services. The benchmark is scaled by increasing and decreasing the
number of customers EB. We used EB = 300 in most experi-
ments, which resulted in a database size of 280MB; additionally,
we ran larger scale experiments with EB 12000, which resulted in
8GB of data. To test the allocation, the workflow of the web ser-
vices was reimplemented and the queries were automatically gener-
ated. In the test, the number of queries was around 200,000 which
we tested on full replication, table-based partitioning, and column-
based partitioning. We tested the allocation on 1 to 10 backends,
each test was repeated 10 times. The ratio of read to write queries
was about 1 to 7. So for each read request 7 inserts and updates were
sent. However, the select statements produced overall 3 times more
workload than the updates. In particular, one complex read query
class generated 50% of the workload although its queries made up
only 1.5% of all queries. As mentioned above, a read-once/write-all
strategy was used for the query scheduling. The workload consisted
of 8 query classes for table-based allocation and 10 query classes
for column-based allocation. All tables that are queried were also
updated, therefore the column-based allocation always allocated the
complete tables.

In Figure 4(f), the average speed up of all three allocation strate-
gies can be seen. Due to the high write ratio, the full replication
only reaches a speedup of 2.6, at which point it is stable. Additional
backends do not reduce this speedup, but they also do not increase

the throughput. Since the weight of the write query classes is 25% in
total, this is not surprising. Using the formula presented in equation
1 the maximum theoretical speedup can be estimated:

speedup=
1

parallel
#backends

+serial
=

1
0.75
10

+0.25
=3.07 (29)

The maximum speedup achieved by the full replication is 2.6, which
is close to the theoretical maximum speedup. The table-based and
the column-based allocation have a similar speedup that is not lim-
ited for the 10 backends. The speedup for the table-based and column-
based allocation can be calculate in relation to the maximum weight
of a write request class. In our implementation, the writes to the
Order_Line table generate about 13% of the query weight; the max-
imum speedup can be reached if this write request class is allocated
exclusively on a backend. For 10 backends, this results in an increase
of the scale factor to 1.3. Using Equation 19, we can compute the
theoretical maximum throughput:

speedup=
|B|
scale

=
10

1.3
=7.7 (30)

In our the tests, the maximum achieved speedup was 5.8 for table-
based allocation and 6.7 for the column-based allocation. Both are
close to the theoretical maximum speedup. The column-based al-
location achieves a better speedup since it has a more query classes
and, thus, has a more fine grained allocation. In Figure 4(g) the total
throughput can be seen. The throughput is similar to the speedup.
However, the column-based allocation is slightly slower than the
table-based allocation and the full replication. This is due to some
overhead in the query processing for the column-based allocation in
our implementation. Another effect that can be seen is that for some
cluster sizes the average throughput is slightly worse. This can also
be seen in Figure 4(f), for 5 backends and 9 backends the speedup
is slightly decreased. This shows that in some cases the allocation
algorithm does not perform as well as in others. These are some
corner cases where the algorithm tries to balance the load by allo-
cating small parts of a query class to a backend, which result in an
additional write overhead. Since column-based allocation has more
query classes it is more vulnerable to misplacement. This can also
be seen in Figure 4(h), it shows the deviation of the column based
allocation. In contrast to the read only allocation, as shown in Figure
4(b), the read write allocation has a higher deviation. In Figure 4(i),
speedup experiments for a large data set is shown. Here the update to
read ratio was about 1 to 1, but the updates were more expensive due
to the larger data size. This results in a reduced speedup of all alloca-
tion strategies, with full replication experiencing a slowdown for 10
nodes, while our allocation strategies exhibit good scaling behavior.

This difference between the read-only and the read-write alloca-
tion can also be seen in the graph in Figure 4(j). The graph shows
the average balance of the column-based allocation of the TPC-H
and the TPC-App workload. The balance is calculated as the rela-
tive deviation from the average overall processing time on all nodes.
The presented values are the average balance of ten runs. As can be
seen in the figure, the deviation increases with the number of back-
ends and it is much less in the read-only case than in the read-write
case. This is expected since the read-write case cannot be balanced
in all cases in contrast to the read-only case and the individual query
processing times are much more diverse in TPC-App than TPC-H.
Although the deviation is almost 1 in some cases in the read-write
case, the total throughput is not affected as much as one would ex-
pect. This is due to the fact, that in all cases the deviation stems from
an underloaded node rather than an overloaded node. This means
that most of the nodes have a good utilization while one node is un-

der utilized. An over utilized node that cannot be balanced by other
nodes would have a much more dramatic effect on the throughput.

Figure 4(k) and Figure 4(l) show histograms of the replication of
fragments for 10 nodes. This is again an average of 10 runs. In
Figure 4(k) the frequency of replication numbers per table is shown
for the TPC-H and TPC-App tests. It can be seen that in the case
of TPC-H every table is replicated at least twice. The lineitem ta-
ble is replicated on every node, since it is referenced in almost every
query. The other tables are replicated less often, with most tables
being replicated four times and each table at minimum twice. The
TPC-App frequencies are very different. Here, one table that is heav-
ily updated is always allocated on only one backend. The other ta-
bles are mostly read and thus are replicated. In the column-based
allocation, there are many more possible fragments. In Figure 4(l),
we show the frequency of replication number per column for both
benchmarks, TPC-H and TPC-App. Interestingly, the histograms of
both allocations are much more similar than in the table based case.
This is due to the higher number of fragments and the algorithms
effort to reduce replication. Since TPC-App has many queries that
access the same columns, some columns are allocated more often in
order to balance the load. Again, some of the columns are allocated
on every node in TPC-H, but due to the vertical partitioning, the size
of the allocated data is much less than in the table-based allocation.

Overall, both the read only and the update experiments show the
effectiveness of our allocation algorithm. The read only allocation
achieves an equal or higher throughput compared to the full repli-
cation, while decreasing disk usage. The update allocation greatly
improves the system throughput while also reducing disk usage.

5. EXTENSIONS
Our allocation scheme can be extended to ensurek-safety to achieve

high availability, meaning that k systems can fail without data loss
and service interruption. To do so, we ensure that each query class
is allocated at least k + 1 times. The adapted constraints and the
heuristic algorithm can be found in Appendix C.

