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 from 20 hardware vendors, TPC-H has 
established itself as the industry standard benchmark to measure performance of 
decision support systems. The release of TPC-H twelve years ago by the Trans-
action Processing Performance Council’s (TPC) was based on an earlier deci-
sion support benchmark, called TPC-D, which was released 1994. TPC-H inhe-
rited TPC-D’s data and query generators, DBgen and Qgen. As systems evolved 
over time, maintenance of these tools has become a major burden for the TPC. 
DBgen and Qgen need to be ported on new hardware architectures and adapted 
as the system grew in size to multiple terabytes. In this paper we demonstrate 
how Parallel Data Generation Framework (PDGF), a generic data generator, 
developed at the University of Passau for massively parallel data generation, 
can be adapted for TPC-H. 

1 Introduction 

Since its introduction in 1999 by the Transaction Processing Performance Council 
(TPC) 20 system vendors have published 182 benchmark results on hundreds of sys-
tem configurations using the TPC-H benchmark specification. This establishes TPC-H 
as the de facto industry standard to measure performance of decision support systems. 
Closely tight to its specification are its data and query generators, DBgen and Qgen 
respectively, which are implemented in the programming language C. Their develop-
ment, originally used in TPC’s first decision support benchmarks (TPC-D), was com-
pleted in 1994. Since that time, the code has been ported to 20 separate platforms, 
spanning OS versions from UNIX to Windows, and from VMS, to MVS, to Linux 
[Error! Reference source not found.]. 

Since the introduction of DBgen and Qgen in 1994 systems used in TPC bench-
mark publications have evolved greatly causing the maintenance of these tools to be a 
major burden for the TPC. While systems that published TPC-D benchmarks only 
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Figure 1: TPC-H Schema 

employed few single core processors on data warehouse of up to one Terabyte, sys-
tems running TPC-H today employ clusters of multi-core processor nodes, totaling 
hundreds of cores, on data warehouses of up to 30 Terabytes and multi Terabytes of 
main memory. Recently the frequency at which bugs are reported increased dramati-
cally, which lead to a discussion of completely rewriting DBgen. However, this 
turned out to be cost prohibitive. As an alternative this paper investigates the feasibili-
ty of using the Parallel Data Generation Framework (PDGF), developed at the Uni-
versity of Passau, for TPC-H. Originally developed for massively parallel data gen-
eration of cloud scale databases, PDGF has many advantages over DBgen: It is writ-
ten in the platform independent language Java, which makes portability needless. 
Studies have shown that it is able to generate terabytes of data quickly and reliably 
[2]. Its separation into a data generation engine and a file defining the metadata about 
the data to be generated makes it easily maintainable and, if necessary quickly extens-
ible. Finally, since it is a generic data generation tool, it can also be adapted by other 
benchmarks in which case the TPC only needs to maintain one data generator. 

The remainder of this paper is organized as follows. Section 2 gives a quick over-
view of the different data generation requirements of TPC-H. Section 3 introduces 
PDGF and develops the metadata file that allows PDGF to generate TPC-H data. It 
also explains some of the modifications that needed to be implemented in PDGF to 
allow for the different data types. In Section 4 a detailed analysis of the data generated 
by PDGF is presented. The paper concludes in Section 5. We have included the two 
metadata files (Appendix A) and all SQL compliance queries (Appendix B) as sup-
porting material to this paper. 

2 Overview Data Generation in TPC-H 

TPC-H models the activity of any industry which manages, sells, and distributes 
products worldwide. It uses a 3rd normal form schema consisting of eight base tables, 
(see Figure 1). They are populated with synthetic data, scaled to a scale factor (SF) 
that determines the size of the raw data outside the database, e.g. SF=1000 means that 

the sum of all base 
tables equals 1 Tera-
byte. Sizes of all 
tables, except for na-
tion and region scale 
linearly with SF (see 
[1,6] for more details 
on TPC-H). 

In order to guaran-
tee that every database 
publication uses the 
same data in the base 
tables, the TPC-H 
specification defines 
the content of every 



 
Figure 2: PDGF Architecture 

column very precisely using the following primitives: Date, Phone Number, Random 
String, Random Value, Random v-String, Text Appended Digit and Text String. Ta-
ble 1 shows how these data generation primitives are used in defining column content. 
For space reasons we only list a representative subset of all TPC-H columns.  For a 
full list of column definition see Clause 4.2 in [6]. In TPC-H the term “random” 
means independently selected and uniformly distributed over the specified range of 
values. 

Table 1: Example usage of data generation primitives in TPC-H 
Column Use of data generation primitive Sample output 
O_Orderdate Date, uniformly distributed between 1992-01-01and 1998-08-02 1995-05-26 
S_Phone Phone Number 16-421-927-9442 
L_Shipinstruct Random String [instructions], where Instructions={DELIVER IN 

PERSON, COLLECT COD,NONE, TAKE BACK RETURN} 
TAKE BACK 
RETURN 

S_Nationkey Random Value [0 .. 24] 23 
S_Address Random v-String[10,40] vs50U4?e5i 
S_Name Text Appended with Digit ["Supplier", S_Suppkey] Supplier5628 
PS_Comment Text String [49,198] dependencies beyo 

3 Implementing TPC-H in PDGF 

PDGF is an extensible Parallel Data Generation Framework, developed at the Univer-
sity of Passau, to generate Exabytes of synthetic data by utilizing deterministic paral-
lel pseudo random number generators. In its current form it is limited to generating 
data for relational database management systems (RDBMS). However, its design can 
be extended to allow for the generation of structurally different data, e.g. XML.  

