
Benchmarking Data Flow Systems
for Scalable Machine Learning

Christoph Boden, Andrea Spina, Tilmann Rabl, Volker Markl
TU Berlin

firstname.lastname@tu-berlin.de

ABSTRACT
Distributed data flow systems such as Apache Spark or Apache
Flink are popular choices for scaling machine learning algo-
rithms in production. Industry applications of large scale
machine learning such as click through rate prediction rely
on models trained on billions of data points which are both
highly sparse and high dimensional. Existing Benchmarks
attempt to assess the performance of data flow systems such
as Apache Flink, Spark or Hadoop with non-representative
workloads such as WordCount, Grep or Sort. They only
evaluate scalability with respect to data set size and fail to
address the crucial requirement of handling high dimensional
data.

We introduce a representative set of distributed machine
learning algorithms suitable for large scale distributed set-
tings which have close resemblance to industry-relevant ap-
plications and provide generalizable insights into system per-
formance. We implement mathematically equivalent ver-
sions of these algorithms in Apache Flink and Apache Spark,
tune relevant system parameters and run a comprehensive
set of experiments to assess their scalability with respect to
both: data set size and dimensionality of the data. We eval-
uate the systems for data up to four billion data points 100
million dimensions. Additionally we compare the perfor-
mance to single-node implementations to put the scalability
results into perspective.

Our results indicate that while being able to robustly scale
with increasing data set sizes, current state of the art data
flow systems are surprisingly inefficient at coping with high
dimensional data, which is a crucial requirement for large
scale machine learning algorithms.

Keywords
Distributed Systems, Machine Learning, Benchmarking, Apache
Flink, Apache Spark

1. INTRODUCTION AND MOTIVATION
In Big Data Analytics, the MapReduce [6] paradigm, pop-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
BeyondMR Workshop @ SIGMOD ’17 May 19, 2017, t.b.d.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ularized by its open-source implementation Hadoop [10] has
been widely adopted as a solution to robustly scale data-
intensive applications to very large data sets on clusters of
commodity hardware. However it has also been established
that Hadoop MapReduce is inefficient at executing iterative
workloads such as distributed machine learning algorithms.
[24, 13] This sparked the development of a multitude of novel
approaches and systems aiming to improve the performance
and ease of implementation of more complex workloads such
as distributed machine learning algorithms. We consider the
two most prominent representative systems which managed
to morph from research prototypes into production systems
enjoying widespread adoption in industry:

Apache Spark [27] introduced the concept of data-parallel
transformations on Resilient Distributed Datasets (RDDs)
[29]: read-only collections of data partitioned across nodes,
which can be cached and recomputed in case of node failures,
to support the efficient execution of iterative algorithms.

Apache Flink [8, 5] (formerly Stratosphere [1]) intro-
duced a general data flow engine supporting the flexible ex-
ecution of a more rich set of operators such as map, reduce
and co-group as well as a native operator for iterative com-
putations. Flink jobs are compiled and optimized by a cost-
based optimizer before being scheduled and executed by the
distributed streaming data flow engine. This distributed
runtime allows for pipelining of data.

While these second generation big data analytics systems
have been shown to outperform Hadoop for canonical it-
erative workloads[29, 7], it remains an open question how
they perform in executing large scale machine learning algo-
rithms.

Consider the prominent problem of click-through rate (CTR)
prediction for online advertisements, a crucial building block
in the multi-billion dollar online advertising industry, as an
example for large scale machine learning. To maximize rev-
enue, platforms serving online advertisements must accu-
rately, quickly and reliably predict the expected user be-
haviour for each displayed advertisement. These prediction
models are trained on hundreds of terabytes of data with
hundreds of billions of training samples . The data tends to
be very sparse (10-100 non-zero features) but at the same
time very high dimensional (up to 100 billion unique features
[4, 20, 23]).

In the context of scalable, distributed machine learning,
there are thus multiple dimensions of scalability which are
of particular interest:

1. Scaling the Data: scaling the training of (super-
vised) machine learning models to extremely large data
sets (in terms of the number of observations contained)
is probably the most well established notion of scalabil-
ity in this context as it has been shown that even sim-
ple models can outperform more complex approaches
when trained on sufficiently large data sets [11, 2].

2. Scaling the Model Size: many large scale machine
learning problems exhibit very high dimensionality. For
example, classification algorithms that draw on textual
data can easily contain 100 million dimensions or more,
models for click-through rate prediction for online ad-
vertisements can reach up to 100 billion dimensions
[4]. For these use cases, being able to efficiently han-
dle high dimensional models is a crucial requirement
as well.

3. Scaling the Number of Models: To tune hyper-
parameters many models with sightly different param-
eters are usually trained in parallel.

Ideally a system suited for scalable machine learning should
efficiently support all three of these dimensions. However
since scaling the number of models to be trained in parallel
is essentially an embarrassingly parallel problem1, we focus
on the first two aspects: scaling the data and scaling the
model dimensionality in our experiments.

We introduce a representative set of distributed machine
learning algorithms suitable for large scale distributed set-
tings which have close resemblance to industry-relevant ap-
plications and provide generalizable insights into system per-
formance. We implement mathematically equivalent ver-
sions of these algorithms in Apache Flink and Apache Spark,
tune relevant system parameters and run a comprehensive
set of experiments to assess their performance. Additionally
we explore efficient single-node and single threaded imple-
mentations of these machine learning algorithms in order to
investigate the overhead incurred due to the use of the JVM
and Scala as well as the distributed setting and to put the
scalability results into perspective as has been suggested by
[21].

Contrary to existing Benchmarks, which assess the per-
formance of Flink, Spark or Hadoop with non representative
workloads such as WordCount, Grep or Sort, we evaluate the
performance of these systems for scalable machine learning
algorithms.