The processing model presented in Section 2 is fairly robust to
changes in the workload. The allocation presented further supports
this robustness in many cases. We can consider four cases of work-
load changes, an increase or decrease of weight of a certain query
or update class. In the case of update classes, the allocation aims at
minimal replication, which will be favorable in cases of increased
update weight in contrast to a solution with higher replication. In
the case of lower update weight, a minimal replication is still not
harmful for the throughput. In the case of an increase of weight of
a query class, a backend will experience higher loads, while a re-
duction of the weight of a query class will result in lower load. The
reduction of performance through over-utilization can be estimated
according to Formula 19, where scale is the factor of over-utilization
of a node. Consider the example of 4 backends in Figure 2, if the
weight of Query ClassC is increased to 27%, the maximum achiev-
able speedup is reduced by to 3.7 instead of 4. This is, however,
the worst case sinceC is the only class allocated onB4. In general,
there is some flexibility for the scheduling of query classes due to
the remaining replication and co-allocation of query classes.

It is also possible to further increase the robustness of an alloca-
tion by ensuring that for each query class a certain percentage of
change can be tolerated. An allocation can tolerate a change of the
workload by shifting weights between backends in case of replicated
query classes without loss of performance. If each backend contains
query classes that can be (partially) shifted to another backend, the
total allocation is robust. In the algorithm this can be implemented
by a check for this condition for each fully loaded backend. If the
requirement is not met, a new set of query classes with no weight

 0

 1000

 2000

 3000

 4000

 5000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 1

 2

 3

 4

 5

 6
 0 4 8 12 16 20 24 28 32 36 40 44 48

re
qu

es
ts

 /
10

 m
in

nu
m

be
r o

f a
ct

iv
e

no
de

s

October 20, 2009

test runtime (minutes)

HTTP requests
nodes

Figure 4: Number of Active Servers Compared to Workload

 0

 1000

 2000

 3000

 4000

 5000

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00
 0

 10

 20

 30

 40

 50

 60

 70

 0 4 8 12 16 20 24 28 32 36 40 44 48

re
qu

es
ts

 /
10

 m
in

qu
er

y
ex

ec
ut

io
n

tim
e

(m
s)

October 20, 2009

test runtime (minutes)

HTTP requests
avg. response time w scaling
avg. response time w/o scaling

Figure 5: Average Response Time Compared to Workload

is added to the allocation, which combined weight amounts to the
required percentage of robustness.

Using matching, a cost optimal scaling of the database system can
be calculated. If a system is scaled, a new allocation is calculated and
either new nodes are added or removed. The data mapping is mod-
eled using a complete bipartite graph G = (B′ ∪ B,E). In both
situations, the cardinality of B′ and B is different: For an increase
in the number of nodes, |B′|> |B|, and for a decrease in the number
of nodes, |B′| < |B|. In order to use the Hungarian method, both
sets have to have the same number of nodes. For a scale out, the old
allocation is simply increased with empty virtual backends. These
present the new, unpopulated nodes. If the system is scaled down, it
is reasonable to remove backends, which have less disk capacity or
bad connectivity. In this case, the backends concerned are removed
and the matching is done as if there was no scaling. If the back-
ends to be removed can be freely chosen from all backends, the new
allocation is extended with empty backends and the matching is per-
formed. The backends of the old allocation that are matched with the
empty backends are then removed from the cluster. We have imple-
mented an autonomic CDBS using a simple scaling logic. Using real
workload trace and the TPC-App benchmark, we tested autonomic
scaling. The workload trace is taken from the backend database ac-
cesses of a Web-based e-learning tool. Due to privacy restrictions,
we could only use statistics, not actual queries and data. The sys-
tem was scaled up and down based on the average response time of
the queries. In Figure 4, the original request profile and the number
of active nodes during the test are shown. The requests are scaled
up by a factor of 40 to increase the throughput, the maximum load
was 250 queries per second. As shown in Figure 5, the autonomic
system has a slightly increased response time, however, the average
response time never exceeds 50 milliseconds and is 10 milliseconds
on average. Most importantly, the throughput of the system is never
decreased as compared to a system with static maximum size. We
treat changing workloads similar to autonomic scaling. Two differ-
ent cases are considered, predictably changing workloads and fun-
damentally changing workloads. The former can be in the form of
periodic changes such as daily patterns or simple fluctuations in the
workload. The latter is a result of changes in user behavior, user in-
terface, and application logic. Fundamental workload changes are
detected through permanent, non-optimal backend utilizations that
then trigger reallocation. For periodic and fluctuating workloads, a
reallocation is inefficient if the allocation cost outweighs the perfor-

 0

 100

 200

 300

 400

 500

 600

6:00 9:00 12:00 15:00 18:00 21:00 0:00 3:00

re
qu

es
ts

 /
10

 m
in

24 h Workload

Class A
Class B
Class C
Class D
Class E

Figure 6: Distribution of Query Classes over a Day

mance benefits. To address this issue, the allocation needs to account
for different workload distributions. Consider the workload in Fig-
ure 6, which shows the most frequently accessed query classes from
the above workload. As can be seen in the figure, the ratio of ac-
cesses between the query classes changes throughout the day. Most
notably, at night (3 am to 8 am), ClassB is dominating, while it has
lowest weight during the day. To directly treat this variance, we seg-
ment the query history into multiple parts using a one hour sliding
window to compare variances. In the example, this leads to 4 seg-
ments (3 am to 8:30 am, 8:30 am to 10:30 am, 10:30 to 10:30 pm,
10:30 pm to 3 am). For each of these segments, we calculate a sep-
arate allocation. Using the Hungarian method, we merge all of the
allocations to a combined allocation that is robust to the changes in
the workload.

