
adfa, p. 1, 2011. 
© Springer-Verlag Berlin Heidelberg 2011 

From BigBench to TPCx-BB: Standardization of a Big 
Data Benchmark 

Paul Cao1, Bhaskar Gowda2, Seetha Lakshmi3, Chinmayi Narasimhadevara4, Patrick 
Nguyen5, John Poelman6, Meikel Poess7, Tilmann Rabl8,9   

1Hewlett Packard Enterprise, 2Intel Corporation, 3Actian Corporation,  
4Cisco Systems Inc., 5Microsoft Corporation, 6IBM, 7Oracle Corporation,  

8Technische Universität Berlin, 9DFKI GmbH 

Abstract. With the increased adoption of Hadoop-based big data systems for the 
analysis of large volume and variety of data, an effective and common benchmark 
for big data deployments is needed. There have been a number of proposals from 
industry and academia to address this challenge. While most either have basic 
workloads (e.g. word counting), or port existing benchmarks to big data systems 
(e.g.TPC-H or TPC-DS), some are specifically designed for big data challenges. 
The most comprehensive proposal among these is the BigBench benchmark, re-
cently standardized by the Transaction Processing Performance Council as 
TPCx-BB. In this paper, we discuss the progress made since the original 
BigBench proposal to the standardized TPCx-BB. In addition, we will share the 
thought process went into creating the specification, challenges in navigating the 
uncharted territories of a complex benchmark for a fast moving technology do-
main, and analyze the functionality of the benchmark suite on different Hadoop- 
and non-Hadoop-based big data engines. We will provide insights on the first 
official result of TPCx-BB and finally discuss, in brief, other relevant and fast 
growing big data analytic use cases to be addressed in future big data bench-
marks. 

1 Introduction 

Organizations are increasingly beginning to value big data analytics for improving busi-
ness, reducing the risks, and solving business challenges.  At the same time, they are 
faced with a number of big data technology and solution options such as: MapReduce, 
Spark, NoSQL databases, SQL on Hadoop databases, and Flink. Choosing the right 
technology (or set of technologies) is critical for their success. A standardized bench-
mark that can be used to evaluate the performance of different big data technologies 
can greatly help organizations choose the right solution. 
Influenced by Moore’s law, the rapidly evolving computing and storage landscape en-
ables companies to analyze their data for half the cost every two years. Many companies 
hope to improve their business model by collecting increasing amounts of data and 
employing techniques related to big data. Although traditional database systems pro-
vide means to store large amounts of data, these have to generally need be in a struc-
tured format. In recent years, a large ecosystem of big data tools has evolved, which is 



targeted at analyzing the growing amounts of data, structured, semi-structured, or un-
structured. 
While database systems are well established and their performance is understood by 
companies, there is no easy methodology to compare, the plethora of big data systems 
with their many interfaces, APIs, and query languages. In certain situations a scalable 
big data system can be outperformed by a laptop for real problem sizes [1], emphasizing 
the need to improve efficiency of scalable big data systems.  
Trying to keep up with this rapidly moving trend, customers have the difficult task on 
their hands to compare cross-platform solutions in order to select the right hardware 
and software for their big data needs. They rely on industry standard benchmarks to 
educate, inform and guide making these decisions. An absence of such performance 
analysis tools in form of standardized benchmarks has magnified customer difficulties, 
thus motivating the industry to take necessary actions to fill the void. 
BigBench [2] was proposed to fill this gap, it set in motion efforts to create an end to 
end benchmark for big data analytics systems. While it comes with a concrete default 
implementation, the rules are very flexible regarding the type of systems this work can 
be run on and how the workloads can be implemented. 
Thanks to member companies in the benchmark sub-committee under Transaction Pro-
cessing Council (TPC), who contributed significant effort in drafting the specification 
and provide a readily usable benchmark kit, TPCx-BB progressed from being a scien-
tific proposal [2] to an industry standard big data analytics benchmark in a span of two 
and half years.  
In this paper, we describe the process towards a standardized benchmark and show how 
this process worked for BigBench. In particular, we have the following contributions: 

• We give a detailed update of the benchmark and the changes that we required for the 
standardization.  

• We present the first official benchmark submission and give an analysis on the re-
sults. 

• We give an overview of existing BigBench implementations and compare them 
based on completeness. 

The rest of the paper is structured as follows. In the next section, we give a brief over-
view of different big data benchmarking proposals.  In Section 3, we present TPCx-BB 
and in Section 4, we describe its standardization process. Section 5 presents TPCx-BB 
experiments using different big data frameworks. Section 6 gives an outlook on future 
big data benchmarks and workloads. Section 7 concludes the paper. 
 

2 Related Work 

While several benchmarks for big data systems have been proposed, and discussed, 
most of them are either simplistic (e.g., limited to sorting or counting) or collections of 
simple use cases rather than end-to-end, application-level benchmarks. While these 
component benchmarks are good to test individual parts of a big data system, they can-



not provide a holistic view of the performance of the system under test. And more im-
portantly, none of these benchmarks have been discussed and reviewed under the um-
brella of benchmark standardization organizations. 
The Transaction Processing Performance Council1 (TPC) understood this need and 
worked on several benchmarks for the big data space. As a stop-gap solution for 
MapReduce systems, TeraSort was standardized in TPCx-HS [3]. It is capable of indi-
cating the basic I/O and network throughput of a MapReduce deployment but has lim-
ited other information value. Another ongoing work is the revision of TPC-DS [4] for 
big data systems. To this end, TPC-DS was adapted in Version 2 to accommodate the 
limitations of current “SQL on Hadoop” systems such has Apache Hive, Apache 
SparkSQL, and  Apache Impala. 

