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ABSTRACT
Data management systems research at TU Berlin is spear-
headed by the Database Systems and Information Man-
agement (DIMA) Group, the Big Data Management (Big-
DaMa) Group, as well as the affiliated Intelligent An-
alytics for Massive Data (IAM) Research Group at the
German Research Center for Artificial Intelligence (DFKI).
Jointly, our research activities encompass a wide variety
of database topics, including benchmarking, data inte-
gration, modern hardware, and scalable data processing.

As of Fall 2018, the current team is comprised of
three university professors, thirteen senior and postdoc
researchers, twenty PhD students, and several research
assistants. Among our notable accomplishments is the
DFG-funded Stratosphere Research Unit, which laid the
groundwork for what would later become Apache Flink.
DIMA has also been leading the Berlin Big Data Center,
one of only two BMBF-funded Big Data Competence
Centers in Germany since 2014. In addition, DIMA
is co-directing the Berlin Center for Machine Learning,
one of four BMBF-funded Machine Learning Compe-
tence Centers in Germany.

1. INTRODUCTION
Modern applications have to cope with large, fast,

and heterogeneous data, bridging the worlds of ad-
vanced data analysis and machine learning with data
management. Naturally, this poses numerous re-
search challenges for the design and usage of data
analytics systems. Fortunately, novel advances in
hardware technologies, data flow architectures, and
machine learning techniques are making it possi-
ble to build efficient and user-friendly data pro-
cessing systems. With a team of thirty database
researchers, comprised of doctoral students, senior
researchers, and university professors, TU Berlin is
well positioned to address key challenges.

Given the significant importance of data flow sys-
tems, at its onset DIMA1 embarked on the develop-
ment of a next generation big data analytics plat-
1https://www.dima.tu-berlin.de/

form. Initially, known as Stratosphere [6], over the
course of several years, it would later go on to be-
come Apache Flink, an open-source stream process-
ing framework for parallel dataflow analysis.

Today, ongoing research focuses on meeting the
requirement needs of novel Internet of Things in-
frastructures and increasing their ease of use. We
have developed a declarative programming interface
to enable data scientists to primarily focus their
attention on analysis. Other key research topics
that are underway include research on modern hard-
ware, systems benchmarking, end-to-end machine
learning pipelines, responsible data management,
data analysis infrastructures, and information mar-
ketplaces. Moreover, the recently established Big-
DaMa Group2 is actively conducting research (e.g.,
building end-to-end data preparation systems) to
address data heterogeneity challenges.

In the following sections, we further motivate sev-
eral of the aforementioned research topics and high-
light key contributions from our database systems
researchers. We will conclude with an overview
of our existing grants and collaboration activities
across our research projects.

2. SCALABLE DATA PROCESSING
Many specialized data processing systems have

been developed, in order to analyze high volume,
velocity, and variety data, efficiently and effectively.
To meet these demands, systems often exploit spe-
cially optimized libraries. For example, to perform
numerical linear algebra operations, conduct natu-
ral language processing, or execute graph analytics.
Moreover, system building commonly employs both
modern storage, such as non-uniform memory ac-
cess (NUMA) designs and processing architectures,
such as heterogeneous CPUs, to achieve higher per-
formance. It is the wide diversity of systems and
hardware solutions that greatly improve function-
ality and reduce the execution time for many data
2https://www.bigdama.tu-berlin.de



analytics-dependent applications.
Next, we discuss our research contributions in

the area of scalable data processing, which includes
Stratosphere, Apache Flink, stream processing, and
declarative programming.

2.1 Stratosphere and Apache Flink
The official Apache Flink project website [1, 18]

declares that “Apache Flink is an open source plat-
form for distributed stream and batch data process-
ing. [At its] core [it] is a streaming data flow engine
that provides data distribution, communication, and
fault tolerance for distributed computations over data
streams.“

Many of the original concepts in Stratosphere in-
spired or were carried over to Apache Flink [8, 23],
such as the query optimizer, the streaming dataflow
runtime, and the support for iterations. While oth-
ers remained experimental features, such as the op-
timistic fault tolerance [32, 48]).

Apache Flink offers numerous additional features.
For example, it: (i) provides consistent, exactly
once guarantees for event time processing, (ii) is
fault-tolerant, even for stateful operations, and (iii)
is highly scalable, able to run on thousands of nodes
with high throughput and low latency.

Additionally, Apache Flink offers several APIs.
For example, the DataStream API applies transfor-
mations, such as filtering and aggregation on data
streams. The Table API supports the composition
of queries from relational operators, such as selec-
tion, filter, and join. Furthermore, Flink provides
numerous libraries, such as the: CEP library for
complex event-processing, FlinkML library for ma-
chine learning, and Gelly library for graph-processing.
Using Flink’s APIs and libraries, software develop-
ers are empowered to build and execute applications
that run on Flink. Flink is increasingly gaining trac-
tion around the world. According to Alibaba [33],
it is Flink’s distinguishing technological capabilities
that make it the "most advanced stream processing
engine today.”