6. RELATED WORK
There are many implementations of cluster database systems that

use the processing model presented above. The C-JDBC project is
a middleware platform for transparent, table-based database repli-
cation [17]. The Ganymed project provides a middleware layer that
allows replication of databases and transparent access [46]. The sys-
tem is divided into a master and several satellite database systems,
in which the satellites feature read-only access, while write access
is processed only on the master node. The system Middle-R im-
plements a middleware for database replication [38, 44]. The work
is based on the Postgres-R system [32], which implemented a sim-
ilar system within the PostgreSQL DBMS. The system uses group
communication to synchronize update requests. Closest to our ap-
proach is C-JDBC. For full replication, the processing model is iden-
tical. Ganymed follows an equivalent approach for query process-
ing, however, in contrast to our work, it uses a primary copy update
mechanism. The same is true for MIDDLE-R; while query process-
ing is equivalent to the CDBS model, updates are synchronized via
group communication. This reduces the network traffic, but again
limits predictability.

An allocation algorithm can have multiple goals, such as perfor-
mance optimization, reliability, etc. In [42] a general problem def-
inition is presented, which respects various factors such as network
characteristics and properties of the host system. The resulting opti-
mization problem is NP-hard and therefore not feasible for realistic
problem sizes. There have been many modifications of the model,
for example, for sites in communication networks [8] and for special
purposes such as heterogeneous storage [15, 11]. To compute an al-
location for realistic problem sizes, heuristics are used. These either
exploit the relation to the bin packing problem and apply first-fit and
best-fit strategies [14, 51], or use meta-heuristics such as simulated
annealing [6] or evolutionary strategies [2].

Our allocation approach is also presented as an optimization prob-
lem. In contrast to other allocation strategies (e.g., [42, 8]), we do
not consider network traffic, since we aim at local execution and
consider cluster hardware configurations rather than wide area net-
works. Because of the NP-completeness, we use a best-fit strategy

to find an initial solution and an evolutionary algorithm to improve
the initial solution. However, the independent calculation of parti-
tioning and allocation is in general inferior to an integrated approach,
since an optimal partitioning can only be determined considering the
optimal allocation of partitions [18]. In the following, we present a
few integrated allocation strategies, all of which consist of at least a
partitioning and an allocation part.

In [20], the database system Bubba was presented which uses a
partial declustering and a greedy heuristic for data placement. Its
partitioning approach is a simple range-based declustering that frag-
ments each relation into a fixed number of equal-sized partitions.
These partitions are allocated according to their heat (i.e., the ac-
cess frequency) so that each node in the system has an equal heat.
The placement strategy is a simple first-fit approach, which does not
guarantee a balanced load. If the systems load is unbalanced, the
placement strategy is applied to the fragments with the highest tem-
perature (i.e., heat divided by size); this way data movement is min-
imized. Although Bubba was built as a parallel database system, it
exploited data locality similar to our system, in contrast to other par-
allel database systems [52, 23] or multi-disk systems [1]. It uses no
workload-aware partitioning and uses access frequencies rather than
actual costs. A workload-aware approach was presented in [41]. It
uses a linear programming approach to balance the workload. This
approach, however, does not consider locality.

A purely dynamic approach to the allocation problem is presented
in [27]. The data is range-partitioned into equal sized fragments and
allocated to different nodes. The approach makes no assumption
about the initial allocation. The optimization goal is storage balance,
although the authors claim that the approach can be generalized to
load balance. Whenever the storage on the nodes is out off-balance,
according to a given threshold, one of two rebalancing strategies
is invoked: the first strategy shifts weight to a node containing the
neighbor fragment, while the second strategy shares weight with an
empty node. Although the algorithm aims at parallel database sys-
tems, the general idea can be adapted for cluster database systems.

A decentralized fragmentation approach was presented in [29].
DYFRAM is similar to the above approach, a purely dynamic ap-
proach, that makes no assumption about the initial allocation and
partitioning. Based on statistics captured for each tuple, the num-
ber of local accesses versus the number of remote accesses is cal-
culated. The following strategies are employed: (i) if a fragment is
often requested remotely, a copy is placed on the remote site; (ii) if
access frequencies within a fragment vary significantly locally and
remotely, the fragment is further fragmented; (iii) if a fragment is re-
quested mostly from a remote site, it is moved. The approach aims to
localize the data access in a distributed system with heterogeneous
access to data, which is common in federated database systems. A
similar approach was presented in [57]. This differs from our prob-
lem statement, which aims at load balancing. Also, it is questionable
whether tuple-based statistics are manageable for larger databases.

In [25], the Tashkent+ system is presented, a successor of the
Tashkent system [24]. The main target of the Tashkent+ system is
load balancing. The basic assumption is that all transactions are
known in advance. Tashkent+ schedules transactions on nodes such
that they can be processed in memory. Starting from a fully repli-
cated allocation, the backends are specialized to certain transaction
types. Unused relations are eventually dropped and hence an opti-
mized data layout is generated. Due to the memory-aware schedul-
ing, a super-linear speedup is achieved. However, no partitioning
is used. The approach has a similar processing model to our ap-
proach. A recent partitioning scheme for heterogeneous distributed
setups was presented by Li et al. [37]. The authors use a linear pro-
gramming model to solve the partitioning and allocation problem.

Unlike our algorithm, this approach targets intra-query parallelism
and optimizes the individual query performance, while our approach
optimizes the total system throughput. In recent work, Zamanian et
al. presented a horizontal partitioning scheme for the XDB cluster
database systems [60]. This work considers key relations and work-
loads to co-allocate horizontally partitioned tables; this approach is
orthogonal to our work and could be integrated into our approach.

7. CONCLUSIONS
In this paper, we presented a processing model for a cluster database

architecture, a common architecture for distributed database sys-
tems. Our model allows for an accurate analysis of the requirements
of a distributed database system. Many research projects use very
complex models to obtain an exact view of query processing in dis-
tributed system. These models, however, limit the model application
to small problem sizes or controlled environments. In contrast, our
model allows for the autonomous determination of all parameters.
Therefore, all algorithms based on our model are fully implemented.
This increases the possibilities for self-management of the database.
We demonstrated this by autonomically scaling our system.

To increase the throughput and scalability of a CDBS, we pre-
sented a formal definition of the allocation problem in cluster data-
base systems. As for the processing model, the allocation problem is
reduced to the necessary parameters, which can be computed auto-
nomically. We have shown an optimal formulation and a heuristic al-
location algorithm that optimize the storage efficiency of the cluster
database system architecture; as additional benefit, query process-
ing performance is increased. Our evaluation shows that for read-
only workloads, our algorithm computes allocations that reduce the
storage requirements by 65% and achieve super-linear speedup. For
workloads with updates, our algorithm increases performance by up
to 2.4 times, as compared to a fully replicated system.

