
BlockJoin: Efficient Matrix Partitioning Through Joins

Andreas Kunft* Asterios Katsifodimos† Sebastian Schelter*

Tilmann Rabl*‡ Volker Markl*‡
*Technische Universität Berlin

first.lastname@tu-berlin.de
‡German Research Center for

Artificial Intelligence (DFKI)
†SAP Innovation Center
first.lastname@sap.com

first.lastname@dfki.de

ABSTRACT
Linear algebra operations are at the core of many Machine
Learning (ML) programs. At the same time, a consider-
able amount of the effort for solving data analytics prob-
lems is spent in data preparation. As a result, end-to-
end ML pipelines often consist of (i) relational operators
used for joining the input data, (ii) user defined functions
used for feature extraction and vectorization, and (iii) lin-
ear algebra operators used for model training and cross-
validation. Often, these pipelines need to scale out to large
datasets. In this case, these pipelines are usually imple-
mented on top of dataflow engines like Hadoop, Spark, or
Flink. These dataflow engines implement relational opera-
tors on row-partitioned datasets. However, efficient linear
algebra operators use block-partitioned matrices. As a re-
sult, pipelines combining both kinds of operators require
rather expensive changes to the physical representation, in
particular re-partitioning steps. In this paper, we investigate
the potential of reducing shuffling costs by fusing relational
and linear algebra operations into specialized physical op-
erators. We present BlockJoin, a distributed join algorithm
which directly produces block-partitioned results. To mini-
mize shuffling costs, BlockJoin applies database techniques
known from columnar processing, such as index-joins and
late materialization, in the context of parallel dataflow en-
gines. Our experimental evaluation shows speedups up to
6× and the skew resistance of BlockJoin compared to state-
of-the-art pipelines implemented in Spark.

1. INTRODUCTION
Requirements for data analytics applications based on ma-

chine learning techniques have changed over the last years.
End-to-end ML pipelines nowadays go beyond pure linear
algebra and often also include data preparation and trans-
formation steps (ETL) that are best defined using relational
algebra operators. Data scientists construct feature-vector
representations for training ML models by filtering, joining,
and transforming datasets from diverse data sources [39] on

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 13
Copyright 2017 VLDB Endowment 2150-8097/17/08.

(a) Matrix multiplication. (b) Mean of each row.

Figure 1: Performance implications of row- vs. block-
partitioning in two linear algebra operators.

a daily basis. This process is often repeated many times in
an ad-hoc fashion, as a variety of features are explored and
selected for optimal predictive performance.

Such pipelines are most conveniently expressed in lan-
guages with rich support for both ETL and ML tasks, such
as Python or R, but these implementations do not scale. In
enterprise setups, the source data usually resides in a data
warehouse. One possible strategy in such situations is to
run the ETL part of the pipeline in situ, and the ML part
in a specialized engine such as SciDB [11] or RasDaMan [6].
This approach has two drawbacks. First, moving data be-
tween engines is an expensive operation that is frequently
repeated as the pipeline is refined. Second, it does not allow
to easily join warehouse and external data sources.

Parallel dataflow engines such as Spark [38] or Hadoop [5]
offer a more flexible execution infrastructure that does not
suffer from the problems outlined above. Initially developed
for ETL-like workloads, these systems have been increas-
ingly used by practitioners to implement ML algorithms [26,
8, 33]. To support scalable execution of ML workloads, the
functionality of established libraries for scalable linear alge-
bra, such as ScaLAPACK [13], is being implemented on top
of parallel dataflow systems by projects like SystemML [17],
MLlib [26], Apache Mahout Samsara [33] and Pegasus [19].

A common runtime engine avoids data transfer, but the
mismatch in data representation still manifests itself when
executing mixed analytics pipelines. While dataflow engines
typically row-partition large datasets, scalable linear alge-
bra operators are implemented on top of block-partitioned,
or blocked matrices. The difference in the partitioning as-
sumptions results in a re-partitioning barrier whenever a lin-
ear algebra operator follows a relational one. The dataflow
engine has to re-partition the entire row-partitioned dataset
into a block-partitioned matrix. One possible solution would
be to execute linear algebra operators on row-partitioned

matrices. Although this performs well for operations such
as row sums (shown in Figure 1), superlinear operations
such as matrix multiplication that consume multiple rows
and/or columns become very inefficient [17]. For compu-
tational and storage efficiency, the majority of scalable lin-
ear algebra frameworks perform matrix multiplications on
blocked matrices (e.g., [17, 18, 19]).