2.2 Stream Processing
In recent years, our researchers have investigated

how to enhance Apache Flink and related systems.
For example, we devised a novel technique to ad-
dress performance challenges faced when conduct-
ing aggregate sharing in data stream windows. Sub-
sequently, we developed a prototype in Flink and
demonstrated that our technique outperforms the
state-of-the-art [19, 28].

Moreover, we developed optimizations to improve
both the sharing of windows and computation for

highly distributed setups [50], interactivity in stream-
ing visualizations [51], and surveyed state manage-
ment [49]. Currently, we are conducting research on
the management of large-state for analytics that are
beyond the capabilities of today’s batch and stream
processing engines.

2.3 Managing the Data Science Process
Reducing the entry barrier and cost of analyzing

large amounts of data at scale requires the simplifi-
cation of the data analysis process, which is today a
grand challenge in data management research [42].
Addressing this demand, will require the develop-
ment of a novel approach to automate the imple-
mentation decisions that data scientists routinely
make, such as the decisions about the heteroge-
neous computing environments to employ. Particu-
larly, since they are founded on a broad spectrum
of theories, systems, and hardware solutions. Auto-
mated optimization, parallelization, and hardware-
adaptation is a holy-grail of data science.

This grand challenge can be met, if we combine
existing data processing technologies currently avail-
able in the scientific and systems community. The
major obstacle to achieving automation is the ab-
sence of a principled model for scalable data science
systems, akin to relational algebra in database sys-
tems. The key is to provide a declarative, algebraic,
and optimizable representation for the entire data
analysis process. To solve this problem, we need to
integrate disparate hardware and software compo-
nents present in today’s data analysis architectures
into a unified mosaic of systems, hardware devices,
and theories that view analytics as graphs, matri-
ces, or relations.

As a first step towards solving the automation
problem, our researchers developed Emma [2, 7],
a Scala DSL that enables holistic optimizations of
data flow programs for scalable data analysis on
Apache Flink and Apache Spark. As a result, devel-
opers can disregard the details of a platform-specific
API, which reduces both program development and
execution time. In 2015, Emma garnered an ACM
SIGMOD Research Highlight Award.

Our researchers also introduced Lara, a deeply
embedded language in Scala that enables develop-
ers to exploit optimizing transformations across lin-
ear and relational algebra operators [38] and phys-
ical operators, such as Blockjoin [39] to bridge re-
lational and matrix representations and write scal-
able programs. Additionally, we devised a novel
approach called ScootR [40] that significantly im-
proves the performance of R programs executed in
data flow systems, by establishing bidirectional ac-



cess between native user-defined functions and Flink’s
data structures. We also developed novel data han-
dling methods, to better cope with large data sets
and more efficiently yield visualizations by exploit-
ing data aggregation approaches [34, 35]. The re-
search conducted in this area received a VLDB best
paper award in 2014.

Currently, we are investigating how to optimize
the entire iterative data science process, from data
source selection over information extraction and in-
tegration to data analysis, model building, model
application, and visualization. Moreover, we are
embarking on novel research in the areas of large-
scale data analysis infrastructures, data manage-
ment for the Internet of Things, data processing
in the fog, end-to-end machine learning, informa-
tion marketplaces, and technological enablers for
responsible data management.

3. MODERN HARDWARE
The modern hardware landscape is rapidly evolv-

ing. Today, there are massively parallel proces-
sors with anywhere from hundreds to thousands of
cores in graphic processing units (GPU) and the
many integrated core (MIC) architecture, whose se-
ries of microarchitectures integrate many physical
cores onto a single integrated circuit. Addition-
ally, main memory costs have continued to drop,
enabling a database to be stored in main memory.
Network technologies, such as Infiniband and re-
mote direct memory access (RDMA) provide low
latency communication and low network bandwidth
on the same order of magnitude as main memory
bandwidth, as discussed by Binnig et al. in [10].

These novel technologies can accelerate data man-
agement by orders of magnitude, decrease comput-
ing costs by scaling-down cluster resources, and re-
duce the data to knowledge time. We conduct re-
search in the modern hardware space to discover
new ways to exploit these technologies.