Contributions. In order to solve problem of how to ob-
jectively and robustly assess and compare the performance
of distributed data processing platforms for machine learn-
ing workloads, we present the following major contributions:

1. We present a Distributed Machine Learning Bench-
mark for distributed data analytics systems, an in-
depth description of the individual algorithms, metrics
and experiments to assess the performance and scala-
bility characteristics of the systems for representative

1We do acknowledge that there exists significant optimiza-
tion potential in this dimension as well, as has recently been
pointed out by Kumar et al Model Selection Management
[14]. However, this requires the adaption if not redesign of
the data processing systems and is thus out of the scope of
this paper

machine learning workloads as well as a detailed anal-
ysis and discussion of a comprehensive experimental
evaluations.

2. To ensure reproducibility we provide our benchmark
algorithms on top of Apache Flink and Apache Spark
as open-source software implemented using the Peel
framework [9] for defining and executing experiments
for distributed systems and algorithms. By providing
simple reference implementations of a small set of core
algorithms, we want to make it easier for new software-
frameworks to compare themselves to existing frame-
works.

3. The results of our experimental evaluation indicate
that while being able to robustly scale with increasing
data set sizes, current state of the art data flow sys-
tems such as Apache Spark or Apache Flink struggle
with the efficient execution of machine learning algo-
rithms on high dimensional data, an issue which clearly
deserves further investigation.

2. OUTLINE
The rest of this paper is structured as follows: in Section 3

we provide the necessary systems background about Apache
Spark and Apache Flink as well as important parameters
that have to be set and tuned in each system. in Section 4 we
present a detailed discussion of the chosen machine learning
workloads and their implementations in the data flow sys-
tems. Section 5 introduces the metrics and experiments that
constitute the Benchmark and Section 6 provides concrete
results and a discussion of the comprehensive experimental
evaluation of the benchmark workloads and systems under
evaluation. In Section 7 we discuss related work in the area
of benchmarking distributed data processing systems before
we conclude and summarize our findings in Section 8

3. SYSTEMS BACKGROUND
In this section we provide a brief overview of the differ-

ent systems under evaluation as well as relevant parameter
settings.

3.1 Apache Spark
Apache Spark is a distributed big data analytics frame-

work centered around the concept of Resilient Distributed
Datasets (RDDs)[29]. A RDD is a distributed memory ab-
straction in the form of a read-only collection of objects
partitioned across a set of machines that can be rebuilt if a
partition is lost, thus providing fault tolerance.

RDDs provide an interface based on transformations (e.g.,
map(), filter() or join ()) and actions. Transformations
on RDDs are lazily evaluated, thus computed only when
needed e.g. by an action and can be pipelined. RDD ac-
tions (e.g. count(), reduce()) trigger the computation and
thus execution of transformations on RDDs. Fault tolerance
is provided by logging the transformations used to build a
dataset (its lineage) rather than the actual data. If a par-
tition of an RDD is lost, the RDD has enough information
about how it was derived from other RDDs to recompute
just that partition. Whenever a user runs an action on
an RDD, the Spark scheduler examines that RDD’s lineage
graph to build a directed acyclic graph (DAG) of so called
stages to execute.

Users can control two main aspects of RDDs: persistence
and partitioning: Users can indicate which RDDs they will
reuse and would thus like to persist in memory and choose
a StorageLevel for them (e.g., MemoryOnly). Spark keeps
persistent RDDs in memory by default, but it can spill them
to disk if there is not enough RAM. Users can also force a
custom partitioning to be applied to an RDD, based on a
key in each record.

3.2 Apache Flink
Apache Flink, formerly known as Stratosphere [1, 5], is

essentially a streaming data flow engine designed to process
both stream and batch workloads. The batch processing
part is centered around the concept of a DataSet - a dis-
tributed collection comprising the elements of the data set
to be processed. Users can specify functional transforma-
tions on these DataSets e.g. map(), fiter(), reduce().

Flink programs are also executed lazily: the data loading
and transformations do not happen immediately. Rather,
each operation is created and added to the program’s plan.
The operations are only executed when one of the execute()
methods is invoked on the ExecutionEnvironment object.

Analogous to query optimization in databases, the pro-
gram is transformed to a logical plan and then compiled
and optimized by a cost-based optimizer, which automati-
cally chooses an execution strategy for the program based on
various parameters such as data size or number of machines
in the cluster. The final physical plan is then scheduled
and executed by the distributed streaming data flow engine,
which is capable of pipelining the data.

Apache Flink does not allow the user to specify DataSets

to be cached in memory, but it does provide its very own na-
tive iterations operator, for specifying iterative algorithms.
The Flink optimizer detects this and adds caching operators
to the physical plan, ensuring that loop-invariant data is not
re-read from the distributed file system in each iteration. In
contrast, Spark implements iterations as regular for-loops
and executes them by loop unrolling.

3.3 Parameter Configuration

0

50

100

150

200

0 0,2 0,4 0,6 0,8 1

R
u

n
ti

m
e

 in
 M

in
u

te
s

Data Set Size (linear scaling factor)

MEMORY_ONLY

MEMORY_ONLY_SER

MEMORY_AND_DISK

MEMORY_AND_DISK_SER

Figure 1: L2 regularized logistic regression training
in Apache Spark with increasing data set size for
a fixed number of nodes and different RDD Stor-
ageLevels.

While Apache Flink and Spark are both data flow sys-
tems, the architecture and configuration settings that have
to be set and potentially tuned by the user differ quite sub-
stantially between the two systems.

Parallelism. In a Flink cluster, each node runs a TaskMan-

ager with a fixed number of processing slots, generally pro-
portional the number of available CPUs per node. Flink
executes a program in parallel by splitting it into subtasks
and scheduling these subtasks to individual processing slots.
Once set, the number of slots serves as the maximum of pos-
sible parallel tasks and is used as the default parallelism of
all operators. We follow the Flink recommendation2 and
set the number of task slots equal to the number of cores
available in the cluster. This generally triggers an initial re-
partitioning phase in a job, as the number of HDFS blocks
is rarely equivalent to the desired number of subtasks.