3 TPCx-BigBench (TPCx-BB) 

Prior workshops on big data benchmarking have concluded that for successful adop-
tion, a benchmark should have some relevance to their use cases, simple to implement, 
and easy to execute [5]. The TPC has a track record of publishing valuable and widely 
adopted benchmarks for measuring the performance of database systems. TPC-C, TPC-
H, and TPC-DS are noteworthy enterprise benchmarks. Recently the TPC provides an-
other option called as ‘TPC Express’ standard. Express benchmarks provide ready to 
run workloads to be executed on specific products. Here workload is bundled in the 
form of benchmark kits that are ready to run on a number of pre-selected platforms. 
The express benchmark model is very promising as it will lower the entry cost for test 
sponsors publishing the benchmark results. However, commitment of resources is re-
quired from the kit sponsor to develop, maintain, support and ratify the kit with in the 
sub-committee, for the lifetime of the kit. In designing the benchmark for big data sys-
tems, the TPC applied the lessons distilled from the making of previous successful and 
not so successful benchmark specifications. For example, with over 250 audited results 
publications and an even a larger number of publications that had used the benchmark 
to quantify and demonstrate performance gains from specific HW/SW enhancements, 
TPC-H is a widely successful benchmark, even though it has been criticized for not 
being representative of real world decision support workloads at high scale factors. In 
contrast, there has not been a single audited results published for TPC-DS benchmark, 
a richer and more comprehensive decision support benchmark, addressing the deficien-
cies in TPC-H and has been available since 2006.  The success and popularity of TPC-
H can be attributed to its relative simplicity (8 tables and 22 queries) and timeliness 
when the database industry was making rapid advances in the data warehousing space 
and was in need of a relevant benchmark. On the other hand, with TPC-DS, it is a 
daunting task for end users to comprehend all the 99 queries, the rules for data refresh, 
the complex business problems designed to model and to analyze their performance.  
There have been some research publications or competitive analysis using only a subset 
(or modified versions) of the TPC-DS queries [6].  
Balancing the thoroughness of an enterprise benchmark with the flexibility of an ex-
press benchmark while keeping the benchmark complexity under check, the TPCx-BB 
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[7] took a middle of the road approach, in that it limited the number of queries to 30. 
To keep the benchmark relevant for the big data analytics use cases, the 30 queries are 
distributed to operate on structured, semi-structured, or unstructured data and using 
pure HIVE queries, MapReduce, natural language processing, or machine learning li-
braries. Further, to promote easy and quick adoption of the benchmark, a self-contained 
kit of the TPCx-BB is made freely available for download from the TPC website2. This 
kit can be used to measure the performance of Hadoop based systems including MapRe-
duce, Apache Hive, and Apache Spark Machine Learning Library (MLlib). 

3.1 TPCx-BB Overview 

 
TPCx-BB is a big data batch analytics benchmark inspired by TPC-DS. The benchmark 
which models aspects of commercial decision support systems for a retail business. 
TPC-DS consists a snowflake schema representing three sales channels, (store, web, 
catalog, and online. Each with a sales and a returns table) and inventory fact table. The 
TPCx-BB uses the store and online distribution channels of TPC-DS and augments it 
with semi-structured and unstructured data. The prototype proposal of TPCx-BB was 
been discussed in detail [8].  

3.2 Benchmark Kit 

The kit is the first application-level benchmark suite specifically designed to measure 
the performance of big data analytics systems. TPCx-BB measures the performance of 
Hadoop-based systems including MapReduce, Apache Hive, and Apache Spark and its 
machine learning library MLlib, and is publicly available for download as a self-con-
tained kit via the TPC Web site. 
TPCx-BB’s benchmark kit is self-contained to have minimal requirements on external 
software dependencies and able to run ‘out of the box’ on the system under test (SUT). 
The kit is modular and it supports extensibility to new frameworks (i.e. collection of 
Big Data software/hardware components) can be easily added. The kit consists of three 
major components as shown in Figure 1, i) the benchmark driver, ii) the workload iii) 
the data generator.  

Benchmark Driver. Imple-
mented using Java and Bash 
scripts, the versatile bench-
mark driver is the heart of the 
kit. It orchestrates the work-
flow involved in executing 
the benchmark on the SUT. 
Support for running multiple 
concurrent query streams, au-
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Figure 1 Benchmark Kit 



tomated answer set validation, SUT configuration details, and computing the bench-
mark score are done seamlessly at various phases during the benchmark execution. Ad-
ditionally, the driver exposes hooks for integrating new frameworks as needed. An ad-
vanced mode the benchmark driver provides options to run the complete benchmark or 
individual queries for testing and optimization purposes. 

Data Generator. The kit includes a parallel data generator based on the Parallel Data 
Generation Framework [9] to generate the input data set required for the benchmark. It 
is implemented as a Java program that runs as a MapReduce job on the SUT and can 
generate hundreds of terabytes of data in a relatively short time.  

Workload. The kit is designed to have self-contained modules for each framework 
capable of running the TPCx-BB. All necessary binaries, configuration files, and an-
swer set reside inside the framework module. This makes it easy for kit maintenance 
and help minimize the impact of adding new frameworks on existing kit modules. Ad-
dressing the complexity of big data frameworks and understanding the need to tune and 
optimize the benchmark, various configuration files provide sufficient hooks to tune 
the full benchmark or each individual queries by passing run time optimization param-
eters. Spark machine learning library suite is used for those queries invoking machine 
learning stages. OpenNLP framework is packaged with the kit for procedural programs 
invoking natural language processing. 