PDGF’s architecture is designed for large data sets, maximum performance and 
easy extensibility. Figure 2 shows a sample setup with three nodes. The controller, 

executed in the center 
node, reads meta-data 
about the schema, its 
distributions, output 
format and system con-
figuration from XML 
files and initiates the 
data generations by 
spanning multiple 
threads (by default one 
for each core) on each 
node. The scheduler 
divides the work and 
assigns equal sized, 
continuous portions of 
the data to each thread. 
The actual data genera-
tion is done by so called 



<field name="O_ORDERDATE"> 
  <type>java.sql.Types.DATE</type> 
  <generator name="DateGenerator"> 
  <startDate>1992-01-01</startDate> 
  <endDate>1998-08-02</endDate> 
</generator> 

</field> 

Figure 3: Configuration of the DateGene-
rator for O_Orderdate of Order 

generators, which are executed in threads. To generate non-uniform data the system 
features various distributions that can be applied to the random numbers.  

Its unique seeding approach allows PDGF to generate random values for each field 
deterministically. To generate a single value for a column (e.g. name), a hierarchy of 
random number generators is used: TableColumnRow NameGenerator. Even 
for large relational schemas the total number of seeds required can be cached in 
PDGF. This approach enables PDGF to generate all values for all columns of all 
tables independently and deterministically. Dependencies of columns, i.e. Intra-Row 
(e.g. ZIPcity), Intra-Table (e.g. surrogate key sequence) and Inter-Table (e.g. refe-
rential integrity) can be resolved without caching all values or re-reading previously 
generated data back in. For a discussion of the generation of data dependencies please 
refer to [3]. 
In [2] a comparison of the generation speed of DBgen vs. PDGF was presented. Al-
though PDGF is a generic data generator, it has a comparable generation speed to 
DBgen. PDGF includes a range of generators that allow the generation of all common 
relational data types, these include numeric values, random strings and datestamps. 
New generators can be added to PDGF as plug-ins. This is especially useful for 
benchmarks like TPC-H that have very special requirements for its data specification. 
For example, TPC-H has various interdependencies in the data definition and special 
data generation rules. Therefore, a plug-in for TPC-H was implemented that encapsu-
lates all TPC-H specific generators. An actual extension to the PDGF core was a 
cache for the active row. Although in principle all values can be computed it is much 
more efficient to cache a single row than to compute all values several times for a 
single row. This is necessary for intra-row dependencies which can be found for ex-
ample in Part, where P_Retailprice is calculated based on P_Partkey. Besides this 
extension only TPC-H specific generators had to be implemented. The following 
paragraphs give details on the implementation and how to configure PDGF to gener-
ate data for the generation primitives, presented in Section 2. The generation specifi-
cation resembles the relational schema: it is an XML file that contains an element 
table for each table in the schema. Each of the table elements has multiple field sub-
elements. These represent a column in the table. For each table element the PDGF 
will generate a single file in which each row consists a number of fields that is defined 
by the field subelements. 
Appendix A contains a full list of the TPCH.pdgf file that generates the entire data set 
for TPC-H for a given SF. 

Date (min,max): Since date is a fairly common data type in relational data, PDGF 
comes with a generic date generator, called DateGenerator. Figure 3 shows how Da-
teGenerator can be configured to generate O_Orderdate, which are uniformly distri-

buted between 1/1/1992 and 
8/2/1998 (see StartDate and End-
Date tags in the example). To do 
so, it converts the assigned date 
range in milliseconds and scales 
down the random number to the 
given date range in milliseconds. 
There are several other fields that 
require dates. They directly depend 



<field name="S_PHONE"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>15</size> 
  <generator name="PhoneNumberGenerator" /> 
</field> 
Figure 4: Configuration of the PhoneNumberGene-
rator for S_Phone of Supplier  

<field name="O_ORDERPRIORITY"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>15</size> 
  <generator name="DictList"> 
    <file>dicts/priorities.dict</file> 
  </generator> 
</field> 
Figure 5: Configuration of the DictList gene-
rator for O_Orderpriority of Order 

<field name="S_NATIONKEY"> 
  <type>java.sql.Types.INTEGER</type> 
  <generator name="IntGenerator"> 
    <min>0</min> 
    <max>24</max> 
  </generator> 
</field> 
Figure 6: Configuration of the random integer 
number generator of N_Nationkey of Nation 

on other fields. For example L_Shipdate is defined as a date 1 to 121 days after 
O_Orderdate. Similar dependencies are defined for the fields L_Receiptdate and 
L_Commitdate. These intra-row dependencies require special generators that, on the 
fly, look up dates and compute other dates. In Java, these are implemented as sub-
classes of the date generator adding simple date arithmetic to implement the depen-
dency. For faster processing they make use of the row cache and the reference lookup 
in PDGF. 

Phone Number: In TPC-H a phone number is defined as a string constructed of four 
random numbers that are separated by dashes, e.g. 1-650-633-8000. The PhoneNum-

berGenerator, is specifically 
designed for TPC-H. For 
each of the four segments of 
the phone number a separate 
random number is generated 
in the specified interval and 
the numbers are concate-
nated. Since there are no 

further restrictions, the call to PhoneNumberGenerator has no arguments as can be 
seen for the configuration of S_Phone of the supplier table in Figure 4. 

Random String: Random String values are generated by randomly picking one ele-
ment from one or multiple lists. If a single list is used PDGF’s DictListGenerator can 

be used. Figure 5 shows the confi-
guration of the O_Orderpriority 
field, which can be one of {1-
URGENT, 2-HIGH, 3-MEDIUM, 
4-NOT SPECIFIED, 5-LOW}. In 
general it randomly chooses val-
ues from a dictionary with a uni-
form distribution. Other distribu-
tions can be specified explicitly. 

The dictionary is stored in a file, whose name can be specified with the file tag. Fields 
that require multiple lists can be generated with the same generator by creating a dic-
tionary file that contains all combinations of the lists. This is a feasible solution since 
all TPC-H lists contain only few elements. The maximum number of entries is 150 
(see P_Type of the Part table in [6]). For a faster generation PDGF caches dictionaries 
in memory. 