In this paper, we demonstrate the optimization potential
of fusing relational and linear algebra operators. As a first
step, we focus on a common pattern – a relational join, fol-
lowed by a per-element transformation for feature extraction
and vectorization, and a subsequent matrix conversion. To
reduce the total shuffling costs of this operator chain, we
propose BlockJoin, a specialized distributed join algorithm
that consumes row-partitioned relational data and directly
produces a block-partitioned matrix. We focus on the major
drawback posed by an independent operator chain: The in-
termediate result of the join, row-wise partitioned by the join
key, is discarded immediately to form a block-partitioned
matrix. This materialization implies the risk of running out
of memory when the join result becomes large, and more
importantly results in a unnecessary shuffle operation for
the join. BlockJoin avoids the materialization of the inter-
mediate join result by applying the vectorization function
and the successive block partitioning independently to both
relations. Analogous to joins that have been proposed for
columnar databases [24, 9, 1], BlockJoin builds on two main
concepts: index joins and late materialization. More specif-
ically, we first identify the matching tuple pairs and their
corresponding row indexes in the matrix by performing a
join on the keys and tuple-ids of the two relations (analo-
gous to TID-Joins [25]). Based on the gathered metadata,
we apply the vectorization function separately to the match-
ing tuples of both relations, and repeat this for the block
partitioning, without having to materialize the intermediate
join result. Therefore, we can apply different materialization
strategies for the matrix blocks based on the shape of the
input relations, namely Early and Late materialization. Our
experiments show that BlockJoin performs up to 6× faster
than the state-of-the-art approach of conducting a row-wise
join followed by a block-partitioning step.

Overall, we make the following contributions:

• We demonstrate the need for implementing relational
operators producing block-partitioned datasets (Sec-
tion 2.2).

• We propose BlockJoin, a distributed join algorithm
which produces block-partitioned results for workloads
mixing linear and relational algebra operations. To the
best of our knowledge, this is the first work proposing
a relational operator for block-partitioned results (Sec-
tion 3).

• We provide a reference implementation of BlockJoin
based on Apache Spark [38] with two different block
materialization strategies (Sections 4).

• We provide a cost model to select the best suited ma-
terialization strategy based on the shape of the input
tables (Section 3.4).

• We experimentally show that BlockJoin outperforms
the baseline approach in all scenarios and, depending
on the size and shape of the input relations, is up to
6× faster. Moreover, we show that BlockJoin is skew
resistant and scales gracefully in situations when the
state-of-the-art approach fails (Section 5).

2. BACKGROUND
In this section, we introduce the blocked matrix repre-

sentation. We also discuss a running example we will use
throughout the paper and discuss the state-of-the-art im-
plementation for dataflow systems.

2.1 Block-Partitioned Matrix Representation
Distributed dataflow systems use an element-at-a-time pro-

cessing model in which an element typically represents a line
in a text file or a tuple of a relation. Systems that implement
matrices in this model can choose among a variety of par-
titioning schemes (e.g., cell-, row-, or column-wise) for the
matrix. For common operations such as matrix multiplica-
tions, all of these representations incur huge performance
overheads [17]. Block-partitioning the matrix provides sig-
nificant performance benefits. This includes a reduction in
the number of tuples required to represent and process a ma-
trix, block-level compression, and the optimization of oper-
ations like multiplication on a block-level basis. These bene-
fits have led to the widespread adoption of block-partitioned
matrices in parallel data processing platforms [17, 18, 19]. A
blocked representation splits the matrix into submatrices of
fixed size, called blocks. These blocks become the processing
elements in the dataflow system.