8. ACKNOWLEDGMENTS
This work has been supported through grants by the German Min-

istry for Education and Research as Berlin Big Data Center (funding
mark 01IS14013A), through grants by the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
688191, as well as through grants from Natural Sciences and Engi-
neering Research Council of Canada and the Ontario Research Fund.

9. REFERENCES
[1] R. Agrawal, S. Chaudhuri, A. Das, and V. R. Narasayya. Automating

Layout of Relational Databases. In ICDE, pages 607–618, 2003.
[2] I. Ahmad, K. Karlapalem, Y.-K. Kwok, and S.-K. So. Evolutionary

Algorithms for Allocating Data in Distributed Database Systems.
Distributed and Parallel Databases, 11(1):5–32, 2002.

[3] A. Alba, V. Bhagwan, M. Ching, A. Cozzi, R. Desai, D. Gruhl,
K. Haas, L. Kato, J. Kusnitz, B. Langston, F. Nagy, L. Nguyen,
J. Pieper, S. Srinivasan, A. Stuart, and R. Tang. A Funny Thing
Happened on the Way to a Billion... IEEE Data Engineering Bulletin,
31(4):27–36, 2006.

[4] P. A. Alsberg and J. D. Day. A Principle for Resilient Sharing of
Distributed Resources. In ICSE, pages 562–570, 1976.

[5] G. M. Amdahl. Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities. In AFIPS, pages
483–485, 1967.

[6] R. R. Amossen. Vertical Partitioning of Relational OLTP Databases
Using Integer Programming. In ICDEW, pages 93–98, 2010.

[7] C. Amza, A. L. Cox, and W. Zwaenepoel. Distributed Versioning:
Consistent Replication for Scaling Back-End Databases of Dynamic
Content Web Sites. In Middleware 2003, pages 282–304. Springer
Berlin Heidelberg, 2003.

[8] P. M. G. Apers. Data Allocation in Distributed Database Systems.
ACM Transactions on Database Systems, 13(3):263–304, 1988.

[9] L. A. Barroso and U. Hölzle. The Case for Engergy-Proportional
Computing. IEEE Computer, 40(12):33–37, 2007.

[10] H.-G. Beyer. Theory of Evolution Strategies. Springer Berlin /
Heidelberg, 2001.

[11] B. Bhattacharjee, M. Canim, C. A. Lang, G. A. Mihaila, and K. A.
Ross. Storage Class Memory Aware Data Management. IEEE Data
Engineering Bulletin, 33(4):35–40, 2010.

[12] A. Borodin and R. El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[13] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems.
Society for Industrial and Applied Mathematics, 2009.

[14] B. Calder, C. Krintz, S. John, and T. Austin. Cache-Conscious Data
Placement. SIGOPS Operation System Review, 32(5):139–149, 1998.

[15] M. Canim, B. Bhattacharjee, G. A. Mihaila, C. A. Lang, and K. A.
Ross. An Object Placement Advisor for DB2 Using Solid State
Storage. PVLDB, 2(2):1318–1329, 2009.

[16] E. Cecchet. RAIDb: Redundant Array of Inexpensive Databases. In
ISPA, pages 115–125, 2004.

[17] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible
Database Clustering Middleware. In USENIX, 2004.

[18] S. A. Ceri, M. Negri, and G. Pelagatti. Horizontal Data Partitioning in
Database Design. In SIGMOD, pages 128–136, 1982.

[19] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation
Algorithms for Bin Packing: A Survey. In D. S. Hochbaum, editor,
Approximation Algorithms for NP-Hard Problems, chapter 2. PWS
Publishing Company, 1996.

[20] G. Copeland, W. Alexander, E. Boughter, and T. Keller. Data
Placement in Bubba. SIGMOD Record, 17(3):99–108, 1988.

[21] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: A
Workload-Driven Approach to Database Replication and Partitioning.
PVLDB, 3(1-2):48–57, 2010.

[22] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters. CACM, 51(1):107–113, 2008.

[23] D. J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. B. Kumar,
and M. Muralikrishna. GAMMA - A High Performance Dataflow
Database Machine. In VLDB, pages 228–237, 1986.

[24] S. Elnikety, S. Dropsho, and F. Pedone. Tashkent: Uniting Durability
with Transaction Ordering for High-Performance Scalable Database
Replication. In SIGOPS/EuroSys, pages 117–130, 2006.

[25] S. Elnikety, S. Dropsho, and W. Zwaenepoel. Tashkent+:
Memory-Aware Load Balancing and Update Filtering in Replicated
Databases. In EuroSys, pages 399–412, 2007.

[26] S. Englert, J. Gray, T. Kocher, and P. Shah. A Benchmark of NonStop
SQL Release 2 Demonstrating Near-Linear Speedup and Scaleup on
Large Databases. Technical Report 89.4, Tandem Computers Inc.,
1989.

[27] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Systems. In
VLDB, pages 444–455. VLDB, 2004.

[28] J. Gray. Why Do Computers Stop and What Can be Done About It?
Technical Report 85.7, Tandem Computers, 1985.

[29] J. O. Hauglid, N. H. Ryeng, and K. Nørvåg. DYFRAM: Dynamic
Fragmentation and Replica Management in Distributed Database
Systems. Distributed and Parallel Databases, 28(2):157–185, 2010.

[30] A. A. Helal, A. A. Heddaya, and B. B. Bhargava. Replication
Techniques in Distributed Systems. Springer, 1996.

[31] J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a
Database System. Foundations and Trends in Databases,
1(2):141–259, 2007.

[32] B. Kemme and G. Alonso. Don’t Be Lazy, Be Consistent: Postgres-R,
A New Way to Implement Database Replication. In VLDB, pages
134–143, 2000.

[33] H. W. Kuhn. The Hungarian Method for the Assignment Problem.
Naval Research Logistic, 52(1):7–21, 2005.