Random Value: Random values can be generated using the IntGenerator. It is called 
with min and max values and an 
optional distribution function, 
such as normal, Gaussian or Zipf. 
TPC-H only requires uniform 
distributions. Figure 6 shows the 
configuration of the S_Nationkey. 
It is randomly picked between 0 
and 24. 



<field name="S_ADDRESS"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>40</size> 
  <generator name="RandomVSTring" /> 
</field> 
Figure 7: Configuration of the Ran-
domVString generator 

<field name="C_NAME"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>25</size> 
  <generator name="TextAppendedWithDigit"> 
    <text>Customer</text> 
    <digitSource>C_CUSTKEY</digitSource> 
  </generator> </field> 

Figure 8: Configuration of the TextAppended-
WithDigit generator of S_Address of Supplier 

<field name="N_COMMENT"> 
  <type>java.sql.Types.VARCHAR</type> 
  <size>117</size> 
  <generator name="TextString"> 
    <min>29</min> 
    <max>116</max> 
  </generator> 
</field> 
Figure 9: Configuration of the TextString 
generator of N Comment of Nation 

Random v-String: In TPC-H 
Random V-string primitive de-
notes a randomly generated string 
over an alphabet of 64 characters. 
The length of the string is un-
iformly distributed between a 10 

and 40. Random v-String is implemented in PDGF with the RandomVString. It ran-
domly chooses the length of the string between the given min and max values and 
then fills the string by randomly picking elements from an alphabet of 64 characters. 
In TPC-H Random v-Strings are used for address fields, such as S_Address. The 
specification for S_Address is depicted in Figure 7. 

Text Appended Digit: In TPC-H the Text Append Digit primitive specifies a field 
that consists of a text fol-
lowed by ‘#’ and a random 
integer number. Most fields 
use this type in connection 
with intra-row dependen-
cies. For example, the name 
of a customer C_Name 
consists of the text “Cus-
tomer”, a ‘#’ sign and value 
of the field C_Custkey of 

the same row. The specification of C_Name can be seen in Figure 8; the digitSource 
element specifies that the value of C_Custkey will be used as the number in the gen-
eration of C_Name. Another special case is the generation of P_Brand, the brand of a 
part. It dependens on P_Mfgr, the manufacturer of a part. Both fields are text, ap-
pended with digits, but the random number of P_Brand is preceded by the random 
number of P_Mfgr of the same row. Since P_Mfgr is not a number, the generator 
cannot simply use the digitSource element. To reduce the computational overhead, 
this is implemented as a special case in the generator. The generator caches the last 
random number of P_Mfgr in order to reuse it in P_Brand. 

Text String: The most difficult primitive in TPC-H is the Text String primitive. It is 
used in multiple comment fields 
such as C_Comment of Customer. 
The generated value is a random 
substring of a 300 MByte pseudo 
text file. The length of the string is 
randomly chosen between speci-
fied upper and lower bounds. The 
offset of the string is also randomly 
chosen. The 300 MByte file is 
populated with a grammar defini-

tion. The grammar emulates the composition of English texts. TPC-H also specifies a 
lists of verbs, nouns, adjectives and the like which are used as terminals for the 
grammar.  



Although it would be possible to cache the pseudo text it can also be computed on 
the fly. The TextString generator loads word lists and generates sentences using the 
specified grammar. For performance reasons the text generator is implemented as a 
singleton object. The XML specification for the TextString generator can be seen in 
Figure 9. A special case of the TextString primitive is used in field S_Comment of 
Supplier. 0.05 percent of S_Comment entries are complaints and 0.05 percent of the 
entries are recommendations. These have to include the string “Customer” followed 
by a random number of characters, followed by either the string “Complaints” or the 
string “Recommends”. In PDGF text for S_Comment is generated using the same 
pseudo text generator as above, additionally complaints and recommendations are 
inserted in the text with given probabilities. 

Apart from these types and their specializations, several custom generators for sin-
gle fields were implemented. These usually have dependencies that make a generic 
implementation inefficient. An example is L_Extendedprice; it is calculated as 
L_Quantity * P_Retailprice, where P_Partkey = L_Partkey in the according rows. 
Obviously, it is easier implement the logic in a generator instead of implementing a 
generic generator that allows these kinds of dependencies. 

4 TPC-H.pdgf Verification 

This section describes our approach to verify whether PDGF, using the attached TPC-
H.pdgf file generates data that complies with the current TPC-H specification, Ver-
sion 2.14.0. To demonstrate functional compliance with the current TPC-H specifica-
tion, we need to analyze whether all columns of all tables contain data that is com-
pliant with Clause 4.2.3 of the specification, which we reviewed in Section 2. First we 
verify the cardinalities in each table, followed by one section for each data primitives: 
Date, Phone Number, Random String, Random Value, Random v-String, Text Ap-
pended Digit, Text String and Unique Value. At the end of these sections, we list 
some columns that do not quite follow the generation primitives. They are in a section 
labeled special cases.  

Most of the primitives refer to the term random. According to the TPC-H specifica-
tion the term “random” means “independently selected and uniformly distributed over 
the specified range of values.” That is, n unique values 𝑉 of a column are uniformly 
distributed if 𝑃(𝑉 = 𝑣) = 1

𝑛
. Since we use pseudo random number generators, perfect-

ly uniform distributions are impossible to guarantee. Hence, we define a column 𝐶 
with n unique values 𝑉 to be uniformly distributed if the coefficient of variation of its 
values is less than 𝜀. Formally, given the mean of 𝑉 as 𝜇 = 1

𝑛
∑ 𝑣𝑖𝑛
𝑖=1 and its standard 

deviation 𝜎 = �∑ (𝑣𝑖 − 𝜇)2𝑛
𝑖=1 , then the following must be true: 𝜎

𝜇
≤ 𝜀. 𝜀 is column 

specific. 𝜀 is not defined in the specification. However, we can obtain 𝜀 for each col-
umn by calculating the coefficient of variation on the data generated by DBgen. 
PDGF data is then compliant if it yields a similar 𝜀.  