2.2 Motivating Example
Our running example is learning a spam detection model,

a common use case in e-commerce applications. Assume
that customers write reviews for products, some of which
are spam, and we want to train a classifier to automatically
detect the spam reviews. The data for products and reviews
are stored in different files in a distributed filesystem. We
need the attributes from both relations to build the features
for the model in our ML algorithm. Therefore, we first need
to join the records from these tables to obtain reviews with
their corresponding products. Next, we need to transform
these product-review pairs into a suitable representation for
an ML algorithm. To this end, we apply a user defined
function (UDF) that transforms the attributes into a vector
representation. Finally, we aggregate these vectors into a
distributed, blocked feature matrix to feed them into an ML
system (such as SystemML).

Figure 2 illustrates how to execute such a workload. List-
ing 1 shows how it can be implemented in a distributed
dataflow system like Spark, expressing a mixed linear- and
relational-algebra pipeline. We will refer to this as baseline
implementation in the rest of the paper. The input data re-
sides in the tables Products (product no, name, price,
category) and Reviews (product no, text, num stars,
is spam). Step 1 (in Figure 2 and Listing 1) performs a
foreign-key join on the product no attribute. Step 2 ap-
plies user-defined vectorization functions to each row of the
join result, to transform it into vector-based features, us-
ing techniques like feature hashing and “one-hot-encoding”.

(Prod1,‘XPhone’, 199,‘Cat_SP’)

(Prod2,‘YPhone’, 599,‘Cat_UT’)

(Prod3,‘ZPhone’, 99,‘Cat_Phone_old’)

(Prod4,‘ZPhone2’,199,‘Cat_UT’)

Products

(Prod1,‘...’,4,false)

(Prod2,‘...’,5,true)

(Prod1,‘...’,5,false)

(Prod4,‘...’,2,false)

Reviews

vectorize (product)

(Prod1,‘XPhone’, 199,‘Cat_SP’,‘...’,4,false)
vectorize (review)

vectorize (product)

(Prod1,‘XPhone’, 199,‘Cat_SP’,‘...’,5,false)
vectorize (review)

vectorize (product)

(Prod2,‘YPhone’, 599,‘Cat_UT’,‘...’,5,true)
vectorize (review)

vectorize (product)

(Prod4,‘ZPhone2’,199,‘Cat_UT’,‘...’,2,false)
vectorize (review)

Early materialization

of join result

Row Index assignment

before blocking

0

1

2

3

distributed join

1

feature transformation & vectorization

2

partial blocks per partition

3b

step without shuffle

step with shuffle
apply row index

3a

Feature Matrix

0 1 2 3 4 5 6

0

1

2

3

2

3

2

3

0 1 2 3 4 5 6

0

1

merge partial blocks

3c

Figure 2: The baseline implementation for our running example. We prepare the data in order to learn a spam classifier in an
e-commerce use case: 1 we perform a distributed join of Products and Reviews, 2 call user code to transform the join result
into feature vectors, and 3 (a) assign consecutive rows indexes to the resulting feature vectors, (b) create partial blocks per
partition, and (c) merge them into a blocked matrix.

We assume that the vector resulting from a row is a con-
catenation of the vectorization of the input tuples of the
participating relations. Step 3 is split into three sub-steps
that are necessary to form a block-partitioned matrix: (a)
creates a sequential index for the join result that is used
as row index for the matrix. This is necessary, as dataflow
engines, in contrast to database systems, do not provide a
unique tuple identifier. (b) builds the initial matrix blocks
by splitting the rows at block boundaries. (c) in a final
aggregation step, where partially filled blocks (which span
multiple data partitions) are merged.

1 val Products: Dataset[Product] = // read csv...
2 val Reviews: Dataset[Review] = // read csv...
3

4 1 val JoinResult = Products.joinWith(Reviews,
5 Products("product_no") === Reviews("product_no"))
6

7 // Vectorize each tuple in the join result
8 2 val Vectorized = JoinResult.map { case (p, r) =>
9 val pv = vectorizeProduct(p)

10 val rv = vectorizeReview(r)
11 pv ++ rv
12 }
13

14 // Convert ‘Vectorized‘ into blocked matrix ‘M‘
15 3 val M = toMatrix(Vectorized)
16 // Train the ML model with matrix ‘M‘ ...