In Spark, each worker node runs Executors with the abil-
ity to run executor.cores number of tasks concurrently.
The actual degree of parallelism (number of tasks per stage)
is furthermore determined by the number of partitions of
the RDD (number of HDFS blocks the input data set by
default), where the resulting parallelism is given by:

min (numExecutors× coresPerExecutor, numPartitions)

Following the Spark recommendation3 we set executor.cores
equal to the number of cpu cores available in the cluster and
set the parallelism (number of RDD partitions) to 3 times
the number of CPU cores available in the cluster.

Caching. Contrary to Flink, Spark allows for the explicit
caching of RDDs in Memory. For this, the user can choose
one of four different Storage Levels:
MEMORY_ONLY stores the RDD as deserialized Java objects

in the JVM. If the RDD does not fit in memory, some par-
titions will not be cached and will be recomputed on the fly
each time they are needed.
MEMORY_AND_DISK stores the RDD as deserialized Java ob-

jects in the JVM. However, if the RDD does not fit in mem-
ory, partitions that do not fit are stored on disk, and read
from there when ever they are needed.
MEMORY_ONLY_SERIALIZED: the RDD is stored as serialized

Java objects (one byte array per partition). This is gener-
ally more space-efficient than deserialized objects but more
CPU-intensive to read.
MEMORY_AND_DISK_SERIALIZED: the RDD is stored as seri-

alized Java objects (one byte array per partition), but par-
titions that do not fit into memory are spilled to disk in-
stead of recomputing them on the fly each time they are
needed. Note that since the partitions which are spilled to
disk are also written out in serialized form, the disk footprint
is smaller than in the MEMORY_AND_DISK case.

In order to understand the impact of the different Storage
Levels for a typical machine learning workload, we run ten
iterations of gradient descent training of a l2 regularized
logistic regression model (details in Section 4) on the criteo
data set (details in Section 5.4) for different StorageLevel

settings on 30 compute nodes (details in Section 5.3).
Figure 1 shows the runtime results of our evaluation for in-

creasing input data set sizes.It is apparent, that the RDDs

2https://ci.apache.org/projects/flink/
flink-docs-release-1.0/setup/config.html\
#configuring-taskmanager-processing-slots
3https://spark.apache.org/docs/latest/tuning.html\
#level-of-parallelism

no longer fit into the combined memory of the cluster for
the two non-serialized StorageLevels above data set size
0.2. Performance significantly degrades, as partitions that
do not fit into memory have to be re-read from disk or
re-computed, where re-computation (MEMORY_ONLY) seems
to be more expensive than re-reading partitions from disk
(MEMORY_AND_DISK). The two serialized strategies show sig-
nificantly better performance after a data set size of 0.2, as
the serialized RDD partitions are more compact and still
fit into the combined memory up until a data set size of
0.6. Beyond this point, partitions have to be re-read from
disk or re-computed as well, where once again the Stor-

ageLevel relying on re-reading partitions from disk per-
forms slightly better than the one that recomputes parti-
tions that do not fit into memory. Based on these results
we chose (MEMORY_ONLY_SERIALIZED) as the StorageLevel

for all subsequent benchmark experiments. It consistently
outperforms all other ones, except for very small data set
sizes (data set size 0.1-0.2) where it still shows comparable
performance to the non-serialized StorageLevels.

Apache Flink does not allow the user to cache DataSets

explicitly, but provides a native iteration operator which
prompts the optimizer to cache the data. We thus imple-
mented all benchmark algorithms with this operator.

Buffers. Network buffers are a critical resource of the
communication. They are used to buffer records before
transmission over a network, and to buffer incoming data
before dissecting it into records and handing them to the
application. In Flink the user can adjust both the number
and size of the buffers. While Flink suggests4 to use the
approximately

numCores2 × numMachines× 4

buffers, we encountered that a higher setting is advisably for
machine learning workloads.

Serialization By default, Spark serializes objects using
the java serialization framework, however Spark can also
use the Kryo library to serialize objects more quickly when
classes are registered. Flink on the other hand comes with its
own custom serialization framework which attempts to as-
sess the data type of user objects with help of the Scala com-
piler. and represent it via TypeInformation. Each TypeIn-

formation provides a serializer for the data type it repre-
sents. For any data type that cannot be identified as another
type, Flink returns a serializer that delegates serialization to
Kryo.

In order to ensure a fair assessment of the Systems under
test, decided to force both systems to use Kryo as a serial-
izer and provided custom serialization routines for the data
points in both Spark and Flink.

4. BENCHMARK WORKLOADS
In this section we outline the main algorithms that con-

stitute the benchmark workloads. As was laid out in the
introduction, our goal is to provided a fair and insightful
Benchmark which reflects the requirements of real-world ma-
chine learning applications that are deployed in production
and generates meaningful results.

4https://ci.apache.org/projects/flink/
flink-docs-release-1.0/setup/config.html#
configuring-the-network-buffers

4.1 Supervised learning
The goal in supervised learning is to learn a function fw

which can accurately predict the labels y ∈ Y for data points
x ∈ X given a set of labeled training examples (xi, yi). The
actual task of learning a model is to fit the parameters w
of the function fw based on the training data and a loss
function l (fw (x) , y). To avoid overfitting, a regularization
term Ω (w) that captures the model complexity is added to
the objective. Different parametrizations of the components
fw, l (fw (x) , y) and Ω (w) yield quite a variety of differ-
ent supervised learning algorithms including SVMs, LASSO
and RIDGE regression as well as logistic regression. For the
important problem of click-through rate prediction for on-
line advertisements, algorithms such as regularized logistic
regression are still the method of choice [20, 23].