[34] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing High
Availability Using Lazy Replication. ACM Transactions on Computer
Systems, 10:360–391, 1992.

[35] A. Lakshman and P. Malik. Cassandra: a decentralized structured
storage system. SIGOPS Operating Systems Review, 44(2):35–40,
2010.

[36] J. Leverich and C. Kozyrakis. On the Energy (In)efficiency of Hadoop
Clusters. In HotPower, New York, NY, USA, 2009. ACM.

[37] J. Li, J. Naughton, and R. V. Nehme. Resource Bricolage for Parallel
Database Systems. PVLDB, 8:25–36, 2014.

[38] J. M. Milan-Franco, R. Jiménez-Peris, M. P. no Martínez, and
B. Kemme. Adaptive Middleware for Data Replication. In
Middleware, pages 175–194, 2004.

[39] P. Moscato. On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms. Technical Report
Caltech Concurrent Computation Program 158-79, California
Institute of Technology, Pasadena, CA, USA, 1989.

[40] J. Munkres. Algorithms for the Assignment and Transportation
Problems. Journal of the Society of Industrial and Applied
Mathematics, 5(1):32–38, 1957.

[41] O. Ozmen, K. Salem, J. Schindler, and S. Daniel. Workload-Aware
Storage Layout for Database Systems. In SIGMOD, pages 939–950,
2010.

[42] T. Özsu and P. Valduriez. Principles of Distributed Database Systems,
Third Edition. Springer New York, Upper Saddle River, NJ, USA,
2011.

[43] S. Papadomanolakis, D. Dash, and A. Ailamaki. Efficient Use of the
Query Optimizer for Automated Physical Design. In VLDB, pages
1093–1104. VLDB Endowment, 2007.

[44] M. Patino-Martínez, R. Jiménez-Peris, B. Kemme, and G. Alonso.
MIDDLE-R: Consistent Database Replication at the Middleware
Level. ACM Transactions on Computer Systems, 23(4):375–423,
2005.

[45] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware Automatic Database
Partitioning in Shared-nothing, Parallel OLTP Systems. In SIGMOD,
2012.

[46] C. Plattner, G. Alonso, and M. T. Özsu. Extending DBMSs with
Satellite Databases. VLDBJ, 17(4):657–682, 2008.

[47] A. Quamar, K. A. Kumar, and A. Deshpande. SWORD: Scalable
Workload-aware Data Placement for Transactional Workloads. In
EDBT, 2013.

[48] T. Rabl. Efficiency in Cluster Database Systems. PhD thesis,
University of Passau, 2011.

[49] P. Rubel, M. Gillen, J. Loyall, R. Schantz, A. Gokhale,
J. Balasubramanian, A. Paulos, and P. Narasimhan. Fault Tolerant
Approaches for Distributed Real-time and Embedded Systems. In
MILCOM, pages 1–8. IEEE, 2007.

[50] C. Rusu, A. Ferreira, C. Scordino, and A. Watson. Energy-Efficient
Real-Time Heterogeneous Server Clusters. In RTAS, pages 418–428,
2006.

[51] D. Sacca and G. Wiederhold. Database Partitioning in a Cluster of
Processors. ACM Transactions on Database Systems, 10(1):29–56,
1985.

[52] P. Scheuermann, G. Weikum, and P. Zabback. Data Partitioning and
Load Balancing in Parallel Disk Systems. VLDBJ, 7(1):48–66, 1998.

[53] H.-P. Schwefel and G. Rudolph. Contemporary Evolution Strategies.
In Proceedings of the Third European Conference on Advances in
Artificial Life, volume 929 of Lecture Notes in Computer Science,
pages 893–907, Berlin, Germany, 1995. Springer.

[54] S. Shankland. Google spotlights data center inner workings, May
2008. https://www.cnet.com/news/
google-spotlights-data-center-inner-workings/.

[55] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin. MapReduce and Parallel DBMSs: Friends or
Foes? CACM, 53(1):64–71, 2010.

[56] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil,
A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A Column-oriented
DBMS. In VLDB, pages 553–564. VLDB Endowment, 2005.

[57] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell,
C. Staelin, and A. Yu. Mariposa: A Wide-Area Distributed Database
System. VLDBJ, 5(1):48–63, 1996.

[58] A. Syropoulos. Mathematics of Multisets. In WMP, volume 2235 of
Lecture Notes in Computer Science, pages 347–358, Berlin, Germany,
2001. Springer.

[59] S. Voß. Meta-heuristics: The State of the Art. In ECAI, pages 1–23,
2001.

[60] E. Zamanian, C. Binnig, and A. Salama. Locality-aware partitioning
in parallel database systems. In SIGMOD, pages 17–30, 2015.

APPENDIX
A. COMPLETE EXAMPLE

Consider the heterogeneous allocation example in Figure 7. It
contains 7 query classes: 4 reads and 3 updates. The backends have
different processing powers, while B1 and B2, each process 30%,
B3 and B4 each process 20%. For the sake of simplicity, we per-
form table-based classification and, thus, no partitioning and con-
sider each table to have the same size of 1 unit.

First, the set of query classes, C∗, that have to be allocated ex-
plicitly is calculated. Since all fragments in update classes are also
referenced in read classes, only read classes have to be explicitly
allocated. Hence, C∗ = {Q1,Q2,Q3,Q4}. This set is sorted ac-
cording to the weight it will produce on a backend multiplied with
the size of all tables that need to be allocated. This is the weight
of the query class itself and all referenced updates. For Q1, this is
weight(Q1)+weight(U1)=28%. This is multiplied with the size of
tables, resulting in the following list: C= (Q4,Q2,Q1,Q3). While
Q2 andQ4 have the same weight to be allocated,Q4 has two tables
and, thus, size 2. The algorithm uses the auxiliary lists currentLoad,
scaledLoad, and restWeight. Their initial status is as follows:

currentLoad=(B1 :0,B2 :0,B3 :0,B4 :0) (31)

scaledLoad=(B1 :0.3,B2 :0.3,B3 :0.2,B4 :0.2) (32)

restWeight=(Q1 :0.24,Q2 :0.2,Q3 :0.2,Q4 :0.16) (33)