3.3 Supported Big Data Frameworks 

Big Data Ecosystem. Big data has transformed industries and research, spawning new 
solutions for addressing a wide range of technical challenges. Big data ecosystem today 
offers different end-to-end analytic strategies, scale-up frameworks for operational an-
alytics, and scale-out platforms for advanced analytics. 
Scale-up frameworks offer vertically integrated analytical workflows for medium scale 
big data datasets, e.g. database, data warehousing and online analytical systems. Scale-
out frameworks on the other hand offer an array of frameworks closely mimicking high 
performance computing systems for analytics workflows requiring processing large 
complex datasets, e.g., MapReduce, Spark.  
There are a number of execution frameworks that are part of the Hadoop ecosystem, 
including MapReduce, Spark, Tez, Flink, Storm, and Samza, each with its own 
strengths and weaknesses. Initially Hadoop was developed as a special-purpose infra-
structure for big data with MapReduce handling massive scalability across hundreds or 
thousands of servers in a cluster. A number of vendors have developed their own dis-
tributions, adding new functionality or improving the code base derived from the 
Apache open source community. The most popular of these distributions are Cloudera, 
Hortonworks, MapR and IBM BigInsights each with their unique set of offerings. 

SQL on Hadoop. One of the three V's used to describe Big Data is "Variety."  Despite 
the diversity of data stored in Big Data systems, much of it still structured or can be 
transformed into a form with enough structure that a broad range of useful queries can 



be expressed in SQL. Evidence that SQL is still popular in the big data space can be 
seen in the plethora of SQL on Hadoop offerings available today. Some of these SQL 
engines for big data were built from the ground up to address big data problems, but 
many have a much longer history.  For example, traditional database vendors including 
Oracle, Teradata and IBM have come out with versions of their SQL engines that run 
on Hadoop clusters. 
   
One of the earliest and perhaps the most widely known SQL on Hadoop engines is 
Apache Hive.  Hive supports a SQL-like language called HiveQL. Hive can execute 
queries using MapReduce2, Tez, or Spark. The TPCx-BB kit supports execution of the 
benchmark using Hive in all three of these frameworks. Besides Hive, there are several 
other SQL engines in open source, such as Apache Drill, Apache Phoenix, SparkSQL, 
Cloudera Impala, Teradata Presto, and Pivotal Hawq. Work is being done to have 
SparkSQL to fully support TPCx-BB, at the time of writing this paper, SparkSQL with 
help of support patches can successfully run all 30 queries. With the release of Spark 
2.0, it is expected TPCx-BB should be able run on SparkSQL with no additional 
patches. 

Non Hadoop Frameworks. TPCx-BB is a good fit for engines designed for processing 
or aggregating large amounts of data and that can either natively execute the machine 
learning and natural language processing required by BigBench, or can call out to other 
engines or frameworks such as Spark.  
Since TPCx-BB kit has a pluggable architecture, support for additional SQL engines 
can be added over time.  In fact, any engine capable of answering the 30 BigBench 
queries is a candidate for inclusion in the kit.  The query syntax used by a given engine 
does not matter, since TPCx-BB allows the 30 use cases to be expressed in any SQL-
like query language or natively written programs.  However, since the queries are al-
ready expressible and available in HiveQL, developing implementations for SQL over 
Hadoop engines is usually straight forward and less involved than for engines whose 
query syntax is not similar to SQL. The benchmark prototype was implemented on two 
non-Hadoop frameworks, namely Apache Flink and Metanautix. As a matter of fact, 
the first BigBench prototype was actually implemented in Teradata Aster SQLMR. 
Apache Flink is a big data streaming dataflow processing engine compatible to the Ha-
doop stack. It is based on the Stratosphere project [10]. Flink combines MapReduce 
functionality (e.g., schema flexibility and rich user defined functions) with techniques 
from traditional relational database management (e.g., query optimization, custom 
memory management, and pipelined processing) and adds dataflow and iterations. 
While having a different architecture, it offers similar functionality as Apache Spark 
and is, therefore, a candidate for a comparative benchmark implementation.  
Quest is a massively distributed query processing engine offering from Metanautix, part 
of Microsoft. Quest is fully ISO/ANSI SQL’99 compliant, with a several extensions. It 
natively supports document data structures The Quest engine also connects to many 
data sources and extends the industry-standard Parquet columnar format with statistics 
for faster processing. User-defined functions can be written in LUA, C#, Java, Python, 
or SQL. A SQL extension, called Pipelines, is used to group SQL statements for more 
complex processing, such as the Pearson correlation, or K-Means (see Appendix A). 



Prototype implementations of the benchmark on Flink and Quest, proves TPCx-BB is 
capable of working on non-Hadoop frameworks. TPCx-BB are open to new implemen-
tations, where TPCx-BB can be used to compare the performance and scalability of big 
data offerings and drive innovation in this space.  

TPCx-BB in the cloud. At the high level TPCx-BB does not differentiate running the 
benchmark on SUT hosted in a datacenter or in the cloud. In the case of Infrastructure 
as a Service (IaaS) offerings from various cloud vendors, the benchmark can run with 
right framework and version requirements are met. In the past, the benchmark was run 
in Amazon AWS using different Hadoop distributions. However, on Big Data as a Ser-
vice (BDaaS) offerings where the big data framework is an integrated offering, the 
benchmark is yet to be tested, examples of such offerings are Amazon Elastic MapRe-
duce and the Databricks Cloud. For a fully valid result, where a test sponsors uses 
TPCx-BB on BDaaS for results publication, it should be noted, that the benchmark 
mandates adherence to the TPC pricing specification. TPC is working on amending 
their pricing specification to include cloud based offerings and facilitate cloud based 
TPC benchmark publications. 