Solvers. The most commonly used loss functions happen
to be both convex and differentiable, which guarantees the
existence of a minimizer ŵ. It also enables the application of
batch gradient-descent (BGD) as a solver. This algorithm
performs the following step using the gradient of the loss
until convergence:

w′ = w −

λ ∂

∂w
Ω (w) +

∑
(x,y)∈(X,Y)

∂

∂w
l (fw (x) , y)

We choose and implemented this solver, because it actually
represents the data flow and I/O footprint exhibited by a
wide variety of (potentially more complex) optimization al-
gorithms such as L-BFGS [17] or TRON [16].5

Implementation Rather than depending on existing ma-
chine learning library implementations, we implement all
learning algorithms from scratch, in order to ensure that
we analyze the performance of the underlying systems and
not implementation details. As a common linear algebra
abstraction we use the Breeze library 6 for numerical pro-
cessing.

In Flink we implement the batch gradient descent as
MapPartition functions, which compute the individual BGD
updates and pre-aggregate partial sums of gradients, which
are ultimately summed up in a global reduce step. This
turns out to be the more performant alternative to using
a map() to compute the gradients and summing them up
in a subsequent reduce() step during experimental evalua-
tion (See Figure 2). To efficiently iterate over the training
data set, we utilize Flink’s batch iterate() operator, which
feeds data back from the last operator in the iterative part
of the data flow to the first operator in the iterative part of
the data flow and thus attempts keep loop-invariant data in
memory. The modelt vector is distributed to the individual
tasks a broadcast variable.

In Spark we leverage the TreeAggregate() to perform the
batch gradient descent computation and update, aggregat-
ing the partial updates in a multi-level tree pattern. The
model vector is also distributed to the individual tasks as a
broadcast variable. This turnes out to be more robust for

5The recently proposed algorithm HOGWILD! [22] suggests
asynchronous stochastic gradient descent (SGD) solvers im-
plemented without any locking but rather permitting con-
flicting model updates still converge and thus provide a more
performant alternative to batch-type solvers. However nei-
ther Apache Spark nor Apache Flink are able to train models
asynchronously, thus we do not consider this approach.
6https://github.com/scalanlp/breeze

higher dimensionalities than a MapPartition implementa-
tion and more performant than a map() - reduce() imple-
mentation (See Figure 2).

4.2 Unsupervised learning
For unsupervised learning we choose to implement the

popular k-means clustering algorithm, which solves the fol-
lowing objective:

min

k∑
j=1

∑
i∈C

||xi − µj | |2

with the heuristic where k cluster centers are sampled from
the data set, the distance to each of these centroids, where µj

is the centroid of the j-th cluster, is computed for each data
point, every data point is assigned to its closest centroids,
and the centroids subsequently updated. While also exhibit-
ing the iterative nature like the supervised learning work-
load, k-means evaluates the effectiveness of the reduceByKey()
operator in Flink and the groupBy() and reduce() opera-
tor in Spark. Furthermore k-means is part of most related
work.

5. BENCHMARK DIMENSIONS AND SET-
TINGS

In this Section, we present the data generation strategies,
data sets, experiments and measurements that constitute
the Benchmark. Furthermore we provide the specification of
the hardware we relied upon for our experimental evaluation.

5.1 Scalability
Traditionally, in the context of high performance comput-

ing (HPC), scalability is evaluated in two different notions:
Strong Scaling: is defined as how the runtime of an

algorithm varies with the number of nodes for a fixed total
problem size.

Weak Scaling: is defined as how the runtime of an algo-
rithm varies with the number of nodes for a fixed problem
size per node, thus a data size proportional to the number
of nodes.

While these metrics have their merit in the evaluation of
scalability of distributed algorithms on distributed systems,
when it comes to scaling machine learning algorithms on dis-
tributed systems for real world uses cases, two other aspects
become the primary concern, namely:

Scaling the Data: How does the algorithm runtime be-
have when the size of the data (number of data points) in-
creases?

Scaling the Model: How does the algorithm runtime
behave when the size of the model (number of dimensions)
increases?

The main motivation for introducing distributed process-
ing systems into production environments is usually the abil-
ity to robustly scale an application with a growing produc-
tion workload (e.g. growing user base), by simply adding
more hardware nodes. However in the short run, the hard-
ware setup is usually fixed (assuming an on-premise solu-
tion). We thus need to introduce two new experiments to
adequately capture the desired scaling dimensions data and
model :

Experiment 1: Production Scaling: Measure the run-
time for training a model while varying the size of the train-
ing data set for a fixed cluster setup (model size fixed)

criteo part num data points raw size in GB
day0 195,841,983 46.35
day1 199,563,535 47.22
day2 196,792,019 46.56
day3 181,115,208 42.79
day5 172,548,507 40.71
day6 204,846,845 48.50
total 1,150,708,097 272.14

Table 1: Subset of the criteo data set used in the
experiments.

Experiment 2: Model Dimensionality Scaling: Mea-
sure the runtime for training a model on a fixed size cluster
setup (training data set size fixed)

In practice the ability to scale the number of models
i.e. to evaluate different hyperparameter settings is also a
relevant dimension, however since this is essentially an em-
barrassingly parallel task, we consider it outside the scope
of this benchmark.

5.2 Absolute Runtime and COST.
Next to analyzing the scalability properties of the systems

under test, we also measure and report the absolute runtimes
for a fixed data set size and compare these to the runtime of
single machine and single threaded implementations. McSh-
erry et.al. [21] introduced a new metric, called COST - the
Configuration that Outperforms a Single Thread), that de-
scribes the point when a distributed solution outperforms a
(competent) single threaded implementation. 7 Motivated
by this example, we also consider efficient single threaded
implementations of supervised machine learning algorithms
as s COST baseline, thereby providing a COST metric for
machine learning algorithms. We choose the LibLinear8

solver as an efficient C++ single thread implementation.
Experiment 3: Measure the runtime for training a model

while varying the number of machines and model size (keep-
ing the size of the training data set and) as well as the
runtime of a competent single-threaded implementation

Model Quality. As we focus on the training phase to
compare the performance, we validate that the prediction
accuracy as well as the resulting model weights of the im-
plementations is identical across systems in a separate test.
However we do consider this to be a prerequisite for the
above mentioned experiments and not an actual part of the
Benchmark.