SELECT CASE WHEN cnt=SF*S  
            THEN ‘OK’ END 
FROM (SELECT count(*) cnt  
      FROM T); 
Figure 10: Table car- 
dinality compliance query 

Row Cardinalities: The cardinalities of most 
tables depend on the scale factor or their cardi-
nality is fixed. These are: Orders 
(SF*1,500,000), Customer (SF * 150,000), Sup-
plier (SF * 10,000), Part (SF * 200,000) and 
Partsupp (SF * 800,000). The cardinalities of 
nation (25) and region (5) are 
scale factor independent. Veri-
fication of their cardinalities 
can be done with the SQL 
query listed in Figure 10, 
where T is the table name and 
S is its scaling relative to the 
scale factor SF. 

The cardinalities of Linei-
tem, on the other hand, depend 
on the cardinalities of other orders. To each row in the Orders table correspond a 
random number of rows within [1 .. 7] in the Lineitem table. More generally, to each 
row in the parent table P correspond n rows in the dependent table D. For dependen-
cies like this three characteristics need to be analyzed i) Join Frequency. Given that 
each row of the parent table can join between 1 and 7 times to the dependent table, we 
need to calculate the range of join frequencies of parent to dependent rows ii) Coeffi-
cient of the frequency distribution, i.e. the distribution of how often rows of the parent 
table join to the dependent table is uniform. iii) Row counts.  The following two SQL 
statements show how the relationship between Lineitem and Orders can be verified in 
SQL. Running these SQL statements on 100 SF databases, populated with DBgen and 
PDGF shows that the range of the join frequency is one to seven with roughly 21 
Million records each and a coefficient of variation of 0.000197 for DBgen and 
0.000002 of PDGF. The row count differs slightly. Dbgen generates 600,037,902 
rows, while PDGF generates 600,000,000. 
SELECT bucket 
      ,bucketsize 
      ,SUM(bucketsize) OVER  
       (ORDER BY bucket ROWS  
        BETWEEN UNBOUNDED PRECEDING 
    AND CURRENT ROW) TotalBucketsize 
FROM(SELECT bucket 
           ,COUNT(*) bucketsize  
     FROM (SELECT l_orderkey 
                 ,COUNT(*) bucket 
           FROM lineitem 
               ,orders  
           WHERE l_orderkey=o_orderkey  
           GROUP BY l_orderkey)  
     GROUP BY bucket); 

SELECT stddev(bucketsize) 
      /avg(bucketsize) 
FROM(SELECT bucket 
           ,COUNT(*) bucketsize 
     FROM (SELECT l_orderkey 
                 ,COUNT(*) bucket 
           FROM lineitem 
               ,orders 
           WHERE l_orderkey 
                =o_orderkey 
           GROUP BY l_orderkey) 
     GROUP BY bucket); 

Date (min,max): The Date primitive generates a string of numeric characters sepa-
rated by hyphens and comprised of a four digit year, two digit month and two digit 
day of the month, e.g. “1996-04-01”. The TPC-H schema contains four date columns, 
L_Shipdate, O_Orderdate, L_Commitdate and L_Receiptdate. O_Orderdate is gener-
ated with a random date between Startdate and Enddate -151 days, while L_Shipdate, 
L_Commitdate and L_Receiptdate are generated by adding a random number as offset 

Table 2: Cardinalities DBgen and PDGF 
Table Table cardinalities @ SF=100 

Specification DBgen PDGF 
Orders 150 Million 150 Million 150 Million 
Customer 15 Million 15 Million 15 Million 
Supplier 1 Million 1 Million 1 Million 
Part 20 Million 20 Million 20 Million 
Partsupp 80 Million 80 Million 80 Million 
Nation 25 25 25 
Region 5 5 5 

 

 



SELECT MIN(O_Orderdate) 
      ,MAX(O_Orderdate) 
      ,count(distinct O_Orderdate) 
FROM Orders; 

SELECT STDDEV(c)/AVG(c) 
FROM (SELECT O_Orderdate,count(*) c 
      FROM Orders  
      GROUP BY O_Orderdate);  
Figure 11: Sample date column compliance 
query 

 

between to O_Orderdate, i.e. 
l_shipdate = o_orderdate + random 
value [1 .. 121], l_commitdate = 
o_orderdate + random value [30 .. 
90], l_receiptdate = o_orderdate + 
random value [1 .. 30].  

To demonstrate compliance with 
the specification, we need to show 
three data characteristics for each 
date field i) the minimum and max-

imum dates are correct and iii) the date interval is dense, i.e. the number of distinct 
dates equals the number of dates between min and max and iii) the dates are uniform-
ly distributed (see Figure 11). 

