
Dagstuhl Seminar on Big Stream Processing

Sherif Sakr Tilmann Rabl Martin Hirzel Paris Carbone Martin Strohbach
Uni. of Tartu, Estonia TU Berlin, Germany IBM Research KTH EECS, Sweden AGT International, Germany

sherif.sakr@ut.ee rabl@tu-berlin.de hirzel@us.ibm.com parisc@kth.se mstrohbach@agtinternational.com

ABSTRACT
Stream processing can generate insights from big data
in real time as it is being produced. This paper reports
findings from a 2017 seminar on big stream processing,
focusing on applications, systems, and languages.

1. OVERVIEW
As the world gets more instrumented and con-

nected, we are witnessing a flood of raw data gener-
ated, at high velocity, from different hardware (e.g.,
sensors) or software in the form of streams of data.
Examples abound in several domains including fi-
nancial markets, surveillance systems, manufactur-
ing, smart cities, and scalable monitoring infras-
tructure. In these domains, there is a strong re-
quirement to collect, process, and analyze big streams
of data to extract valuable information, discover
new insights in real-time, and detect emerging pat-
terns and outliers. Since 2011 alone, several systems
(e.g., SPL [13], Storm [19], Apex1, Spark Streaming [20],
Flink [7], Heron [16], and Beam [3]) have been intro-
duced to tackle the real-time processing demands of
big streaming data. However, there are several chal-
lenges and open problems that need to be addressed
to improve the state-of-the-art and achieve further
adoption of big stream processing technology [18].

This report is based on a seminar on “Big Stream
Processing Systems” at Schloss Dagstuhl in Ger-
many from 29 October to 3 November 20172, at-
tended by 29 researchers from 13 countries. Partic-
ipants came from different communities including
systems, query languages, benchmarking, stream
mining, and semantic stream processing. A ben-
efit of this seminar was the opportunity for schol-
ars from different communities to get exposure to
each other and get freely engaged in direct and
interactive discussions. The program consisted of
tutorials on the main topics of the seminar, light-
ning talks by participants on their research, and two
1

https://apex.apache.org/
2

www.dagstuhl.de/en/program/calendar/semhp/?semnr=17441

working groups dedicated to a deeper investigation.
The first working group focused on applications and
system of big stream processing while the second
group focused on streaming languages. This report
presents highlights and outcomes.

2. TUTORIALS
The tutorials of the seminar aimed at sharing

knowledge between attendees from different com-
munities, offering perspectives for group discussions.

2.1 IoT Stream Processing Applications
This tutorial analyzed IoT applications from two

domains: sports and entertainment as well as In-
dustry 4.0. The application examples are based on
commercial deployments using AGT International’s3

Internet of Things Analytics (IoTA) platform.

Sports and Entertainment. The example ap-
plications of this domain provide real-time narra-
tives about highlights during a live event. This way,
it is not necessary to watch the whole event, but
one can be notified in real-time about such high-
lights based on insights derived from sensor data.
For instance, in basketball, sensors that have been
successfully used in commercial deployments4 in-
clude smart shirts worn by players, microphones
deployed to monitor the audience, cameras, and
wristbands. Data from these sensors in combina-
tion with play-by-play data can be used to recog-
nize behavior, emotions, activities, actions, pres-
sure, and other physical aspects of the game. These
insights are related to players, teams, fans, and fam-
ily preferably in the form of semantic data streams.
Semantic data access decouples applications from
data providers and enables domain experts to bet-
ter work with the data, e.g., for generating content
and distributing it via social media.

Another example is mixed martial arts5, where
cameras and sensors embedded in floors and fight-
3

http://www.agtinternational.com
4

https://t.co/ZkQjQwXw13
5

https://youtu.be/vataVq9gY o

1



Figure 1: Sample IoT data streams in mixed martial arts.

ers’ gloves6 offer insights including punch strength
and stress levels of each fighter (Figure 1). In this
example, it is important that insights can be deliv-
ered in real-time without noticeable delay compared
to a broadcast of the fight.

In professional bull riding, sensors are attached
to riders and bulls and used to quantify the bull’s
and rider’s performance7. As this information is,
among other things, used for automatic scoring, it
is of particular importance that analytic results are
available as soon as the ride is finished. Similarly, a
range of wearable sensors are used for creating event
highlights for participants at mass sport events such
as the Color Run8. The CPaaS.io project9 uses action
cameras and fitness bands to automatically detect
event highlights based on the the runner’s activ-
ity, emotions, dance energy levels, and many more
metrics. In this application, real-time aspects in-
clude scenarios in which event highlights are being
directly sent to friends of the participants.