5.3 Cluster Hardware.
We run our supervised and unsupervised learning bench-

mark experiments on the following homogeneous cluster nodes:
Quadcore Intel Xeon CPU E3-1230 V2 3.30GHz CPU with

8 hyperthreads, 16 GB RAM, 3x1TB hard disks (linux soft-
ware RAID0) which are connected via 1 GBit Ethernet NIC
via a HP 5412-92G-PoE+-4G v2 zl switch.

5.4 Data Sets.
7The authors show on the example of several graph algo-
rithms, that a single threaded implementation can com-
pete and, when optimized, often outperform distributed
frameworks. They therefore motivate to provide an single
threaded implementation when benchmarking distributed
systems.
8https://www.csie.ntu.edu.tw/~cjlin/liblinear/

We rely on generated data for the unsupervised learning
experiments. We sample 100 dimensional data from k Gaus-
sian distributions and add uniform random noise to the data,
similar to the data generation for k-means in Mahout[18] and
HiBench[12].

For the supervised learning experiments, we use parts of
the Criteo Click Logs9 data set. This dataset contains fea-
ture values and click feedback for millions of display ads
drawn from a portion of Criteo’s traffic over a period of
24 days. Its purpose is to benchmark algorithms for click-
through rate (CTR) prediction. It consists of 13 numeric
and 26 categorical features. In its entirety, the data set
spawns about 4 billion data points, has a size of 1.5 TB .
Our experiments are based on days 0,1,2,3,5 and 6 of the
data set.

As a pre-processing step we expand the categorical fea-
tures in the data set using the hashing trick. The hashing
trick vectorizes the categorical variables by applying a hash
function to the feature values and using the hash values as
indices. Potential collisions do not significantly reduce ac-
curacy in practice, they certainly do not alter the computa-
tional footprint of the training algorithm. This allows us to
control the dimensionality of the training data set via the
size of the length of the vector to be hashed into. Experi-
ments with fixed dimensionality were executed for d = 1000.
The subset based on days 0,1,2,3,5 and 6 results in a data
set of roughly 530 GB in size, when hashed to 1000 dimen-
sions. As collisions become less likely with higher dimen-
sional hash vectors, the data set sizes increases slightly with
higher dimensionality. However since the data set size is al-
ways identical for all systems, this effect does not perturb
our findings. Different data set sizes have been generated
by sub- und super-sampling the data. A scaling factor of
1.0 refers to the criteo subset as presented in Table 1 which
contains about 1.15 billion data points.

6. BENCHMARK RESULTS: EXPERIMENTS
AND EVALUATION

In this section we present the results of our experimental
evaluation of the presented systems for the different bench-
mark workloads. We ran all experiments using Flink 1.0.3
and Spark 1.6.2 in stand-alone mode.

6.1 Supervised Learning

6.1.1 Production Scaling
Figure 2 shows the runtimes for 5 iterations of batch gra-

dient descent learning of a l2 regularized logistic regres-
sion model. We evaluate different implementation strate-
gies (MapReduce, MapPartition and TreeAggregate) as in-
troduced in Section 4.1 in both Spark and Flink. We mea-
sure the runtime for different data set sizes by scaling the
criteo data set, which was hashed to 1000 dimensions.

While Flink strives to be declarative and to delegate the
choice of physical execution plans to the optimizer, this
experiment clearly shows that even for simple workloads
such as batch gradient descent, the choice of implementa-
tion strategy matters and has a noticeable effect on per-
formance for both Spark and Flink. Users must thus still
be aware of the performance implications of implementation

9http://labs.criteo.com/downloads/
download-terabyte-click-logs/

0

20

40

60

80

100

120

140

160

180

200

0 0,5 1 1,5 2 2,5 3 3,5 4

R
u

n
ti

m
e

 in
 M

in
u

te
s

Data Set Size (linear scaling factor)

Spark MapPartition

Spark MapReduce

Spark TreeAggregate

Flink MapPartition

Flink MapReduce

Figure 2: Production Scaling Experiment: We mea-
sure the runtime of different implementation strate-
gies for l2 regularized logistic regression on a fixed
set of 23 nodes for linearly growing data set sizes
with 1000 dimensions.

0

20

40

60

80

100

120

0 5 10 15 20 25

R
u

n
ti

m
e

 in
 M

in
u

te
s

Number of Nodes

Apache Spark

Apache Flink

Figure 3: Strong Scaling for different implementa-
tions of l2 regularized logistic regression in Spark
and Flink for 1000 dimensions and 530 GB.

choices in order to efficiently implement scalable machine
learning algorithms on these data flow systems. It can be
seen that the MapPartition based implementations, which
pre-aggregate the partial gradient sums in the user code, as
well as the TreeAggregate implementation in Spark outper-
form the MapReduce based implementation which rely on the
system to place combiners on map outputs to efficiently ag-
gregate the individual gradients. The slightly worse perfor-
mance of Flink is due to unfortunate use of a newer version
of the Kryo library, leading to constant re-building of cached
fields for the Breeze SparseVectors, which are aggregated in
the reduce phase. Overall however, all implementations on
all systems show the desired scaling behaviour and exhibit
linearly increasing runtime with increasing data set sizes. It
is also noteworthy that both Spark and Flink show seamless
out-of-core performance as the data set is scaled from mod-
erate 230 million up to about 4.6 billion data points. We
observe no performance degradation as the data set grows
beyond the size of the combined main memory of the 23

0

10

20

30

40

50

60

70

80

90

100

0 2000000 4000000 6000000 8000000 10000000

ru
n

ti
m

e
 in

 m
in

u
te

s

Dimensionality of the Model

Flink smal data set (0.2)

Flink large data set (0.8)

Spark small data set (0.2)

Spark large data set (0.8)

Figure 4: Scaling the Model: Runtimes for training
a l2 regularized logistic regression model of different
dimensions on 20 nodes. Results shown for two dif-
ferent data set sizes: small (about the size of main
memory) and large (significantly larger than main
memory).

compute nodes (which would be the case beyond a scaling
factor of 0.5).