Table 3: Comparison Date Distribution DBgen and PDGF 

Column CoV of dates Date Range DBgen Date Range PDGF 
DBgen PDGF Min Max #distinct Min Max #distinct 

O_Orderdate 0.00388 0.00398 1992-
01-01 

1998-
08-02 2406 1992-

01-01 
1998-
08-02 2406 

L_Shipdate 0.17970 0.17969 1992-
01-02 

1998-
12-01 2526 1992-

01-02 
1998-
12-01 2526 

L_Commitdate 0.12762 0.12763 1992-
01-31 

1998-
10-31 2466 1992-

01-31 
1998-
10-31 2466 

L_Receiptdate 0.20888 0.20887 1992-
01-03 

1998-
12-31 2555 1992-

01-03 
1998-
12-31 2555 

Phone Number: The Phone Number primitive generates a string of numeric charac-
ters separated by hyphens and represented as follows: [1 .. 25]"-" [100 .. 999]"-" [100 
.. 999]"-" [1000 .. 9999]. To demonstrate compliance with the specification, each of 
the four sections of the phone number needs to be investigated separately. For each 
we need to determine three characteristics i) the minimum and maximum values ii) 
the number of unique values and iii) whether the values are distributed uniformly. The 
phone number primitive applies to the fields S_Phone and C_Phone. The following 
four SQL statements, one for each section of the phone number field, show how the 
supplier phone number field S_Phone can be verified in SQL: 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,1,2) cc,COUNT(*) CNT  
      FROM supplier  
      GROUP BY SUBSTR(s_phone,1,2)); 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,4,3) cc,COUNT(*) CNT  
      FROM supplier   
      GROUP BY SUBSTR(s_phone,4,3)); 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,8,3) cc,COUNT(*) CNT  
      FROM supplier  
      GROUP BY SUBSTR(s_phone,8,3)); 
SELECT MIN(cc),MAX(cc),COUNT(*),STDDEV(cnt),STDDEV(cnt)/AVG(cnt) 
FROM (SELECT SUBSTR(s_phone,12,4) cc,COUNT(*) CNT  
      FROM supplier  
      GROUP BY SUBSTR(s_phone,12,4)); 

Figure 12: SQL statements to verify compliance of S_Phone data 



Table 4: Comparison Phone fields DBgen and PDGF 
 DBgen PDGF 
Phone# Section MIN MAX Distinct CoV MIN MAX Distinct CoV 
Country Code 10 34 25 0.0042 10 34 25 0.0039 
Area Code 100 999 900 0.0293 100 999 900 0.0288 
Phone # Part 1 100 999 900 0.0308 100 999 900 0.0301 
Phone # Part 2 1000 9999 9000 0.0952 1000 9999 9000 0.0950 
Country Code 10 34 25 0.0011 10 34 25 0.0013 
Area Code 100 999 900 0.0076 100 999 900 0.0078 
Phone # Part 1 100 999 900 0.0077 100 999 900 0.0082 
Phone # Part 2 1000 9999 9000 0.0245 1000 9999 9000 0.0246 

Random String (list_name): 
The Random String primitive 
generates a string selected at 
random within a list of strings 
(list_name). Each string is 
selected with equal probability. 
It applies to columns P_Type, 
P_Container, C_Mktsegment, 
L_Shipinstruct, L_Shipmode 

and O_Orderpriority. For each of these 
fields we need to verify the following two 
data characteristics i) The distinct ele-
ments in the column correspond to the 
TPC-H specific and ii) the distribution of 
the elements is random. Figure 13 shows 
an example how to verify i) and ii) for 
C_Mktsegment using SQL and Table 5 

shows the results for running this type of SQL for all Random String columns. For a 
list of SQL statements for all other columns using the Random String primitive, 
please refer to Appendix B 

Random Value (min,max): The Random Value primitive defines random values 
between min and max inclusively, with a mean of (min+max)/2. The columns using 
this primitive are P_Size, Ps_Availqty, Ps_Supplycost, C_Acctbal, L_Partkey, 
C_Nationkey L_Discount, L_Tax, L_Quantity, S_Nationkey and S_Acctbal. For each 
column we need to verify three  characteristic i) min and max values ii) number of 
distinct values and iii) coefficient of variation of the value probabilities. The follow-
ing two SQL statements verify S_Nationkey column, a foreign key to the Nation table 
in Supplier. For a list of SQL statements for all columns using the Random Value 
primitive, please refer to Appendix B. 
SELECT MIN(S_Nationkey),MAX(S_Nationkey),COUNT(DISTINCT S_Nationkey) 
FROM Supplier; 

SELECT STDDEV(cnt)/AVG(cnt)  
FROM (SELECT S_Nationkey,COUNT(*) cnt  
      FROM SUPPLIER GROUP BY S_Nationkey); 

Figure 14: SQL statements to verify compliance of S_Nationkey data 

SELECT UNIQUE C_Mktsegment  
FROM CUSTOMER; 

SELECT STDDEV(cnt)/AVG(cnt)  
FROM (SELECT C_Mktsegment mseg 
            ,COUNT(*) cnt  
      FROM customer  
      GROUP BY C_Mktsegment); 
Figure 13: SQL to verify com-
pliance of C_Mktsegment data 

Table 5: CoV of Random String values 
Column CoV Idential  

List_name DBgen PDGF 
P_Type 0.00280 0.00293 Yes 
P_Container 0.00142 0.00131 Yes 
C_Mktsegment 0.00062 0.00054 Yes 
L_Shipinstruct 0.00008 0.00012 Yes 
L_Shipmode 0.00011 0.00012 Yes 
O_Orderpriority 0.00012 0.00009 Yes 

 

 



Table 6: CoV or Random Values 
 DBgen PDGF 
Column MIN MAX Distinct CoV MIN MAX Distinct CoV 
P_Size 1 50 50 0.00151 1 50 50 0.00149 
Ps_Availqty 1 9999  9999  0.01083 1 9999  9999  0.10003 
Ps_Supplycost 1.00 1000.00 99901 0.03469 1.00 1000.00  99897 0.31573 
C_Acctbal -999.99 9999.99 1099998 0.26985 -999.99 9999.99 1099999  0.27089 
L_Partkey 1 20e6  20e6 0.15503 1 20e6 20e6 0.18264  
C_Nationkey 0 24 25 0.00105 0 24 25 0.00110 
L_Discount 0 0.1 11 0.00011 0 0.1 11 0.00012 
L_Tax 0 0.08 9 0.00007 0 0.08 9 0.00014 
L_Quantity 1 50 50 0.00028 1 50 50 0.00032 
S_Nationkey 0 24 25 0.0042 0 24 25 0.00519 
S_Acctbal -999.99 9999.98 656803 0.50379 -999.99 9999.98 656803 0.50393 