Industry 4.0. For this domain, the tutorial pre-
sented applications around predicting energy peaks
and predictive maintenance. In principle, predict-
ing energy peaks can help in reducing energy costs
as electricity bills of industrial consumers contain
a pricing component that incurs higher charges for
higher peaks of electrical load. For small-to-medium
enterprises, avoiding such peak load events can lead
to significant savings10. This can be achieved by
predicting expected peaks, e.g., up to 30 minutes
ahead of time and taking precautionary measures
such as temporarily switching off high energy con-
sumers such as air conditioning.

For predictive maintenance, the tutorial presented
an application for detecting anomalous machine states
to reduce maintenance costs. For instance, in in-
jection molding machines, a sudden high energy
consumption may indicate that an injection noz-
zle is jammed and checking the machine may avoid
further damage. The tutorial reported about the
6

http://bit.ly/2D4lCqD
7

http://bit.ly/2CXpc2g
8

https://thecolorrun.com/
9

http://www.cpaas.io
10

http://bit.ly/2DjhvUh

DEBS Grand Challenge 2017 [11] that has been
designed to objectively measure some of these re-
quirements using pre-defined machine learning al-
gorithms and RDF streaming data. The main KPI
for the challenge was latency. The original data set
has been provided by Weidmüller11. For reasons of
confidentiality, the organizers provided a mimicked
data set12. The systems under test were evaluated
using the HOBBIT benchmarking platform13 that en-
sured the objectivity of quantifying the performance
of distributed stream processing pipelines. Over-
all, 7 out of 14 participating teams in the challenge
passed the correctness test. The fastest system [4]
achieved an average latency of about 39ms. The
DEBS Grand Challenge 2017 benchmark is openly
available as part of the HOBBIT platform.

2.2 Big Stream Processing Systems
This tutorial started by identifying the most dif-

ferentiating characteristic of scalable data stream
processing systems, which is the notion of data as
a continuous, possibly infinite resource instead of
“facts and statistics organized and collected together
for future reference or analysis”14. In fact, data
stream processing systems broaden the context from
retrospective data analysis to continuous, unbounded
processing coupled with scalable and persistent ap-
plication state. Various forms of stream process-
ing have been employed in the past within their
respective domains, such as network-centric pro-
cessing on byte streams, functional (e.g., monads)
and actor programming, complex event processing,
and database materialized views. Besides, stream
management has been an active research field for
many years [2, 5, 8]. Nonetheless, several of these
ideas have only just recently been put together in
a consistent manner to compose a stack centered
around the notion of data as an unbounded parti-
tioned stream of records (Figure 2). Most impor-
tantly, stream processing did not restrict but com-
plemented existing scalable processing models (e.g.,
MapReduce [10]) with persistent partitioned state,
time domains, and flexible scoping via windows.
The general programming stack addresses storage,
compute, and domain-specific library support.

Stream Storage. Data dissemination from con-
sumers to producers is a problem that has been
revisited multiple times with different assumptions
and needs in mind. In the context of data stream-
ing, direct communication (e.g., TCP channels) was
not an option despite low-latency requirements, since
it required application ingestion to be actively in
11

http://www.weidmueller.de
12

https://hobbit.iminds.be/dataset/weidmuller
13

http://bit.ly/2muMNkY
14 Google Dictionary

2



Domain-Specific 
Libraries

Stream SQL, Online ML, Complex 
Event Processing, Graph Streams

Stream Compute
Flink, Beam, Apex, Kafka-Streams, 

Storm, Spark Streaming
-IBM Streams, Microsoft Azure-

Stream Storage
Kafka, Pravega

-Pub/Sub, Kinesis-

Figure 2: The Stack of Scalable Stream Processing

sync with data creation while also lacking the trans-
parency and durability of today’s cloud computing
ecosystem. Furthermore, message brokers (e.g., Rab-
bitMQ, JMS) were insufficient for the needs of sup-
porting multiple applications and configurations (i.e.,
task parallelism). Thus, a class of open-source stream
storage systems based on partitioned replicated logs
was introduced, led by Apache Kafka [15] and more re-
cently Pravega15 as well as proprietary cloud services
such as Amazon Kinesis16. Partitioned replicated logs
provide high sequential read and write throughput
by exploiting copy-on-write and strict data-parallel
access by distinct consumers. Furthermore, they
perform offset-based bookkeeping of data access for
the purposes of data reprocessing, reconfiguration,
and roll-backs, among others. Finally, more effort
has been devoted to supporting transactional log-
ging and repartitioning, allowing for seamless inte-
gration with modern stream compute systems.