6.1.2 Strong Scaling
Figure 3 shows the results of our strong scaling experi-

ments for the batch gradient descent workload for the criteo
data set hashed to 1000 dimensions. Figures 6 and 7 show
the performance details for a run with 25 nodes and Figures
8 and 9 for a run with three nodes. It is evident that while
Flink tends to run faster on smaller cluster configurations,
Spark has a slight edge on settings with many machines.
The resource consumption shows that on three nodes, both
system have to re-read significant portions of the data set
in each iteration. However starting at about ten nodes, the
amount of data read from disk per iteration continuously
decreases in Spark, while it remains more or less constant in
Flink. In the run with with 25 nodes depicted in Figures 6
and 7, Spark reads almost no data from disk at all, allowing
for much higher CPU utilization compared to Flink, which
is still I/O bound. This is most likely due to the different
architecture with respect to memory management. While
Spark schedules the tasks for each iteration separately, Flink
actually instantiates the entire pipeline of operators in the
plan a-priori and spreads the available memory amongst
all memory consuming operators (reducers), leaving signifi-
cantly less of the physically available main memory for the
iterative computation than in Spark. In the highly resource-
constrained setting of 2 or 3 nodes Flink’s memory manage-
ment and robust out of core performance actually leads to
superior performance compared to Spark though. In gen-
eral, both systems show the desired scaling behaviour which
ensures that growing production workloads can be handled
by adding more compute nodes, if the need arises.

6.1.3 Scaling Model Dimensionality.
As was described in the introduction, supervised learning

models in production are not only trained on very sparse
data set of massive size, but also tend to have a very high

0

1

2

3

4

5

6

7

8

10 100 1000 10000 100000 1000000 10000000100000000 1E+09

R
u

n
ti

m
e

 in
 M

in
u

te
s

Dimensionality of Model

LibLinear (Single Thread)

Spark 1 Node (4 Cores)

Flink 1 Node (4 Cores)

Spark 2 Nodes (8 Cores)

Flink 2 Nodes (8 Cores)

Figure 5: COST: Runtimes for training a l2 regular-
ized logistic regression model of different dimensions
different amounts of nodes for a small sub-sample
(approx. 4GB) of the criteo data set compared to a
single threaded implementation (LibLinear).

dimensionality. As it is computed from the sum of the sparse
gradients of all data points, the model is always a DenseVec-

tor whose size is directly proportional to its dimensionality.
In order to evaluate how well the systems can handle high
dimensional DenseVectors, which have to be broadcasted
after each iteration, we generate data sets of different di-
mensionality via adjusting the feature hashing in the pre-
processing step. Figure 4 show the result of these experi-
ments for two different data set sizes (a scaling factor of 0.2
and 0.8 of the criteo data set) for both Spark and Flink on
20 nodes. While the smaller data set has a total size com-
parable to the combined main memory of the 20 nodes, the
larger version is significantly larger than main memory thus
forcing the system to go out of core.

For the smaller data set (lower curves) both systems tend
to exhibit rather similar performance for lower model di-
mensionalities, however Spark runs become more and more
unstable, frequently failing starting at 5 million dimensions.
We did not manage to successfully run Spark jobs for models
with more than 8 million dimensions at all, since Spark fails
due to a lack of memory. Flink on the other hand robustly
scales to 10 million dimensions.

The situation becomes significantly worse for the larger
data set: Spark runtimes are severely longer that Flink’s,
and Spark does not manage to train models beyond 6 mil-
lion dimensions at all. Given the importance of being able
to train models with at least 100 million if not billions of
dimensions [4, 20, 23], this is a dissatisfying result. It seems
the Broadcast Variable feature was simply not designed or
intended to handle truly large objects.

6.1.4 Comparison to single threaded implementation
(COST)

In order to gain an understanding of the performance of
the distributed systems Spark and Flink compares to state
of the art single core implementations we run experiments
with the LibLinear solver 10, which provides a highly opti-
mized single threaded C++ implementation. As this solver

10https://www.csie.ntu.edu.tw/ cjlin/liblinear/

Figure 6: Performance Details for Flink on 25 nodes
(Strong Scaling) (blue = total, yellow = read/sent)

Figure 7: Performance Details for Spark on 25 nodes
(Strong Scaling)

is limited to data sets which fit into the main memory of a
machine, we generate a smaller version of the criteo data set
containing almost 10 million data points with dimensional-
ities ranging from 10 to 1,000,000,000. Figure 5 shows the
runtime for 10 iterations of LibLinear training. To compare,
we also run the Spark and Flink Solvers on one and two cores
on these smaller data sets. It is apparent that while the run-
times for Spark and Flink are larger on one node (which has
four cores), both systems run faster than LibLinear with two
nodes (or 8 cores). It can thus be assessed that the hard-
ware configuration required before the systems outperform
a competent single-threaded implementation (COST) is be-
tween 4 and 8 cores. That is significantly less than observed
for graph mining workloads by McSherry et al. [21]. A pos-
sible explanation could be that the ratio of computation to
communication is much higher in ML workloads compared
to graph processing workloads.