Random v-String: A Random v-String primitive represents a string comprised of 
randomly generated alphanumeric characters within a character set of at least 64 sym-
bols. The length of the string is a random value between values min and max inclu-
sive. Columns using this data generation primitive are the address columns: 
C_Address, S_Address, C_Address. For each column we need to determine three data 
characteristics i) domain over which the strings are generated ii) are the strings picked 
randomly? iii) min, max length of each string and distribution of length across all 
fields. i) can be determined with SQL in Figure 15. ii) can be determined with the 
SQL in  
SELECT SUM(LENGTH(S_Address)-LENGTH(REPLACE(S_Address,CHR(1),''))) S0 

      ,SUM(LENGTH(S_Address)-LENGTH(REPLACE(S_Address,CHR(1),''))) S1 
      ,… 
      ,SUM(LENGTH(S_Address)-LENGTH(REPLACE(S_Address,CHR(1),''))) S255 
FROM SUPPLIER; 
Figure 15: SQL statement to verify compliance of v-String data 

SELECT STDDEV(Col)/AVG(Stddev)FROM( 
SELECT SUM(LENGTH(s_address)-LENGTH(REPLACE(s_address,CHR(1),''))) COL 
FROM SUPPLIER 
UNION ALL 
      ,SUM(LENGTH(s_address)-LENGTH(REPLACE(s_address,CHR(1),''))) COL 
FROM SUPPLIER 
UNION ALL 
,… 
SELECT SUM(LENGTH(s_address)-LENGTH(REPLACE(s_address,CHR(1),''))) COL 
FROM SUPPLIER);  

Figure 16: SQL compliance query to determine random distribution of characters 
Select min(length(s_address) 
      ,max(length(s_address) 
      ,stddev(length(s_address)/avg(length(s_address) 
From supplier; 

Figure 17: SQL compliance query to determine minimal, maximal length and length 
distribution  

Text Appended with Digit: The Text Appended with Digit primitive represents a 
string generated by concatenating a sub-string text with a number. Columns using this 
primitive are S_Name, C_Name, P_Mfgr, P_Brand and O_Clerk. Columns S_Name 
and C_Name append the content of another column (of the same row), while p_Mfgr, 



SELECT MIN(S_Suppkey) 
      ,MAX(S_Suppkey) 
      ,COUNT(DISTINCT S_Suppkey) 
      ,COUNT(S_Suppkey) 
FROM Supplier; 

Figure 20: SQL to verify Unique Values 

Table 7: CoV of Text Appended with Digit values 
Column CoV Specification PDGF 

DBgen PDGF min/max min/max 
O_Clerk 0.02587 0.02587 1 100000 1 100000 
P_Mfgr 0.00031 0.00033 1 5 1 5 
P_Brand 0.00044 0.00043 1 5 1 5 
 

P_Brand and O_Clerk append a random number within min and max. To demonstrate 
compliance with the speci-
fication of columns append-
ing the value of another 
column, we need to demon-
strate that the appended 
value is equal to the value 
of the other column. Figure 

18 shows a compliance query that counts the number of rows where the values are 
different. A result of 0 indicates compliance with the specification. To demonstrate 
compliance with the specification of columns adding a random number, we need to 
demonstrate three data characteristics i) the minimum and maximum values of the 
appended number correspond to the min and max values of the specification; ii) the 
number of distinct values and iii) the values are distributed randomly. Figure 19 
shows a compliance query that computes the minimum and maximum values, the 
number of distinct values and the coefficient of variation of the distribution of the 
values between minimum and maximum. For a list of all columns using the Text 
Appended with Digit primitive, please refer to Appendix Error! Reference source 
not found.. 
select sum(case when s_suppkey = col then 0 else 1 end) 
from (select to_number(substr(s_NAME,10,length(s_NAME)-9)) col 
            ,s_suppkey 
      from supplier); 

Figure 18: Compliance query for Text with Append Digit primitive (column)  
select min(col) 
      ,max(col) 
      ,count(*) 
      stddev(cnt)/avg(cnt) 
from (select to_number(substr(o_clerk,10,length(o_clerk)-9)) col 
            ,count(*) cnt  

      from orders  
      group by to_number(substr(o_clerk,10,length(o_clerk)-9))); 
Figure 19: Compliance query for Text with Append Digit primitive (random number) 

Unique Value (min,max): The 
Unique Value primitive generates 
unique values between 1 and x. 
Columns using this primitive are 
S_Suppkey [1 .. sf * 10,000], 
P_Partkey [1 .. sf * 200,000], 
C_Custkey [1 .. sf * 150,000], N_Nationkey [0 .. 24], R_Regionkey [0 .. 4] and 
O_Orderkey [1 .. sf * 1,500,000 * 4]. O_Orderkey has an additional requirement, as 
only the first 8 keys of each 32 are to be populated. For each column we have to veri-
fy four data characteristics i) minimum value ii) maximum values iii) number of dis-
tinct values and iv) number of rows. Data is generated correctly if the minimum and 
maximum values correspond to the specification and the number of distinct values 
equals the number of rows. The following table lists the result of the Query listed in 
Figure 20 for Dbgen and PDGF. 