4 TPC Standardization of Big Bench  

Founded in 1988, TPC’s goal is to create, manage and maintain a set of fair and com-
prehensive benchmarks that enable end-users and vendors to objectively evaluate sys-
tem performance under well-defined, consistent and comparable workloads. Currently, 
the TPC offers six are enterprise benchmarks (TPC-C and TPC-E for OLTP, TPC-DI 
for data integration, TPC-H for data warehouse, TPC-VMS for virtualization and TPC-
DS for big data) and three are express benchmarks (TPCx-V for virtualization, TPCx-
HS and TPCx-BB for big data). The TPC offers in parallel to the above listed bench-
mark specification so called Common Benchmarks, i.e. TPC-Energy and TPC-Pricing. 
These benchmark standards guarantee that energy consumption and pricing is measured 
in a consistent way across all performance benchmarks. 
One of the pillars on which the credibility of TPC benchmarks rests is its strict audit 
rules. Audit rules guarantee that each benchmark publication was done according to its 
specification. TPCx-BB result is certified either by an independent certified TPC audi-
tor or a TPCx-BB pre-publication board. The method to use is under the discretion of 
test sponsor. 

4.1 Challenges during the Standardization  

Standardizing an industry standard, involves framing set of rule and governance mod-
els. The process of standardization is a complex, cumbersome and time consuming pro-
cess even for Greenfield benchmarks. Furthermore, the complexity was increased in 
the case of TPCx-BB where the specification had to consider the existing benchmark 
prototype during the process. This entire process posed unique set of challenges for the 
TPCx-BB sub-committee. The sub-committee worked diligently to address each of 
these issues, reached consensus and finally voted unanimously to launch benchmark. 



In this section, we make an attempt to present few selected challenges occurred during 
the standardization process, addressing previously uncharted areas in any TPC specifi-
cation.  

Execution Rules. The benchmark specification defines a set of narrow rules to ensure 
the results are consistent with the standard, auditable by an independent auditor and 
close any potential for gaps, which could be exploited to create benchmark specials. In 
TPCx-BB run rules requires the benchmark to be run two times for performance and 
repeatability of the results. The lower (i.e., worse) result metric of the two runs is re-
ported. Each run must include, Data generation, load test, power test, throughput test 
and result check. The benchmark also adds an additional test to validate the query an-
swer set for consistency by running scale factor 1 on the SUT. The results along with 
supporting files are audited for correctness by a TPC auditor or the publication board 
before publishing the result. The sub-committee spent considerable time in providing 
various tuning, and optimization options for test sponsors to experiment and get the 
best results possible, without breaking any of the rules. In addition to tuning the frame-
work, the benchmark kit provides run time tuning options at global level where the 
tuning parameters are applied for the benchmark as whole and tuning individual queries 
by passing explicit parameters for a query. The benchmark specification provides 
clearly defined areas with examples in the appendix for such tunings. In an effort to 
keep answer sets for consistent for engine validation test, the sub-committee has put in 
place a set of rules to accommodate the differences between various query engines. 
This helps not only addition of future frameworks, but also fast evolving SQL on Ha-
doop frameworks like Hive. The benchmark also applies TPC-Pricing specification 
where necessary, which is mandatory for published results and provides the option to 
report the TPC-Energy metric.  

Scale Factor. TPCx-BB’s data set scales linearly with the scaling factor (SF). In order 
to be realistic across a large bandwidth of data set sizes (1 GB to 1PB), the individual 
tables do scale in different ratios. While the large fact tables (sales and returns) scale 
linearly, other tables scale logarithmic or are completely static. Although this is realis-
tic, it means that the ratio of sizes of the table changes with scale factors, e.g., for SF 1 
the ratio of fact tables to dimension tables is approximately 50:50, while for large SFs 
the ratio becomes shifted to the fact tables. While BigBench scales continuously, TPCx-
BB only specifies specific scale factors similar to TPC-H and TPC-DS (1, 3, 10, 30 …).  
Minor adjustments were made to the individual table scaling to ensure very close to 
linear scaling behavior for the full data set.  

Metric. TPCx-BB’s metric underwent a series of changes along with the execution 
model until its final version made it to the standard. The initially proposed metric was 
specified as the geometric mean of the execution time: 

𝐵𝐵𝐵𝐵 = �𝑇𝑇𝐿𝐿 ∗ 𝑇𝑇𝐷𝐷 ∗ 𝑇𝑇𝑃𝑃 ∗ 𝑇𝑇𝐵𝐵
4  (1) 

where 𝑇𝑇𝐿𝐿  is the time taken for loading the data into the system, 𝑇𝑇𝐷𝐷 is the time for de-
clarative queries, 𝑇𝑇𝑃𝑃 is the time taken to process all procedural queries, and 𝑇𝑇𝐵𝐵 is the 



time to process mixed queries. The query type is based on the implementation of the 
queries (declarative, procedural, or both).   
However, since this is different for different kind of systems an alternative metric was 
proposed. 

𝐵𝐵𝐵𝐵 = �∏ 𝑃𝑃𝑖𝑖30
𝑖𝑖=1

30
 (2) 

which also uses the geometric mean, but rather than summing the queries according to 
the classes uses each processing time individually. Both metrics only consider a power 
test style setup, where each query is processed individually and do not account for multi 
stream setups, where multiple users submit queries to a system. Also, they measure the 
runtime directly, meaning a smaller result is better. To improve this, a new metric was 
proposed in [20], which changed from a geometric mean to an arithmetic mean for all 
parts and incorporated not only the stream use case (throughput test 𝑇𝑇𝑇𝑇) but also a data 
maintenance step (𝐷𝐷𝐷𝐷). The metric is scaled by the number of streams (𝑆𝑆) to compute 
the total number of queries processed per hour (3600 seconds) incorporating regular 
updates (individual times are measured in seconds): 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ = 30∗3∗𝑆𝑆∗3600
𝑆𝑆∗𝑇𝑇𝐿𝐿+𝑆𝑆∗𝑇𝑇𝑃𝑃+𝑇𝑇𝑇𝑇𝑇𝑇1+𝑆𝑆∗𝑇𝑇𝐷𝐷+𝑇𝑇𝑇𝑇𝑇𝑇2