3.1 Hardware Tailored Query Compilation
The power wall is arguably the defining limit of

modern processor performance. Thus, vendors de-
velop processor cores that are specialized to partic-
ular tasks, such as ARM big.LITTLE, a heteroge-
neous computing architecture. Alternatively, they
develop processors that adhere to a new proces-
sor architecture, which is fundamentally different
than classical CPUs, as discussed by Borkar and
Chien [14] and Esmaeilzadeh et al. [22]. However,
for data management systems it is difficult to ex-
ploit these heterogeneous processors. Instead, costly
experts are required to re-implement and optimize

query processors for new processor architectures.
To overcome this challenge, we launched the Hawk

Project3, in order to automatically exploit heteroge-
neous processors and increase performance in data
management systems. The key problem is how to
support many heterogeneous processors efficiently
without having to rewrite code, for each new proces-
sor release. A problem that commonly arises with
data management operators. Naturally, such an ef-
fort is both costly and error prone. Our aim is to
enable data management systems to rewrite their
code until they run optimally on a single processor.

W have developed a hardware-tailored code gen-
erator called Hawk [15] based on the CoGaDB sys-
tem [16]. Hawk utilizes advanced query compilation
strategies to produce custom code variants for each
processor and query. By automatically exploring
code variants, Hawk can tune generated code for
each processor avoiding manual tuning and sidestep-
ping the need for expensive experts.

3.2 Data Processing on Modern Processors
Over the past few years, we have been investi-

gating alternative ways to leverage heterogeneous
processor capabilities. For example, we explored
code variants for selections and aggregations us-
ing an approach akin to micro adaptivity [46, 47].
We also implemented vectorized hashing primitives
(e.g., gather, scatter, selective load, selective store)
in OpenCL, to reduce code complexity and enable
portability for both CPUs and MICs [9].

In addition, we devised a new approach to exe-
cute the k-means [41] algorithm more efficiently on
GPUs and achieve a higher throughput (up to 20x
over state-of-the-art approaches). Furthermore, we
discovered how we can use the GPU memory hier-
archy efficiently and developed compilation-based
query processing strategies for massively parallel
processors [27]. We also experimentally evaluated
design aspects of current stream processing systems
on modern hardware and found that the throughput
of streaming systems on a single node can be im-
proved by up to two orders of magnitude [53]. Our
system Ocelot [31] is an OpenCL-based execution
engine for the MonetDB main-memory database,
which assesses efficiency in systems that completely
rely on a hardware-oblivious code base. Finally, we
investigated how to accelerate query optimization
using massively parallel processors [29, 30, 37].

4. BENCHMARKING
Today’s big data systems are designed to be scal-

able and meant to be run on a large number of
3https://www.dfg-spp2037.de/ma4662-5



nodes, in order to distribute workloads and speedup
processing. Once these systems come to exist, bench-
marking them is of paramount importance, to mea-
sure their performance under varying real-world sce-
narios. Historically, the Transaction Processing Per-
formance Council’s (TPC) benchmarks have enabled
database researchers to meet their optimization goals.
With the sheer-diversity of data processing systems
under development at an ever-increasing pace, new
benchmarking scenarios as well as novel tooling are
required to properly assess system performance.

Our research in benchmarking data management
systems includes designing, developing, and con-
ducting performance surveys, devising novel mea-
surement techniques and building software tools that
implement them, and contributing to standardiza-
tion efforts. Our objectives include identifying a
system’s capabilities and limitations as well as pro-
viding insight into functional areas, where additional
investigation is required. Next, we present our bench-
marking tools for big data, stream processing, and
machine learning systems.

4.1 Benchmarking Big Data Systems
Our researchers have been instrumental in the de-

velopment and standardization of several application-
level benchmarks, including TPCx-BB [17], TPCx-
IOT [44], and TPC-DS [45]. Typically, benchmark
projects require a large number of configuration and
data collection steps for the many experiments that
need to be conducted. To simplify this tedious pro-
cess, we have developed the Peel [11] framework.
It automates the setup and deployment of big data
frameworks, conducts benchmark experiments, gath-
ers all system and performance data, and stores
them in versioned repositories.

4.2 Benchmarking Stream Processing Sys-
tems

In recent years, there has been a surge in the
number of novel stream processing systems (SPS).
This poses numerous challenges for benchmarking
due to the many subcomponents involved. In par-
ticular, since these may be outside of the bound-
ary of the system under test and can easily become
the predominant bottleneck. Recently, we demon-
strated that all of the earlier benchmarking stud-
ies for SPS violated assumptions about the sys-
tem setup. Consequently, since system’s do not
have control over incoming data streams, our exper-
iments demonstrated [36] that the measurements re-
ported in these studies both overestimated through-
put and underestimated latency.

4.3 Benchmarking Machine Learning Sys-
tems

Machine learning has become ubiquitous for many
data-driven applications. Since there is a natural
trade-off between accuracy and performance in ma-
chine learning models, solely benchmarking the per-
formance of machine learning systems is insufficient.
Thus, we are currently conducting research to de-
velop comprehensive benchmarks and build bench-
marking tools that ensure reproducibility for ma-
chine learning systems.