SELECT COUNT(*) 
FROM (SELECT MOD(O_ORDERKEY,9) 
MODVALS  
      FROM ORDERS )  
WHERE MODVALS <= 8; 
Figure 21: SQL to check the sparsely 
populated O_Orderkey 

SELECT MIN(l) 
      ,MAX(l) 
      ,STDDEV(c) 
       /AVG(c) 
FROM(SELECT  
     LENGTH(L_Comment)l 
    ,COUNT(*) c 
     FROM Lineitem; 
Figure 22: SQL to check 
compliance of L_Co-
mment 

Table 9: CoV of Random Text Strings 
Column CoV Spec PDGF 

DBgen PDGF min/max min/max 
L_Comment 0.00024 0.00023 10 43 10 43 
O_Comment 0.00057 0.00032 19 78 19 78 
S_Comment 0.00850 0.00477 25 100 25 100 
P_Comment 0.00087 0.00056 5 22 5 22 
PS_Comment 0.00124 0.00073 49 198 49 198 
C_Comment 0.00247 0.00143 29 116 29 116 
N_Comment 0 0 31 114 31 114 
R_Comment 0.4 0.4 31 115 31 115 
 

Table 8: Results of Unique Value tests for all affected columns 
 TPC-H Specification (@SF=100) PDGF 
Column MIN MAX Distinct MIN MAX Distinct Count 
S_Suppkey 1 1000000 1000000 1 1000000 1000000 1000000 
P_Partkey 1 20000000 20000000 1 20000000 20000000 20000000 
C_Custkey 1 15000000 15000000 1 15000000 15000000 15000000 
N_Nationkey 0 24 25 0 24 25 25 
R_Regionkey 0 4 5 0 4 5 5 
O_Orderkey 1 6E+08 1.5E+08 1 6E+08 1.5E+08 1.5E+08 

In addition to the above, for O_Orderkey 
we need check that the keys are only 
sparsely populated, i.e. only the first 8 
keys of every 32 keys are used. The fol-
lowing SQL statement counts the number 
of keys that fall in residue classes small or 
equal than 8. If this query returns the same 

number of rows than the total number of rows (last column in Table 5), then only the 
first 8 keys of every 32 keys are populated. For a list of all columns using the Unique 
Value primitive see Appendix B. 
Random Text Strings (min,max) is a pseudo English text generated over a fixed 
dictionary following the  grammar defined in Clause 4.2.2.14.  In order to assure that 
the text was generated with the grammar in Clause 4.2.2.14 one would need to write a 
parser for the grammar. Since the grammar of the text is not exploited in the bench-
mark, the authors believe that by checking i) the minimum length ii) the maximum 
length and iii) the uniqueness and the uniform distribution of the length, suffices to 
assure compliance with the specification. SQL in Figure 22 checks this.  

4.1 Special Cases 

O_Shippriority should be set to 0 for all orders. Compliance with the TPC-H specifi-
cation can be checked with the following simple SQL query: 
SELECT CASE WHEN c=0 THEN ‘OK’ END FROM (SELECT count(*) c from orders); 

The above query shows OK for DBGen and PDGF on a SF=100 database. 

L_Returnflag is set to “R” or “A” if L_Receiptdate <= Currentdate. Otherwise it is 
set to "N". The following SQL query counts the number of rows with L_Returnflag 



equal to R, A and N when L_Receiptdate is less or equal than currentdate and when 
L_Receiptdate is greater than currentdate. If the following SQL query returns 0 for 
lessAndN, largerAndR and largerAndA, then L_Returnflag conforms to TPC-H:  
SELECT SUM(CASE WHEN L_Receiptdate<=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'R' THEN 1 ELSE 0 END) lessAndR 
      ,SUM(CASE WHEN L_Receiptdate<=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'A' THEN 1 ELSE 0 END) lessAndA 
      ,SUM(CASE WHEN L_Receiptdate<=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'N' THEN 1 ELSE 0 END) lessAndN 
      ,SUM(CASE WHEN L_Receiptdate>TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'R' THEN 1 ELSE 0 END) largerAndR 
      ,SUM(CASE WHEN L_Receiptdate>TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'A' THEN 1 ELSE 0 END) largerAndA 
      ,SUM(CASE WHEN L_Receiptdate>TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Returnflag = 'N' THEN 1 ELSE 0 END) largerAndN 
      ,COUNT(*) CNT 
from lineitem; 

Figure 23: SQL compliance query for L_Returnflag 
The above query shows returns 0 for lessAndN, largerAndR and largerAndA for 

DBGen and PDGF on a SF=100 database. DBGen and PDGF show a count of 0 for 
this query. 

P_Retailprice is set to P_Retailprice = (90000 + ((P_Partkey/10) modulo 20001 ) + 
100 * (P_Partkey modulo 1000))/100. The following SQL query counts the number of 
rows where P_Retailprice is not computed correctly: 
SELECT SUM(CASE WHEN P_Retailprice-(90000+(MOD((P_Partkey/10),20001)) 
                                    +100*(MOD(P_Partkey,1000)))/100 
                THEN 1 ELSE 0 END) cnt 
from part; 

Figure 24: SQL compliance query of P_Retailprice 
L_Linestatus is set to "o" if l_Shipdate > currentdate, to "f" otherwise. The following 
SQL query counts the correct cases where L_Linestatus should be set to O and F. If 
the sum of largerAndO and lessOrEqualAndF equals cnt, then L_Linestatus conforms 
to the TPC-H specification. DBGen and PDGF show pass this query test on a SF=100 
database. 
SELECT SUM(CASE WHEN L_Shipdate >TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Linestatus='O'THEN 1 ELSE 0 END)largerAndO 
      ,SUM(CASE WHEN L_Shipdate <=TO_DATE('1995-06-17','YYYY-MM-DD') 
                 AND L_Linestatus='F'THEN 1 ELSE 0 END)lessOrEqualAndF 
      ,COUNT(*) cnt 
From Lineitem; 

Figure 25: SQL compliance query for L_Linestatus 

P_Name is generated by concatenating five unique randomly selected strings from a 
list of colors (see Clause 4.2.3 of the TPC-H specification for details). Verifying 
P_Name is not straight forward in SQL. One needs to extract all five colors and then 
check pair wise for duplicates. The following SQL query counts the number of rows 
with duplicate colors in P_Name. A result of 0 signifies compliance with the TPC-H 
specification. Both Dbgen and PDGF show 0 for this query. 