 (3) 

Although easy to understand, the arithmetic mean is not ideal in the case of highly 
skewed processing times. Since some queries process much less data than others and 
the data size processed does not scale linearly with the scaling factor for all queries, 
this is an issue in TPCx-BB. In this case, some queries will have very limited influence 
on the result of the metric. Therefore, a combination of geometric mean and arithmetic 
mean was finally incorporated in the standard: 

BBQpm@SF =  SF ∗ 60 ∗ M
TLD + �TPT ∗ TTT 2  (4) 

The load time 𝑇𝑇𝐿𝐿𝐷𝐷 (reduced by a factor of 10) is added to the geometric mean of the 
power test time 𝑇𝑇𝑃𝑃𝑇𝑇 and the throughput test time 𝑇𝑇𝑇𝑇𝑇𝑇. Again, all times are measured in 
seconds but the metric is reported per minute (60 seconds). The number of queries (M) 
is divided by the sum of load and processing time, in order to get larger results for larger 
scale factors, the metric is multiplied by the scale factor (SF). While the power test time 
is compute as the geometric mean of all individual query processing times, the through-
put time is the total processing time of all streams divided by the number of streams. 
Although not as easy to understand as the second metric, the final metric finds a good 
compromise for enabling useful optimizations. 

Machine learning techniques. Three queries in TPCx-BB implement clustering, re-
gression, and classification at various stages to satisfy the use case requirements. The 
benchmark kit uses algorithms bundled with Apache MLlib to invoke machine learning 
stages. Differing from standard based SQL API’s where answer sets can be matched 
with relative accuracy, in machine learning techniques it is expected to see changes in 
answer set for two reasons, a) changes to the algorithm in the same machine learning 
library for different versions, b) introduction of a new machine learning library which 



may use a different method to implement an algorithm. TPCx-BB being an end to end 
system performance benchmark, leaves validating accuracy of an algorithm outside the 
scope of the specification. However, foreseeing these issues the specification provides 
general guidelines to address answer set changes triggered by change in library ver-
sions. In case no other changes apart from library updates are in the code or parameters 
in the benchmark kit the results are consider as valid and the reference results can be 
updated. In the case of new machine learning library, the new implementation may 
modify the code and parameters in the benchmark kit, but needs to use the same input 
data set and needs to match or improve the algorithm accuracy provided in the existing 
library. TPCx-BB addresses these variations in the specification of machine learning 
for the first time and thus, eases extensions of the benchmark and integration of changes 
during the lifecycle of the benchmark. 

Determinism Requirements. SQL queries written for benchmarks are typically repro-
ducible. They always return the exact same result independent of the execution engine. 
This is an important requirement for auditing since it enables verifying the correctness 
of query results and ensures all SUTs actually have to perform the same work. TPCx-
BB contains several non-SQL workloads, some of which are machine learning tasks. 
These are typically implemented in a non-deterministic way and different algorithms 
can produce different results. In fact, the result quality typically depends on the number 
of iterations an algorithm has run for (up to the maximum achievable quality for an 
algorithm). This is a challenge for performance benchmarking, since result quality can 
be traded for performance. To alleviate this problem the kits algorithms are designed in 
a way that they produce the exact same results, or – where this is not possible – other 
implementations’ algorithm have to have at least the same quality as the default imple-
mentation.  

Reaching consensus. Although BigBench was fully implemented in a kit when it was 
proposed to the TPC, the specification had to be extended to cover all required regula-
tions and rules. In this process, multiple changes were introduced to, one the one hand, 
fix minor deficiencies and to, on the other hand, not penalize certain vendors that have 
slightly different / not completely compatible functionality. This is one of the most 
delicate parts of standardization, since disagreement on this level can delay or even stop 
a benchmark standardization. One of the more controversial topics during the standard-
ization of BigBench was the metric, as briefly touch upon above. To solve this, the TPC 
subcommittee went through the process of preparing a model that can estimate perfor-
mance, based on previously collected information, and using this to estimate the result 
of an execution. Being able to rethink and discuss setups with some numbers rather 
than on a theoretical level made it much easier for the committee to reach consensus. 

5 Experiments with TPCx-BB Benchmark 

In this section, we present experiments that were executed on independent test plat-
forms, different frameworks, and small and large scale factors. We also discuss the 



hardware resource utilization behavior of one of the test platforms. Table 1 shows test 
details of the experiments.  
The test runs were conducted with default settings, except where parameters needed to 
be configured to ensure all queries are able to run successfully. The data set was gen-
erated using the default data generator and the tests were run using the driver provided 
in the kit. 
 

Test # Nodes in Cluster Framework Scale Factor 
1 9 Hive on MapReduce 3000 
2 8 Hive on Spark 1000 
3 8 Hive on Tez 3000 
4 8 SparkSQL 3000 
5 1 Metanautix 1 
6 8 Apache Flink 300 
7 60 Hive on MapReduce 100000 

Table 1 Test run experiments 

5.1 Experimental Results 

Test 1. The original implementation of the benchmark uses Hive on MapReduce. The 
test platform was configured with suitable parameters for Yarn, HDFS, and Hive, the 
benchmark was run with all three phases with two concurrent streams (default value) 
and completed successfully. Phase elapsed times were: load: 2803s, power: 34076s, 
and throughput: 54705s. 

Test 2. Hive on Spark utilizes Apache Spark as execution engine for Hive. Hive on 
Spark reuses Hive's planner / optimizer. The primary benefit is that Hive on Spark au-
tomatically gets full compatibility with all of Hive's features. The benchmark can run 
with Hive on Spark, with small changes in the configuration and changes on the cluster 
to enable Hive to use Spark as the execution engine. All the three phases of the bench-
mark completed successfully on the test platform. Phase elapsed times are: load: 9389s, 
power: 13775s, and throughput: 13864s. 