In the main loop, query class Q4, which initially is in C, is pro-
cessed first. The difference to each backend is calculated, which is 0
for all backends, since all are empty. In the next step, all fragments
of Q4 and its updates (i.e., U1 and U2) are allocated to B1. The
resulting allocation matrix is:

A B C

B1 1 1 0
B2 0 0 0
B3 0 0 0
B4 0 0 0

The load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 0% 0% 0% 0% 4% 10% 0% 14%
B2 0% 0% 0% 0% 0% 0% 0% 0%
B3 0% 0% 0% 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0% 0% 0% 0%

A

B1 25%

BB

B2 25%

A

B3 25%

C

B4 25%

A B 16%Q4

C 20%Q3

B 20%Q2

A 24%Q1

C 6%U3

B 10%U2

A 4%U1

B1 30%

B C

B2 30%

A

B3 20% B4 20%

A B C

Figure 7: Optimal Update Aware Allocations on Homogeneous
Backends (Above) and Heterogeneous Backends (Below)

The list currentLoad is updated to currentLoad =(B1 : 0.14,B2 :
0,B3 : 0,B4 : 0). Since Q4 is a read query class, as much of the
remaining weight as possible is allocated toB1. In this case, it is all
weight ofQ4. currentLoad is updated, currentLoad=(B1 :0.3,B2 :
0,B3 :0,B4 :0) and the new load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 0% 0% 0% 16% 4% 10% 0% 30%
B2 0% 0% 0% 0% 0% 0% 0% 0%
B3 0% 0% 0% 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0% 0% 0% 0%

The allocation matrix does not change. SinceQ4 is completely al-
located, it is removed from C. Hence, restWeight does not need to be
updated. At the end of the loop, C is sorted again: C=(Q2,Q1,Q3).
In the next execution of the loop,Q2 is allocated. The differences to
all backends are calculated: (Q2,B1) :∞,(Q2,B2) : 0,(Q2,B3) :
0,(Q2,B4) : 0. Fragments referenced byQ2 and U2 are allocated to
B2. The resulting allocation matrix is:

A B C

B1 1 1 0
B2 0 1 0
B3 0 0 0
B4 0 0 0

All load of the updates (U2) is allocated toB2, and since there still
is enough load capacity forQ2, it is also completely allocated toB2.
currentLoad is updated to currentLoad = (B1 : 0.3,B2 : 0.3,B3 :
0,B4 :0). The new load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 0% 0% 0% 16% 4% 10% 0% 30%
B2 0% 20% 0% 0% 0% 10% 0% 30%
B3 0% 0% 0% 0% 0% 0% 0% 0%
B4 0% 0% 0% 0% 0% 0% 0% 0%

Now, Q2 is completely allocated and is removed from C. After
sorting, C becomes C = (Q1,Q3). In the next iteration of the loop,
Q1 is allocated. The differences are: (Q1, B1) : ∞, (Q1, B2) :
∞,(Q1,B3) : 0,(Q1,B4) : 0. Therefore, all updates and as much
weight as possible ofQ1 is allocated toB3. The resulting allocation
matrix is:

A B C

B1 1 1 0
B2 0 1 0
B3 1 0 0
B4 0 0 0

Since the sum of the weights of Q1 and its related update class
U1 is higher than scaledLoad of B3, it is not completely allocated.
restWeight is updated to restWeight = (Q1 : 0.08,Q2 : 0.2,Q3 :
0.2,Q4 : 0.16). The restWeight of Q2 and Q4 were not updated,
since they are not used anymore. The resulting load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 0% 0% 0% 16% 4% 10% 0% 30%
B2 0% 20% 0% 0% 0% 10% 0% 30%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 0% 0% 0% 0% 0% 0%

Q1 was not completely allocated and, hence, it is not removed
from C. The result of the sorting is C=(Q3,Q1). Q3 is allocated to
backendB4. Again, it cannot be completely allocated. Lists current-
Load and restWeight are updated and the resulting allocation matrix
is:

A B C

B1 1 1 0
B2 0 1 0
B3 1 0 0
B4 0 0 1

The resulting load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 0% 0% 0% 16% 4% 10% 0% 30%
B2 0% 20% 0% 0% 0% 10% 0% 30%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 14% 0% 0% 0% 6% 20%

Like Q1, Q3 was not allocated completely and therefore it re-
mains in C. The result of sorting is: C = (Q1,Q3). Since all back-
ends are now at their maximum capacity, the relative capacity has to
be scaled. This is done in relation to the original size of query class
Q1. Each backend is scaled so that it could hold a relative portion of
the query class. ForB1 this is:

scaledLoad(B1)=currentLoad(B1)+load(B1)·weight(Q1)=0.372
(34)

The updated scaledLoad is scaledLoad=(B1 :0.372,B2 :0.372,B3 :
0.248,B4 :0.248). The differences forQ1 are: (Q1,B1) :0,(Q1,B2) :
size(A),(Q1,B3) : 0,(Q1,B4) : size(A). Hence, as much weight
of Q1 as possible is allocated to B1. Again, it cannot be com-
pletely allocated. The resulting restWeight is: restWeight = (Q1 :
0.008,Q2 : 0.2,Q3 : 0.06,Q4 : 0.16). List currentLoad is updated to
currentLoad = (B1 : 0.372,B2 : 0.3,B3 : 0.2,B4 : 0.2). Q2 stays in
C. The allocation matrix has not changed; the new load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 7.2% 16% 0% 0% 4% 10% 0% 37.2%
B2 0% 20% 0% 16% 0% 10% 0% 30%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 14% 0% 0% 0% 6% 20%

ForQ3, the differences are: (Q3,B1) :∞,(Q3,B2) :size(C),(Q3,B3) :
size(C),(Q3,B4) : 0. Therefore, Q3 is allocated to B4. The rest-
Weight of Q3 is 0.06. It cannot be allocated completely to B4.
The resulting restWeight and currentLoad are: restWeight = (Q1 :
0.008,Q2 : 0.2,Q3 : 0.012,Q4 : 0.16) and currentLoad = (B1 :
0.372,B2 : 0.3,B3 : 0.2,B4 : 0.248). The allocation matrix has not
changed; the new load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 7.2% 0% 0% 16% 4% 10% 0% 37.2%
B2 0% 20% 0% 0% 0% 10% 0% 30%
B3 16% 0% 0% 0% 4% 0% 0% 20%
B4 0% 0% 18.8% 0% 0% 0% 6% 24.8%