The advent of big data processing systems, such
as Hadoop and next generation systems, such as
Apache Spark have quickly spurred interest in im-
plementing more complex analytics jobs (beyond
simple indexing or sorting) on these scalable sys-
tems. Among these complex analytics are Apache
Mahout and SparkML. Although these libraries sim-
ilarly feature weak-scaling capabilities as simple pro-
cessing jobs, they do not scale in other ways (e.g.,
in terms of model dimensionality [13]). Further-
more, many evaluations today compare their ma-
chine learning systems against weak baselines, such
as simple and highly-inefficient Hadoop implemen-
tations that are easily outperformed by state of the
art single-node machine learning libraries [12].

5. DATA INTEGRATION
Increasingly, organizations want to obtain value

from their disparate datasets. To do so, they in-
ject all of their data into data lakes, to make the
data available for analysis. Although this approach
solves the data access problem, another challenge
for effective data analysis remains: metadata about
datasets is often missing or poorly documented and
data scientists rarely possess comprehensive knowl-
edge about the data lake. Today, data discovery,
data integration, and data cleaning are factually the
most time-consuming and least enjoyable tasks for
data scientists [20]. In addition to small contribu-
tions to the field of entity resolution [21, 43], our
research in the area of data integration tackles two
general challenges, i.e., data discovery in data lakes
and iterative data preparation.

5.1 Data Lake Management
Despite the presence of data lakes, discovering the

data of actual interest is still very challenging [25].
Due to the abundance of data without a central
owner, a holistic organization of these datasets via
ETL is infeasible. As a compromise, a proposed
solution is to generate easy to obtain metadata [5]
from datasets in the data lake and infer relation-
ships, such as foreign/primary key relationships and



other types of inter-column similarities.
Jointly, with colleagues from Massachusetts In-

stitute of Technology (MIT), Qatar Computing Re-
search Institute (QCRI), and the University of Wa-
terloo, we built Data Civilizer [20, 26], an end-to-
end big data management system. Data Civilizer
incorporates a data discovery component called Au-
rum [24] that achieves the aforementioned function-
alities and efficiently identifies column similarities
and overlaps. However, these types of heuristics can
lead to the generation of many false positives. In
particular, numerical columns, such as ID columns
are often quite similar. Currently, we aim to solve
this problem, by developing new heuristics that dis-
ambiguate those columns more accurately.

5.2 Iterative Data Cleaning
While there has been a huge body of work in the

area of data cleaning, most data practitioners resort
to custom data wrangling scripts. The main reason
behind this is that there is still no one-size-fits-all
system for data cleaning [4]. Algorithms tackle very
specific types of errors, such as rule or pattern viola-
tions and outliers. As a result, the data scientist will
undergo an iterative try-and-error procedure, which
is time-consuming. Additionally, most of these al-
gorithms require some sort of hyperparameter or a
set of given patterns/rules, which may be unavail-
able. To bridge this gap, we treat data cleaning as
an iterative process and preserve the history of pre-
viously performed cleaning tasks, to minimize the
overall user-effort and identify the right set of clean-
ing routines and their respective configurations for
the task at hand. Furthermore, have studied several
aggregation methods to combine the effectiveness of
varying error detection strategies [52].

6. GRANTS, ALLIANCES, AND SERVICE
Our research activities are funded through grants

obtained from varying national, international, and
industry sources, including the German Federal Min-
istry of Education and Research (BMBF), the Ger-
man Federal Ministry for Economic Affairs and En-
ergy (BMWi), the German Federal Ministry of Trans-
port and Digital Infrastructure (BMVI), the Ger-
man Research Foundation (DFG), and the Euro-
pean Union, among others. Most notably, we are
coordinating two German flagship big data projects,
the Berlin Big Data Center4 (BBDC) and the Smart
Data Forum5 as well as co-directing the Berlin Cen-
ter for Machine Learning (BZML).

We have transferred our research into numerous
4https://www.bbdc.berlin
5https://smartdataforum.de

commercial products and open-source systems. We
closely collaborate with many leading information
management companies and have created several
startups based on our research. We also contribute
to our governmental and scientific communities. For
example, we serve as grant reviewers and on expert
panels at national and international funding agen-
cies and provide expert advice to government agen-
cies in Germany and the EU.

Our researchers support the database community
on various levels. In 2013, Volker participated in the
Beckman Database Research Self-Assessment Meet-
ing to discuss the state of database research and
offer perspectives on key directions for future re-
search [3]. Since 2018, Volker is President of the
VLDB Endowment. Furthermore, we have hosted
an EDBT conference and served as conference offi-
cers and program committees for VLDB, SIGMOD,
and ICDE, among others.
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