Stream Compute. We further divide compute
into programming models and runtime engines. In
terms of programming model support, there has
been a shift from purely event-based, compositional
models (e.g., Apache Storm [19]) to more declarative
representations [3, 7, 20]. Currently, most standard
APIs are fluid, functional, and allow declaring rela-
tional transformations (e.g., joins, filters) while pro-
viding first-class support for persistent partitioned
state, stream windows, and event-time progress us-
ing watermarks. The latter allowed application logic
to incorporate timers that operate consistently on
different time domains (e.g., origin-time), thus al-
lowing out-of-order processing [17], a concept pop-
ularized e.g. by Beam [3].

With respect to runtime engines, we observe con-
verging commonalities such as a dataflow execution
model, explicit locally embedded state (using log-
compaction trees [1]), and asynchronous snapshots
for fault tolerance and reconfiguration [6, 14]. Spark

Streaming [20], as a special case, emulates streaming
by slicing computation into recurring batch jobs,
yet, it currently makes use of locally embedded state
and there are plans to adopt a continuous process-
ing runtime for low-latency data streaming.

15
http://pravega.io/

16
https://aws.amazon.com/kinesis/

2.3 Stream Processing Languages
This tutorial provided an overview of several styles

of stream processing languages: streaming SQL,
synchronous dataflow, big-data streaming, complex
event processing, and end-user programming. Af-
ter the Dagstuhl seminar, some of the participants
wrote a survey paper inspired by this tutorial [12].
For space reasons, rather than describing the tuto-
rial here, we refer interested readers to that paper.

3. WORKING GROUPS
During the seminar, two separate working groups

formed to discuss current challenges in streaming
applications and systems and in streaming languages.

3.1 Applications and Systems
In this working group, participants discussed char-

acteristics and open challenges of stream processing
systems, focusing on state management, transac-
tions, and pushing computation to the edge.

State Management. Modern streaming systems
are stateful, which means they can remember the
state of the stream to some extent. A simple exam-
ple is a counting operator that counts the number
of elements seen so far. While even a simple state
like this poses several challenges in streaming setups
(such as fault tolerance and consistency), many use
cases require more advanced state management. An
example is the combination of streaming and batch
data, e.g., when combining the history of a user
with their current activity or when finding match-
ing advertisement campaigns with current activity;
a popular example of such a setup is modeled in
the Yahoo! Streaming Benchmark [9]. Today, most se-
tups deal with such challenges by combining differ-
ent systems (e.g., a key value store for state and
a streaming system for processing). However, it is
desirable to have both in a single system for consis-
tency and manageability reasons.

State can be considered the equivalent of a ta-
ble in a database system [5]. As a result, several
high-level operations can be identified: conversion
of streams to tables (e.g., storing a stream), conver-
sion of tables to streams (e.g., scanning a table), as
well operations only on tables or streams (joins, fil-
ters, etc.). The management of state opens the de-
sign space between existing stream processing sys-
tems and database systems, which has only been
partially explored by current systems. In contrast
to database systems, stream systems typically oper-
ate in a reactive manner, i.e., they have no control
over the incoming data stream, specifically, they do
not control and define the consistency and order

3



semantics in the stream. This requires advanced
notions of time and order as for example specified
for streams in the dataflow model [3].

Transactions. A further discussion topic was trans-
actions in stream processing systems. The main dif-
ference between traditional database transactions
and stream processing transactions is that in data-
bases the computation moves and data stays (in
the system), whereas in stream processing systems
the computation stays and the data moves to the
computation (and out again). Considering state
management, the form of transactions as applied in
databases can also be used in a stream processing
system, if the state is managed in a transactional
way. However, the operations on streams them-
selves can be transactional and then we can differ-
entiate between single-tuple transactions and multi-
tuple transactions (possibly accessing multiple keys
in a partitioned operator state space). Multi-tuple
transactions can only commit when all tuples are
consumed. The tuples then have to traverse the
whole operator graph or at least the transactional
subgraph. The semantics of transactions on streams
is currently still an open field of research.