After sorting, Q1 is allocated. The differences are: (Q1,B1) :
∞,(Q1,B2) : size(A),(Q1,B3) : 0,(Q1,B4) :∞. Therefore, it is
completely allocated to backendB3 and, thus, removed fromC. The
resulting load matrix is:

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 7.2% 0% 0% 16% 4% 10% 0% 37.2%
B2 0% 20% 0% 0% 0% 10% 0% 30%
B3 16.8% 0% 0% 0% 4% 0% 0% 20.8%
B4 0% 0% 18.8% 0% 0% 0% 6% 24.8%

Finally, onlyQ3 remains. The differences are: (Q3,B1) :∞,(Q3,B2) :
size(C),(Q3,B3) : size(C),(Q3,B4) :∞. It is allocated to back-
end B2. First, the update class U3 is allocated to B2. Since the
remaining capacity ofB2 is enough,Q3 is completely allocated and
the algorithm terminates. The resulting allocation and load matrices
are:

A B C

B1 1 1 0
B2 0 1 1
B3 1 0 0
B4 0 0 1

Q1 Q2 Q3 Q4 U1 U2 U3 Overall
B1 7.2% 0% 0% 16% 4% 10% 0% 37.2%
B2 0% 20% 1.2% 0% 0% 10% 6% 37.2%
B3 16.8% 0% 0% 0% 4% 0% 0% 20.8%
B4 0% 0% 18.8% 0% 0% 0% 6% 24.8%

B. OPTIMAL ALLOCATION
Based on the formal definition of the allocation presented in Sec-

tion 3, a linear program is derived that computes an optimal alloca-
tion. The required constraints are represented as matrix. The alloca-
tion matrixA∈{0,1}|B|×|F | shows which data fragment is allocated
to which backend.

A :

{
{1,..,|B|}×{1,..,|F |}→{0,1}

(i,j) 7→aij
(35)

To express the load distributions of the query classes, two distribu-
tion matrices are used, LQ∈ [0,1]|B|×|CQ| and LU ∈ [0,1]|B|×|CU |.

LQ :

{
{1,..,|B|}×{1,..,|CQ|}→ [0,1]

(i,k) 7→ lik
(36)

LU :

{
{1,..,|B|}×{1,..,|CU |}→ [0,1]

(i,k) 7→ l′ik
(37)

To ensure that all query classes are allocated, the Constraints 9
and 11 are satisfied. They are specified as follows:

∀Ck∈CQ,lik∈LQ :

|B|∑
i=1

lik =weight(Ck) (38)

∀Ck∈CU ,l′ik∈LU :

|B|∑
i=1

l′ik≥weight(Ck) (39)

Helper variables are needed to ensure that each update class is
assigned to all backends, where a query class with the same data
references is allocated. Two matrices of helper variables are defined
HQ for read query classes and HU for update classes:

HQ :

{
{1,..,|B|}×{1,..,|CQ|}→{0,1}

(i,k) 7→hik

, hik =

{
1, if lik>0

0, else
(40)

An update helper variable h′ik must also be 1 if a read query class
m is allocated to backend i that references the same data fragment
as update query class k:

HU :

{
{1,..,|B|}×{1,..,|CU |}→{0,1}

(i,k) 7→h′ik

h′ik =

1, if l′ik>0

1, if ∃lim∈LQ : lim>0 andCk∈updates(Cm)

0, else

(41)

Using the helper variables, Constraint 10 is specified as follows:

∀Ck∈CU ,l′ik∈LU : l′ik =h′ik∗weight(Ck) (42)

The load constraints of the backends must be considered. Accord-
ing to Equation 15, this can be expressed using the factor scale:

∀Bi∈B,lik∈LQ,l
′
ik∈LU :

|CQ|∑
k=1

lik+

|CU |∑
m=1

l′im≤scale∗load(Bi)

(43)
Finally, all fragments which are referenced by a read query class

have to be allocated to the backends where the query class is allo-
cated:

∀Ck∈CQ,∀Bi∈B :
∑

j:fj∈Ck

aij≥|Ck|∗hik (44)

The same must be true for the fragments referenced by update
query classes:

∀Ck∈CU ,∀Bi∈B :
∑

j:fj∈Ck

aij≥|Ck|∗h′ik (45)

A throughput optimal allocation can be found by minimizing the
factor scale. The definitions above can be directly used by a solver.
To find an allocation with minimal space requirements, a second
linear program is formulated including the previously computed op-
timal scale that minimizes the total allocated space.

C. K-SAFETY
In distributed systems, error rates are multiplied by the number of

components. Therefore, in large scale clusters, failures are a daily
business. For example, Google published numbers that revealed
each of their clusters of 1800 nodes had over 1000 machine failures
and thousands of hard disk failures in the first year [54]. Hence, dis-
tributed systems have to include mechanisms to deal with hardware
failures.

On the cluster level, the standard fault tolerance approach is re-
dundancy [28, 49]. Therefore, we present an extension to our al-
gorithm that introduces k-safety [56]. With k-safety, the algorithm
ensures that the loss of k backends can be tolerated. If each fragment
is allocated to at least k+1 backends, no data is lost if k backends
fail. However, to ensure that all queries can still be processed lo-
cally without a reallocation, each query class has to be allocated to at
least k+1 backends. The basis is still the CDBS processing model
introduced in Section 2; hence, updates can only be processed on
backends that have all referenced data. As a result, the independent
allocation of fragments that are updated is not possible. According
to equation 10, update query classes have to be allocated completely
to each backend.