Test 3. Tez is designed to run batch and interactive workloads using the Hive API. In 
this test the load phase completed successfully, in the power phase 29 of 30 queries 
completed successfully. However Q16 failed to complete throwing an exception. The 
elapsed times for load was 3719s. 

Test 4. SparkSQL is an offering from Apache Spark to process structured data. 
SparkSQL is compatible with Hive, making it possible to run queries written in HiveQL 
without modifications. Enabling SparkSQL support for all 30 queries has been a multi 
month effort, where the benchmark team worked with the Apache Spark community to 
identify and fix missing features and bugs that prevented the complete execution of 
TPCx-BB queries. In this test, we had to apply a patch to Spark version 1.6.1 to get all 
queries to run successfully. This patch should be made available in yet to release Spark 



version 2.0. All three phases of the benchmark completed successfully on the test plat-
form. Phase elapsed times were: load: 7896s, power: 24,228s, and throughput: 40,352s.   

Test 5. The Metanautix query processing engine is part of Microsoft’s big data portfo-
lio.  All of the TPCx-BB queries were translated in SQL including sentiment analysis 
using a combination of window functions, user-defined Java functions, and pipelines. 
The machine learning post-processing stages were excluded.  

Test 6. Apache Flink is a big data streaming dataflow processing engine compatible to 
the Hadoop stack. While having a different architecture with a purely stream-oriented 
execution engine, it offers similar functionality as Apache Spark. As a proof of concept, 
22 queries were implemented using Flink’s DataSet API. In order to cover all necessary 
machine learning capabilities, a Flink-backed SystemML implementation was used for 
two of the queries [11].   

Test 7. The objective of this test to demonstrate readiness of the benchmark to scale 
beyond small dataset and clusters. For this purpose, we selected a cluster with 60 nodes 
and dataset scale factor of 100000 which is close to 100TB of input data. Hive on 
MapReduce was used as execution framework. We ran load and power phase and 
skipped the throughput phase due to limited availability of cluster time. Phase elapsed 
times were: load: 19,941s and power: 401,738s. During the tests, we found that the 
usage of realistic data distribution models in the benchmark result in a number of 
skewed tasks on Hive on MapReduce, where skewed tasks processes many more rec-
ords than others and took much more time to complete. While this behavior is seen 
across all scale factors and cluster sizes, the result is amplified running the benchmark 
on the larger dataset and more number of nodes, challenging the efficiency of the query 
engine. 
This set of experiments shows that various big data frameworks are able to run the 
benchmark with modification or no modifications, as demonstrated by experiments 1-
6. This proves the versatility of the benchmark kit and shows that it can be used to 
compare and distinguish multiple frameworks for their features and performance. Par-
tial execution of the kit on Metanautix shows that non-Hadoop-based frameworks are 
capable of adapting the benchmark. Partial execution of the benchmark on Apache 
Flink demonstrates the system agnostic nature of TPCx-BB, the use cases can be im-
plemented natively without higher level SQL expression API’s. Data and cluster scale 
tests bring out issues which are mostly uncaught during the development stages proving 
that a benchmark’s role goes beyond providing publications but also helping vendors 
iteratively tune their platforms.  

5.2 Resource Utilization Tests 

Hardware platform tuning is often used to optimize the SUT to its maximum efficient 
state, i.e., the configuration where the test hardware is fully utilized with no obvious 
bottlenecks. Analysis of the hardware behavior under the load is crucial to understand 
the baseline performance and identify and resolve any bottlenecks. In this section, we 



analyze hardware resource utilization comparing the utilization patterns of the test plat-
form by running the benchmark two times on a fixed hardware setup, scale factor, and 
big data framework. In the second test, we increase the number of concurrent streams 
in the throughput phase from 2 to 4.  

Benchmark Setup. The cluster consists of eight HPE DL360 G8 nodes, with the con-
figuration shown in Table 2. The experiments were conducted running all three phases 
of TPCx-BB on Scale Factor 3000. Hive on MapReduce was selected as the framework. 
Intel’s Performance Analysis Tool3 was used to collect the utilization pattern from the 
cluster nodes.  
 

Node Role Hardware Software  
1 Master Server 24C,192GB RAM, 8.5TB storage, 10Gbe RHEL 6.7, CDH 5.6 

2-8 Worker Node 24C,256GB RAM, 8.5TB storage, 10Gbe RHEL 6.7, CDH 5.6 
Table 2 Cluster configuration 

Table 3 shows the elapsed times for load, power, and throughput phase for both of the 
test runs. The load phase consists of reading the 
generated data to create the test dataset in ap-
propriate format; copy data into final location; 
data preparation including metadata creation, 
population, and computation of database statis-
tics. The power phase is designed to measure 
the performance of the SUT when processing all the queries in sequential order. The 
elapsed times for load and power phases are comparable with variation expected from 
a Hadoop system. In this test we are in particular interested in the system characteristics 
of the throughput phase. During this phase, all queries are executed using concurrent 
streams. Each query stream runs all queries, where each stream has a different order of 
queries. As can be seen in the table, the elapsed time for the throughput phase doubles 
for 4 concurrent streams in comparison to 2 concurrent streams.   

Analysis of Utilization Pattern. The charts in Figures 2 show the hardware utilization 
pattern behavior of the cluster when running the benchmark with 2 and 4 streams. The 
chart shows comparison of the major components of the cluster, i.e., CPU utilization, 
memory utilization, I/O bandwidth, and network I/O. Since we have captured data at 
one second samples, the chart is compressed on the time scale to show the complete 
execution of the benchmark. 