Pushing computation to the edge of a network
enables stream processing to be highly distributed
and decentralized. This is very useful when prepro-
cessing or filtering can be done without a centralized
view of the data, especially in setups with high com-
munication cost or slow connections (e.g., mobile
connections): it makes sense to not send all data
to a central server, but distribute the computation.
A logical first step is filtering, but aggregations and
even more complex operations can be pushed to the
edge, if possible. Many modern scenarios prohibit
centralized data storage, which further encourages
distributed setups with early aggregations.

3.2 Languages and Abstractions
Based on the corresponding tutorial (Section 2.3),

this working group identified three challenges faced
by streaming languages: input variety, output ve-
racity, and adoption of streaming languages. After
the seminar, some of the participants continued the
discussion and incorporated it in the same survey
paper that was inspired by the tutorial [12].

4. CONCLUSION
The tutorials, presentations, dialogs, and work-

ing groups at the “Big Stream Processing Systems”
seminar provided an overview of current develop-
ments and emerging issues. This report highlighted
the main outcomes of the seminar. The discus-

sions of the seminar have also revealed several open
challenges and interesting future research directions
including (1) semantic data access and reasoning,
(2) defining a standardized query language for stream-
ing applications, (3) providing better support for
machine learning including a wide range of data
science programming languages (Python, R, Julia),
and (4) improving optimizations for low latencies
and short-lived stream processing pipelines.

Acknowledgements
We thank the seminar participants and the Dagstuhl staff.
The work presented in this paper has partly been funded by
the European Regional Development Fund via the Mobilitas
Pluss program (grant MOBTT75), by the H2020 projects
CPaas.io, HOBBIT, Streamline, and Proteus (grant agree-
ment numbers 688227, 723076, 688191, and 687691), and by
the German Ministry for Education and Research as Berlin
Big Data Center (funding mark 01IS14013A).

5. REFERENCES
[1] Rocksdb. http://rocksdb.org/, 2018.
[2] D. J. Abadi et al. Aurora: A new model and architecture

for data stream management. VLDB J., 12(2), 2003.
[3] T. Akidau et al. The dataflow model: A practical

approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. In
VLDB, pages 1792–1803, 2015.

[4] C. Amariei, P. Diac, and E. Onica. Optimized stage
processing for anomaly detection on numerical data
streams: Grand challenge. In DEBS, 2017.

[5] A. Arasu, S. Babu, and J. Widom. The CQL continuous
query language: Semantic foundations and query
execution. VLDB J., 15(2):121–142, 2006.

[6] P. Carbone, S. Ewen, G. Fora, S. Haridi, S. Richter, and
K. Tzoumas. State management in Apache Flink:
Consistent stateful distributed stream processing. In
VLDB, 2017.

[7] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl,
S. Haridi, and K. Tzoumas. Apache Flink: Stream and
batch processing in a single engine. IEEE Database
Engineering Bulletin, 36(4):28–38, 2015.

[8] S. Chandrasekaran et al. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR,
pages 668–668, 2003.

[9] S. Chintapalli et al. Benchmarking streaming computation
engines: Storm, Flink and Spark Streaming. In IPDPSW,
2016.

[10] J. Dean and S. Ghemawat. MapReduce: Simplified data
processing on large clusters. CACM, 51(1), 2008.

[11] V. Gulisano, Z. Jerzak, R. Katerinenko, M. Strohbach,
and H. Ziekow. The DEBS 2017 grand challenge. In
DEBS, 2017.

[12] M. Hirzel, G. Baudart, A. Bonifati, E. Della Valle,
S. Sakr, and A. Vlachou. Stream processing languages in
the big data era. SIGMOD Record, 2018.

[13] M. Hirzel, S. Schneider, and B. Gedik. SPL: An extensible
language for distributed stream processing. Transactions
on Programming Languages and Systems (TOPLAS),
39(1):5:1–5:39, 2017.

[14] G. Jacques-Silva et al. Consistent regions: Guaranteed
tuple processing in ibm streams. In VLDB, 2016.

[15] J. Kreps, N. Narkhede, J. Rao, et al. Kafka: A distributed
messaging system for log processing. NetDB, 2011.

[16] S. Kulkarni et al. Twitter Heron: Stream processing at
scale. In SIGMOD, pages 239–250, 2015.

[17] J. Li et al. Out-of-order processing: A new architecture
for high-performance stream systems. In VLDB, 2008.

[18] S. Sakr. Big Data 2.0 Processing Systems: A Survey.
Springer, 2016.

[19] A. Toshniwal et al. Storm @Twitter. In SIGMOD, 2014.
[20] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and

I. Stoica. Discretized streams: Fault-tolerant streaming
computation at scale. In SOSP, 2013.

4