However, we were not able to successfully train models
with 100 million dimensions in both Flink and Spark, even
though the data set is significantly smaller than the main
memory of even one node. Furthermore, we observe a strong

Figure 8: Performance Details for Flink on 3 nodes
(Strong Scaling)

Figure 9: Performance Details for Spark on 3 nodes
(Strong Scaling)

increase in runtime for 1 and 10 million dimensions for both
Spark and Flink. This reemphasizes the observation of the
dimensionality scaling experiment, that both data flow sys-
tems struggle to handle train truly large models due to ap-
parent limitations in their support for large broadcast vari-
ables.

6.2 Unsupervised Learning
In order to evaluate the effectiveness of the reduceByKey()

operator in Flink and the groupBy() and reduce() operator
in Spark, we conduct both strong scaling and production
scaling experiments with the unsupervised learning work-
load k-means. The production scaling experiments in Fig-
ure 11 show that the runtime of both Spark and Flink lin-
early increases with the data set size. Furthermore both
Systems show no performance degradation once the data set
does not fit into main memory anymore, but rather grace-
fully scale out-of-core. The strong scaling experiments in
Figure 10 appear to confirm the observation already appar-
ent for supervised learning workloads: Flink performs bet-

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

R
u

n
ti

m
e

 in
 M

in
u

te
s

Number of Nodes

Apache Spark

Apache Flink

Figure 10: k-means Strong Scaling experiments for
Spark and Flink in 200 GB of generated data with
100 dimensions and k=10 clusters

0

5

10

15

20

25

30

35

40

0 200 400 600 800 1000

R
u

n
ti

m
e

 in
 M

in
u

te
s

Data Set Size in GB

Apache Spak (30 Nodes)

Apache Flink (30 Nodes)

Figure 11: k-means Production Scaling experiments
for Spark and Flink on 30 nodes with k=30

ter for the resource-constrained setting with a few nodes,
while Spark performs better once enough main memory is
available due to the addition of compute nodes. This as-
pect is also reflected in the production scaling experiment.
Apache Flink’s approach to memory management: instanti-
ating the entire pipeline a priori and distributing the avail-
able memory amongst the memory-consuming operators of
the pipeline seems to be able to cope better with limited
main memory than Spark’s approach of separately schedul-
ing each task.

7. RELATED WORK IN BENCHMARKING
In the last years, several papers have been published on

the comparison and evaluation of distributed systems for
very specific workloads:

Cai et al. [3] present a benchmark of statistical machine
learning algorithms such as GMMs, HMMS and LDA on
Spark, GraphLab, Giraph and SimSQL. They focus on users
who want to implement their own ML algorithms, and thus
evaluate the ease of implementation and the absolute run-
time of the systems. However, they do not focus on provid-

ing comprehensive scalability evaluations but rather detailed
discussions of the implementation details of the hierarchical
statistical models on the different systems. The results are
mixed, since no system clearly outperforms the others in
all evaluated dimensions. However, since they utilized the
Python API of Spark and noticed in the end of the paper,
that it provides substantially slower performance than the
JAVA Api, the runtime results are not directly comparable
to our experimental evaluation.

More closely related is the work by Shi et a. [26], which
presents an experimental evaluation of Apache Spark and
MapReduce for Large Scale Data Analytics. They consider
the workloads Word Count, Sort, K-Means and PageRank.
Contrary to our approach, the authors rely on third party
implementations in libraries (Mahout for MapReduce and
Spark MLlib), so that it remains unclear if performance dif-
ferences are due to algorithmic variations or the systems
themselves. Furthermore, experiments were carried out on
a cluster consisting of only four nodes, which is hardly the
targeted setup for deployments of both systems, thus in-
sights gained from these experiments may not be applicable
for common setups.

In a very similar manner, Marcu et. al. [19] present a
performance analysis of the big data analytics frameworks
Apache Spark and Apache Flink, for the workloads Word
Count, Grep, Terra Sort, K-Means, PageRank and Con-
nected Components. Their results show, that while Spark
slightly outperforms Flink at Word Count and Grep, Flink
slightly outperforms Spark at k-means, Terra Sort and the
graph algorithms PageRank and Connected Components. Con-
trary to our approach, the paper only considers simple work-
loads and does not evaluate distributed machine learning
algorithms with respect to the crucial aspect of model di-
mensionality.

In a very similar manner, Marcu et. al. [28] present
yet another performance evaluation of the systems Apache
Flink, Spark and Hadoop. Contrary to our work they purely
rely on existing library and example implementations for the
workloads Word Count, Grep, Terra Sort, K-Means, Page
Rank and Connected Components. Their results confirm
that while Spark slightly outperforms Flink at Word Count
and Grep, Flink outperforms Spark at the graph algorithms
PageRank and Connected Components. However, contrary
to the findings of [19], Spark outperforms Flink for the k-
means workload. An observation which our findings confirm
which are most likely due to improvements in Spark 1.6.1.
(e.g. project Tungsten)which were not present in the Spark
version used in [19].

8. CONCLUSIONS
In this paper we presented a comprehensive Benchmark

to evaluate and assess data flow systems for distributed ma-
chine learning applications. The Benchmark comprises dis-
tributed optimization algorithms for supervised learning as
well as algorithms for unsupervised learning. We motivated
and described different experiments for evaluating the scal-
ability of distributed data processing systems for all the as-
pects that arise when executing large scale machine learning
algorithms. Next to Strong Scaling and Production Scaling
experiments which asses the systems ability for scaling the
data set size, we also introduced Model Dimensionality Scal-
ing and COST experiments to evaluate the ability to scale
with growing model dimensionality.

Our comprehensive experimental evaluation of different
implementations in Spark and Flink on up to 4.6 billion
data points revealed both systems scale robustly with grow-
ing data set sizes. However, the choice of implementation
strategy has a noticeable impact on performance, requir-
ing users to carefully choose physical execution strategies
when implementing machine learning algorithms on these
data flow systems.