In the read-only case, the introduction of k-safety has the draw-
back of increased space requirements. The theoretical speedup is
unaffected by the additional replicas. To the contrary, additional
replicas allow for a more flexible load balancing, especially, if the
load is slightly varying. In practice, however, the additional replicas
will result in a less fragmented schema and, hence, larger relations.
In some cases, especially, for large relations, this will reduce the per-
formance due to an increased cache miss rate. For the update sensi-
tive case, replication reduces performance, if the replicas introduce
replicated updates. The formal definitions and algorithms presented
before can easily be adapted. First, we explain the extensions for the
allocation of k+1 replicas of each fragment for the read-only case
and then the allocation of each query class to k+1 backends for both

cases. Since our processing model enforces local execution of query
classes, k-safety of data fragments is not enough to ensure that a
system is still capable of processing all queries. Hence, we present a
second definition ofk-safety which ensures that a CDBS can tolerate
the loss of k backends and still process all incoming queries.

C.1 Redundant Fragments
The independent replication of fragments without replicating com-

plete query classes is in general only possible for read-only access
of data. In the presence of updates, the read-only fragments can still
be replicated without considering the query classes. We do not elab-
orate on this option, since the approach is a straightforward com-
bination of fragment and query class replication. If k + 1 copies
of each fragment have to be allocated, the following constraint are
introduced to the formal definition in Section 3.2:

∀f ∈F :
∑

{B∈B|f∈fragments(B)}

1≥k+1 (46)

The equation ensures that each fragment is allocated at least k+1
times. Without further restrictions, a straightforward solution in the
read-only case is to place fragments that have to be further allocated
to the first backends to which they are not already allocated. To
ensure a better distribution of the additional data, a randomized ap-
proach will distribute fragments more evenly. In the update sensitive
case, only fragments that are never updated are freely placed. The
placement of fragments with updates is part of the optimization goal.
We introduce an extended algorithm for this case below.

C.2 Redundant Query Classes
To ensure that the CDBS is fully operational after the loss of k

backends, each query class has to be allocated to at least k+1 back-
ends. In the formal definition (see Section 3.2), the following con-
straint ensures k-safety:

∀C∈C :
∑
B∈B

{
1, if assign(C,B)>0

0, else
≥k+1 (47)

Since replicated updates increase the workload and, thus, poten-
tially reduce the overall throughput, the replicated query classes are
treated like other query classes and are allocated accordingly. This
can be done by introducing a new set Ck, which contains the query
classes that have to be further replicated. Initially, Ck is empty.
Whenever a query classC∈CQ is completely allocated, the number
of backends that it has been allocated to, is counted and stored in
replicas and if replicas<k+1, then k+1−replicas copies ofC
are added to C and Ck =Ck∪{C}. This is done by the pseudo-code
given in Algorithm 3.

35 B←{B∈B|C\fragments(B)=∅};
36 replicas←|B|;
37 if replicas<k+1 then
38 C←C∪((k+1−replicas)·C;
39 Ck =Ck∪{C};

Algorithm 3: Adding Missing Replicas of Query Classes

These replicated queries all have no weight, except for the update
classes that have to be additionally allocated. Hence, they can be
treated like update classes and be allocated each to a single backend.
If the weight of the additional updates overload the backend, the
scaledLoad has to be adapted, hence, the condition of the if state-
ment in Line 20 is altered to C ∈ CU ∨C ∈ Ck. Finally, it has to

be assured that replicated query classes are not allocated to back-
ends, which already contain a replica. This can be done by setting
the difference to∞. To ensure that all update classes are allocated
k+ 1 times, those that are not allocated with query classes have to
be added k+ 1 times to C. The complete pseudo-code is given in
Algorithm 4.

Input: Classification C, set of empty backendsB, degree of redundancy k+1
Output: Heuristic allocationB

1 C∗←CQ∪{CU ∈CU |@CQ∈CQ :CU∩CQ 6=∅};
2 Ck←{CU ∈CU |@CQ∈CQ :CU∩CQ 6=∅};
3 C← sort C∈C∗ descending to

weight(C∪updates(C))×size(C∪updates(C));
4 currentLoad(B)←0;
5 scaledLoad(B)← load(B);
6 restWeight(C)←weight(C);

7 while C∈C do
8 if all backends are full then
9 foreach B∈B do

10 scaledLoad(B)←currentLoad(B)+load(B)·weight(C);
11 foreach B∈B do
12 if (currentLoad(B)= scaledLoad(B))∨((assign(B,C)>

0)∧C∈Ck) then
13 difference(C,B)←∞;
14 else if currentLoad(B)=0 then
15 difference(C,B)←0;
16 else
17 difference(C,B)← size((C∪updates(C))\fragments(B));
18 B←B∈B with difference(C,B) minimal;
19 fragments(B)← fragments(B)∪C∪updates(C);
20 currentLoad(B)←

currentLoad(B)+weight(updates(C))−updateWeight(B,C);
21 if (C∈CU)∨(C∈Ck) then
22 if currentLoad(B)> scaledLoad(B) then
23 scaledLoad(B)←currentLoad(B);
24 C←C\{C};
25 else
26 if currentLoad(B)≥ scaledLoad(B) then
27 scaledLoad(B)←currentLoad(B)+load(B)·weight(C);
28 if restWeight(C)> scaledLoad(B)−currentLoad(B) then
29 restWeight(C)←

restWeight(C)−(scaledLoad(B)−currentLoad(B));
30 currentLoad(B)← scaledLoad(B);
31 else
32 currentLoad(B)←currentLoad(B)+restWeight(C);
33 C←C\{C};
34 B←{B∈B|C\fragments(B)=∅};
35 replicas←|B|;
36 if replicas<k+1 then
37 C←C∪((k+1−replicas)·C);
38 Ck=Ck∪{C};
39 sort(C) descending to restWeight and size;

40 returnB

Algorithm 4: Greedy Allocation Algorithm withK-Safety

The algorithm fork-safety works similar to the original algorithm.
The first difference is the generation of the multi-set Ck in Line 2; it
is the set of update classes that need to be explicitly allocated k ad-
ditional times. While update classes and replicated query classes are
allocated as before, we additionally add as many replicas of the read
query classes as are still required to C after the first full allocation.
This is done as shown in the excerpt in Algorithm 3. Apart from the
greedy heuristic, also, the meta heuristic has to be adapted, due to
space limitations, we do not discuss this extension here. Replicating
every data fragment multiple times reduces the probability of a data
loss enormously.