SELECT SUM(CASE WHEN C1=C2 OR C2=C3 OR C3=C4 OR C4=C5 OR C2=C3 
                     OR C2=C4 OR C2=C5 OR C3=C4 OR C3=C5 OR C4=C5 
               THEN 1 ELSE 0 END) 
FROM (SELECT SUBSTR(P_Name,1,SA-1) C1,SUBSTR(P_Name,SA+1,SB-SA) C2 
            ,SUBSTR(P_Name,SB+1,SC-SB) C3,SUBSTR(P_Name,SC+1,SD-SC) C4 
            ,SUBSTR(P_Name,SD+1,LENGTH(P_Name)-SD+1) C5 
      FROM (SELECT P_Name  
                  ,INSTR(P_Name,' ',1,1) SA ,INSTR(P_Name,' ',1,2) SB 
                  ,INSTR(P_Name,' ',1,3) SC ,INSTR(P_Name,' ',1,4) SD 
            FROM Part)); 

Figure 26: SQL compliance query for P_Name 

O_Totalprice is computed as sum(L_Extendedprice*(1+L_Tax)*(1-L_Discount)) for 
all Lineitem of this order. In order to verify O_Totalprice we need to join Orders with 
Lineitem and calculate the sum. The following SQL query verifies this for all rows: 
SELECT COUNT(*) 
FROM(SELECT O1.O_Orderkey OK, SUM(L1.L_Extendedprice  
                              *(1+L1.L_Tax)*(1-L1.L_Discount)) TP 
     FROM Lineitem L1,Orders O1 
     WHERE L1.L_Orderkey=O1.O_Orderkey 
     GROUP BY O1.O_Orderkey),Orders O2 
WHERE OK<>O2.O_Orderkey And O2.O_Totalprice<>TP; 

N_Nationkey, N_Name, N_Regionkey is statically to a list of combinations. This list 
of combinations is defined in Clause 4.2.3. Both DBgen and PDGF generate a correct 
set of combinations. 

R_Regionkey, R_Name is statically to a list of combinations. This list of combina-
tions is defined in Clause 4.2.3. Both DBgen and PDGF generate a correct set of 
combinations. 

Ps_Suppkey defined as (PS_Partkey+(i*((S/4)+(int)(PS_Partkey-1 )/S)))) modulo 
S+1, where i is the i-th  supplier within [0 .. 3] and S = SF * 10,000. The following 
verifies compliance of PS_Suppkey for scale factor 100. If the values of Matching and 
Cnt are identical PS_Suppkey is generated in compliance with the specification. Both 
DBgen and PDGF generate compliance data for PS_Suppkey.  
SELECT SUM (CASE WHEN (Ps_Suppkey=MOD(Ps_Partkey+0*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                   OR (Ps_Suppkey=MOD(Ps_Partkey+1*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                   OR (Ps_Suppkey=MOD(Ps_Partkey+2*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                   OR (Ps_Suppkey=MOD(Ps_Partkey+3*((1000000/4) 
                           +(TRUNC((Ps_Partkey-1)/1000000))),1000000)+1) 
                 THEN 1 ELSE 0 END) Matching 
       ,COUNT(*) Cnt FROM Partsupp; 

Figure 27: SQL compliance query for Ps_Suppkey 

5 Conclusion 
In this paper, we have shown that TPC-H equivalent data can be generated with the 
generic data generator PDGF. First we analyzed the generation requirements of TPC-



H data and showed how they can be implemented using PDGF. The complete confi-
guration file for PDGF is given as supported material to this paper. To proof that our 
PDGF implementation is compliant with the current TPC-H specification (Version 
2.14.2), we first developed a mathematical way to determine compliance based on the 
coefficient of variation, minimum, maximum values, among others. We also provided 
SQL statements to calculate these values. Examples of these statements are given in 
the paper, while a complete list is given as supporting material. Using scale factor 
100, we generated a complete data set with both DBgen and PDGF.  
Running the compliance queries on the scale factor 100 database showed that both 
tools generate data that is compliant with the specification. All minimum, maximum 
values and distributions in general are identical between the two tools. One of the 
major characteristics of TPC-H’s data is that it is distributed uniformly. This is very 
important as the benchmark’s execution rules rely on it. Our indicator for uniform 
distribution has been defined as the coefficient of variation (CoV). DBgen shows a 
wide range for the CoV of various colums. For instance, the CoV of the distribution 
of lineitem to orders is 0.000197 while the CoV of L_Partkey is 0.15503. It is up to 
the TPC to decide whether these CoV are specification conforming. For the sake of 
this paper, however, it is only important whether the data PDGF generates has the 
same or better CoV. Our data shows that in most cases the CoV of PDGF data is bet-
ter than that of DBgen data. Only in a few cases, DBgen generates data with a lower 
CoV. For instance, Ps_Supplycost shows a CoV of 0.31573 with PDGF and 0.03469 
with DBGen. In time for the completion of this paper we were not able to fully inves-
tigate these cases. We hope to have completed this work by the time of the workshop. 

Apart from data generation itself, PDGF has many advantages over DBgen. Since it 
is written in the platform independent language Java, it is very portable to new, 
emerging platforms. Due to its popularity, Java programming expertise is high 
amongst contractors and companies alike. Its generic nature, i.e. its separation into a 
data generation engine and a file defining the metadata about the data to be generated 
also suggests that PDGF could be the default data generator for the TPC. This will 
reduce development cost of new benchmarks and maintenance cost of existing 
benchmarks. Finally, previous studies have shown that PDGF is able to generate tera-
bytes of data quicker than tools currently deployed by the TPC [2].  
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