When it comes to scaling the model dimensionality how-
ever, Spark fails to train models beyond a size of 6 million
dimensions. Both systems did not manage to train a model
with 100 million dimensions even on a small data set. Fi-
nally, experiments with a state of the art single threaded
implementation showed, that two nodes (8 cores) are a suf-
ficient hardware configuration to outperform a competent
single-threaded implementation.

Since being able to train models with hundreds of mil-
lions if not billions of dimensions is a crucial requirement in
practice, these results are unsatisfactory. ParameterServer
architectures [15] may pose a viable alternative, as they have
been shown to scale to very high dimensionalities. However,
they require asynchronous algorithms, which usually only
approximate optimal solutions. Furthermore the significant
communication cost associated with this approach is also a
challenge [25]. It thus remains an open challenge to pro-
vide an adequate solution to the problem of robustly and
efficiently scaling distributed machine learning algorithms
both: with respect to data set size and model dimensional-
ity at the same time.

Acknowledgments
This work has been supported through grants by German
Ministry for Education and Research as Berlin Big Data
Center BBDC (funding mark 01IS14013A).

We would like to acknowledge the valuable contributions
of Marcus Leich in performance debugging the Flink im-
plementations, the fruitful recommendations of Sebastian
Schelter and Martin Jaggi as well as Andreas Kunft, Max-
imilan Alber and Seven Dähne.

9. REFERENCES
[1] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag,

F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,
V. Markl, F. Naumann, M. Peters, A. Rheinländer,
M. J. Sax, S. Schelter, M. Höger, K. Tzoumas, and
D. Warneke. The stratosphere platform for big data
analytics. The VLDB Journal, 23(6), Dec. 2014.

[2] T. Brants, A. C. Popat, P. Xu, F. J. Och, J. Dean,
and G. Inc. Large language models in machine
translation. In EMNLP, pages 858–867, 2007.

[3] Z. Cai, Z. J. Gao, S. Luo, L. L. Perez, Z. Vagena, and
C. Jermaine. A comparison of platforms for
implementing and running very large scale machine
learning algorithms. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’14, pages 1371–1382, 2014.

[4] k. Caninil. Sibyl: A system for large scale supervised
machine learning.

[5] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache FlinkTM: Stream
and Batch Processing in a Single Engine. IEEE Data

Eng. Bull., 38(4):28âĂŞ38, 2015.
[6] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. In OSDI, pages
137–150, 2004.

[7] S. Ewen, K. Tzoumas, M. Kaufmann, and V. Markl.

Spinning fast iterative data flows. Proc. VLDB
Endow., 2012.

[8] A. Flink. https://flink.apache.org/.
[9] P. Framework. http://peel-framework.org/.

[10] A. Hadoop. https://hadoop.apache.org/.
[11] A. Halevy, P. Norvig, and F. Pereira. The

unreasonable effectiveness of data. IEEE Intelligent
Systems, 24(2), Mar.

[12] HiBench.
https://github.com/intel-hadoop/HiBench.

[13] L. Jimmy and A. Kolcz. Large-scale machine learning
at twitter. SIGMOD 2012, 2012.

[14] A. Kumar, R. McCann, J. Naughton, and J. M. Patel.
Model selection management systems: The next
frontier of advanced analytics. SIGMOD Records,
44(4), May 2016.

[15] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B.-Y. Su. Scaling distributed machine learning with
the parameter server. In OSDI, volume 14, pages
583–598, 2014.

[16] C.-J. Lin and J. J. Moré. Newton’s method for large
bound-constrained optimization problems. SIAM J. on
Optimization, 9(4), Apr. 1999.

[17] D. C. Liu and J. Nocedal. On the limited memory bfgs
method for large scale optimization. Math. Program.,
1989.

[18] A. Mahout. https://mahout.apache.org/.
[19] O. C. Marcu, A. Costan, G. Antoniu, and M. S.

PÃl’rez-HernÃ ↪andez. Spark versus flink:
Understanding performance in big data analytics
frameworks. In IEEE CLUSTER 2016, pages 433–442,
Sept 2016.

[20] H. B. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg,
A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad
click prediction: A view from the trenches. In KDD
’13. ACM, 2013.

[21] F. McSherry, M. Isard, and D. G. Murray. Scalability!
but at what cost? In USENIX HOTOS’15). USENIX
Association, 2015.

[22] F. Niu, B. Recht, C. Re, and S. J. Wright. Hogwild!:
A lock-free approach to parallelizing stochastic
gradient descent. In NIPS 2011, USA.

[23] M. Richardson, E. Dominowska, and R. Ragno.
Predicting clicks: Estimating the click-through rate
for new ads. In WWW ’07. ACM, 2007.

[24] S. Schelter, C. Boden, M. Schenck, A. Alexandrov,
and V. Markl. Distributed matrix factorization with
mapreduce using a series of broadcast-joins. ACM
RecSys 2013, 2013.

[25] S. Schelter, V. Satuluri, and R. Zadeh. Factorbird - a
Parameter Server Approach to Distributed Matrix
Factorization. Distributed Machine Learning and
Matrix Computations workshop at NIPS 2014, 2014.

[26] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang,
B. Reinwald, and F. Özcan. Clash of the titans:
Mapreduce vs. spark for large scale data analytics.
Proc. VLDB Endow., 8(13), Sept. 2015.

[27] A. Spark. https://spark.apache.org/.

[28] J. Veiga, R. R. ExpÃşsito, X. C. Pardo, G. L.
Taboada, and J. Tourifio. Performance evaluation of
big data frameworks for large-scale data analytics. In
IEEE BigData 2016, pages 424–431, Dec 2016.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. NSDI’12, 2012.