                                                           
3  PAT - https://github.com/intel-hadoop/PAT 

Table 3 Elapsed times 

Phase 2 Streams 4 Streams 
Load 2803 2796 

Power 34076 34179 
Throughput 54705 104565 



 
Figure 2 Processor, memory and I/O utilization 

The first mark in the time scale in Figure 2 marks the end of the load phase of both test 
which is at ~ 2,800s. The load phase involves data staging and replicating over data 
nodes that results in a cluster management overhead. This governs the performance of 
this stage with significant CPU and memory utilization, I/O bandwidth, and network 
I/O.  The load phase uses software compression to compress the raw input data into 
optimized columnar format, resulting in additional CPU utilization. 

 
The power phase utilization can be seen between the first and second mark in the time 
scale in Figure 2.  The individual peaks are signatures of each query being run in se-
quential order. Additional insight of the queries can be gained by mapping the running 
time of each to the time dimension on the charts. The independent utilization pattern 
for each query highlights that, unlike the constant ramp-up and down seen in micro-
benchmarks, TPCx-BB exhibits use case driven utilization patterns close to real world 
big data use cases, where the platform needs to accommodate both short and long run-
ning tasks. It is possible to go into more fine granular analysis of each query and gain 
insight into the individual system resource usage. This leads to a better understanding 
of the query and system behavior when tuning individual queries. As expected the 
power phase shows very similar comparative elapsed times between the two tests.  
In Figure 2, the second mark indicates the start of the throughput phase, the CPU utili-
zation shows a steady high processor usage. A more detailed analysis showed 70 % 
utilization for two concurrent streams and 90% utilization for four concurrent streams. 
The memory, storage, and network I/O are sufficiently utilized but nowhere close to 
the processor utilization. We can estimate the overhead effect when observing the ratio 
of the throughput phase execution time. As the number of streams doubled from 2 to 4, 



the execution time increases by a factor of 2. The overhead of running more streams 
can be inferred by varying the number of streams. The throughput phase reflects the 
nature of big data workloads comprising a mix of both short running and long running 
tasks executing side by side on a cluster [12]. 
The emphasis of TPCx-BB to simulate real-world scenario for big data batch analytics 
helps to extrapolate the findings and apply the takeaways when deploying big data ap-
plications. By running the above experiments we summarize few key takeaways: 

• When selecting the hardware for big data clusters, it is important to evaluate com-
puting power, memory capacity, storage, and network bandwidth in conjunction with 
intended data set size and number of tasks required to run side by side. 

• Contrary to common belief that big data workloads are I/O bound, we notice – with 
an adequate I/O setup – big data workloads tend to be compute bound. Similar results 
are also reported by [13,21] during their independent tests.  

• Efficient utilization of hardware resources highly depends on framework tuning. In 
this example, we believe – as software schedulers evolve – the utilization pattern of 
peaks and valleys of will reduce when freeing hardware resources and reducing the 
wait times for waiting queued tasks. 

• Selective utilization of accelerators and off-load engines could be beneficial to in-
crease overall efficiency of the cluster. An example could be load phase compression 
off-load. 

6 Benchmarking Emerging Big Data Use Cases 

In recent years, there have been large advances in analytics software. As big data 
reaches a larger audience, the community has sought to commoditize general purpose 
algorithms and systems for increasingly elaborate analytical tasks. The generation of 
large datasets has been increasing, leading to the development of new big data pro-
cessing frameworks, which is predominantly driven by “People and Things”. For ex-
ample, “People” interacting via social media portals and cloud enabled applications are 
driving an ever increasing volume of data into the cloud [14]. “Things” are intelligent 
and connected devices capable of making semi-autonomous decisions using models re-
ceived by cloud-based or -hosted compute farms. Addressing these two important seg-
ments with a relevant benchmark, will help the industry and academic community to 
validate the performance of new implementations. 
There is a broad range of new applications for these analytical capabilities, to name a 
few: 

• Recommendation systems: graph processing, stream processing, machine learning. 
• Search and ranking: graph processing, machine learning 
• Fraud detection: machine learning, ad-hoc analysis. 
• Internet-of-Things (IoT): stream processing, lambda processing. 
• Image, video, audio, and natural language processing: deep learning using neural 

networks 



For the purpose of this paper and benchmarking, we select two categories of the ad-
vances as follows: 

• Processing frameworks  
• Machine learning 

6.1 Processing frameworks 
Stream. Stream processing is 
mainly used in real-time analytics, 
where the events are streamed in 
form of micro or mini batches. A 
data stream can be as simple as time 
series events displayed in real-time, 
e.g., temperature readings from a 
sensor, or processed as complex 
events by applying computation 
techniques in real-time, e.g., identi-
fying failed components in an air-
plane using anomaly detection tech-
niques. In addition to acting on the 
incoming stream in real-time, events are stored for feedback-based learning and histor-
ical trend analysis using batch analytics.  
Data from a device in the field can be permuted and aggregated at the source or in mid-
way before it is transferred to the cloud. The lambda architecture [15] is an example of 
a stream processing framework using three layers of processing.  

• Batch Layer - curates the master dataset by storing all data entering the system using 
batch processing techniques.  

• Serving Layer – enables fast ad-hoc insights extracted from data curated in the batch 
layer. 

• Speed Layer – provides real-time insights from the incoming/streamed data, includ-
ing running machine learning algorithms, on real-time data.  

An IoT benchmark based on such an architecture can serve as an excellent proxy to test 
functions involved with streaming and real-time analytics.  

Graph. Human interaction with the 
internet changed the Web 2.0 [16]. 
The emergence of various social net-
working platforms, search engine op-
timizations, and the ability to connect 
these human interactions with busi-
ness models was unthinkable just a 
decade ago. Graph processing systems 
are used in analyzing networks of re-
lationships normally represented in 

Figure 3 Lambda Architecture 

Figure 4 Graph processing framework 



data objects referred as nodes and edges. Some large graph datasets can span trillions 
of edges [17].  
Graph processing requires a robust framework with characteristics such as, fault toler-
ant storage, fast database, scale-out graph analysis engines, scale-out computation en-
gine, and efficient algorithms as illustrated in Figure 3.  

6.2 Machine learning 

Machine learning techniques continue to grow in significance but also are expanding 
into different areas of application. With this growth the field is transitioning from a few 
“bespoke” applications; e.g., image recognition, machine translation, speech recogni-
tion, and robotics, to more commoditized ones; e.g., fraud detection. We will focus on 
the latter, which typically operate on discrete symbols such as words as opposed to 
continuous input such as from a microphone or historical revenue. 
Machine learning has a broad range of applications with different algorithms being em-
ployed. These algorithms typically fall into two categories:  

1. Regression, which works to predict a variable’s value (e.g., projection of revenue),  
2. Classification, is concerned with predicting a label for a sample (e.g. male/female, 

will or will not buy).  

Moreover, a task can be structured where the prediction happens on a graph or sequence 
such as machine translation generating a sequence of words in a foreign language.  The 
task can also be unstructured, where the desired output is a single value like the next 
stock price, or whether a fraud occurred or not. Training of a model can be supervised, 
unsupervised, or utilizing reinforcement learning. In each of these scenarios, one can 
define a measure of quality such as in the case of fraud detection;  

1. A weighted sum of false positives - fraud was declared when a transaction was in 
good standing 

2. False negatives - fraud remained undetected 

Because the data are generated automatically, they have special properties which can 
be exploited by the algorithms. Therefore, as in TPCx-BB, we should factor in the speed 
of the algorithms. 
TPCx-BB as a batch analytics benchmark provides excellent coverage for advanced 
analytics to examine large datasets.  Most of the benchmark is implemented using data 
management primitives and functions. Although there are a handful of use cases in 
TPCx-BB invoking machine learning algorithms4, TPCx-BB is far from being a com-
prehensive representation of analytics using machine learning algorithms. Currently, 
neither streaming processing, graph processing, nor deep learning are represented in 
TPCx-BB. Given the recent interest in deep learning, and its broad range of applicabil-
ity, it should be given special consideration.  
There have been some efforts in the analytics community to address these areas [18, 
19].  However, there hasn’t been any collaborative push from the industry and academia 
to create a use case based benchmarking framework. We think it would be impractical 

                                                           
4  Examples are clustering, logistic regression, and sentiment analysis. 



to expand the coverage of the TPCx-BB benchmark to include all of these, therefore, 
they should be the focus of future benchmarks. 

7 Conclusion 

In 2013, the proposal “BigBench” was brought to the attention of the analytics commu-
nity as a candidate for a first end-to-end big data benchmark. Since then idea has 
evolved, been put under the scrutiny of experts and public alike to finally emerge as 
TPCx-BB, the first industry standard big data benchmark with relevance to big data use 
cases. During this process, several changes went into the benchmark, which we dis-
cussed in this paper. Preliminary results are encouraging and it already has seen adop-
tion with first results being published5. The benchmark helps the big data software eco-
system to identify performance bottlenecks, feature gaps, and scaling issues, which pre-
viously often remained undiscovered. The benchmark has also helped driving innova-
tion in non-Hadoop ecosystems.  
In this paper, we have tracked the course of the BigBench journey, gave a snapshot of 
its current state and potential changes coming in the future. We have conducted exten-
sive experiments using the benchmark, and offered observations and analyses of several 
platforms. This paper offers a glimpse of the TPC standardization process, challenges 
and means to navigate through them successfully.  
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9 Appendix A 

K-Means using SQL. It is possible to write K-means using SQL and extensions in the 
Metanautix Quest system. The full implementation is complex, requiring an iteration 
(implemented using SQL triggers), but also rebalancing when a class becomes empty. 
For simplicity we assume that each point is described by an id, and a coordinate vector 
x. Using a SQL UDF, we can write the Distance function. A user-defined aggregation 
function, AVG_VECTOR, computes the average vector. We assume 50 classes. We 
outline the steps: 
 

1. Initialization of class centroids 

CREATE TABLE Centroids .. AS  
  SELECT ROW_NUMBER() OVER (ORDER BY RANDOM()) r, x FROM 
Data WHERE r <= 50 

2. Assigning data points to classes 

CREATE TABLE ClassAssignment .. AS 
 SELECT id, r FROM Centroids C, Data D WHERE 
    Distance(D.x, C.x) = (SELECT MIN(Distance(D.x, C2.x)) 
FROM Centroids C2) 

3. Compute new centroids 

CREATE TABLE NewCentroids .. AS 
  SELECT r, AVG_VECTOR(x) x FROM Centroids C, ClassAs-
signment CA, Data D WHERE 
    C.r = CA.r AND CA.id = D.id 

Using window functions. Window functions can be used where a MapReduce, or mul-
tiple passes would be otherwise required. As an example, we show how Query 02 can 
be rewritten. 

WITH Session as ( 
SELECT DISTINCT 
  sessionid, 
  wcs_item_sk 
FROM 
(SELECT 
  *, 
  concat(cast(wcs_user_sk as string), '_', cast(bucket as 
string)) sessionid 
FROM 
(SELECT 
  *, 
  (first(tstamp_inSec) over (partition by wcs_user_sk  
                              order by tstamp_inSec desc) 
- tstamp_inSec) / 3600 bucket 



FROM 
  (SELECT 
    wcs_user_sk, 
    wcs_item_sk, 
    (wcs_click_date_sk * 24 * 60 * 60 + 
wcs_click_time_sk) AS tstamp_inSec 
  FROM web_clickstreams 
  WHERE wcs_item_sk IS NOT NULL 
  AND   wcs_user_sk IS NOT NULL)))) 
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