Listing 1: Code snippet for the running example.

3. BLOCKING THROUGH JOINS
In this section, we present BlockJoin, our chained, context-

aware operator, leveraging the example of Figure 2. We first
introduce a baseline implementation of independent opera-
tors for that example, which cannot leverage join metadata
for the blocking phase. We then detail BlockJoin in Sections
3.1 and 3.2, and discuss how BlockJoin improves upon the
baseline.

Drawbacks of an independent operator chain. The
baseline implementation, which uses independent operators,
is illustrated in Figure 2 and proceeds as follows: We first
partition Products p by its primary key p.product no and

Reviews r by its foreign-key r.product no to execute the
distributed join. After vectorizing the join result Vectorized
v, we introduce a consecutive index (e.g., by a zipWithIndex
method in Spark), called row-idx, to uniquely identify each
tuple. Then, we split each v of Vectorized into its com-
ponents, based on the col-idx, and re-partition by the block
index of the resulting matrix. The block index is obtained
by the function:

block-idx(v, col-idx) = { v.row-idx
block size

, col-idx
block size

}

The block size represents the number of rows and columns
in a block. Although matrix blocks can have arbitrary row-
or column-sizes, we use square blocks, for the sake of sim-
plicity. One can easily derive the function for non-square
blocks by substituting block size with the number of rows
and column per block.

We observe that an independent operator chain has to
re-partition the data twice and materializes the join result,
even though this result is split according to block boundaries
immediately after applying the index assignment in Step 3a,
as described before. Thus, the costly join is only executed
to create a sequential index for the rows of the matching tu-
ples in the matrix. Another danger during materialization
of the join result is that the two input tables can be very
wide, and we therefore risk running out of memory when
executing the join.

In the following, we introduce BlockJoin and explain how
it avoids to materialize the intermediate join result by in-
troducing information exchange between the operators. We
start by discussing a simplified case in Section 3.1, and ex-
tend our solution to the general case in Section 3.2.

3.1 BlockJoin under Simplifying Assumptions
We introduce two simplifying assumptions to explain how

to independently block two relations1: (i) the join keys on
both relations are consecutive integers and the relations are

1Note that we introduce these assumptions solely for the
purpose of discussing the blocking, we drop these assump-
tions in the next section and describe how to apply Block-
Join for general equi-join cases.

Products Reviews

fetch kernel fetch kernel4

index-join

22

collect <key, TID>

1

broadcast

3

P0,0 (Prod1,‘XPhone’, 199,‘Cat_SP’)

P0,1 (Prod2,‘YPhone’, 599,‘Cat_UT’)

P1,0 (Prod3,‘ZPhone’, 99,‘Cat_Phone_old’)

P1,1 (Prod4,‘ZPhone2’,199,‘Cat_UT’)

Products

R0,0 (Prod1,‘...’,4,false)

R0,1 (Prod2,‘...’,5,true)

R1,0 (Prod1,‘...’,5,false)

R1,1 (Prod4,‘...’,2,false)

Reviews

Prod1, R0,0
Prod2, R0,1
Prod1, R1,0
Prod4, R1,1

Prod1, P0,0
Prod2, P0,1
Prod3, P1,0
Prod4, P1,1

Prod1

Prod2

P
0,0

P
0,1

R
1,0

R
0,1

Prod4 P
1,1

R
1,1

P
0,0

P
0,1

R
1,0

R
0,1

Prod1 P
0,0

R
0,0

P
0,0

R
0,0

0

1

2

P
1,1

R
1,1

3

Block Meta-Data

TID : < Relation, Partition-ID, Index within Partition >

join key TIDP TIDR row-idx TIDP TIDR

collect <key, TID>

1

index-join & apply row-idx

2

broadcast

3

(a) (b)

Figure 3: Local index-join & sequential row index assignment for the running example: 1 we collect the <key, TID> pairs
on the join coordinator, 2 we perform an index-join on the collected tuples and introduce the sequential row index row-idx
on the result. Afterwards, 3 we broadcast the result back to the nodes. The fetch-kernel 4 , is shown in Figure 4.

ordered by their keys; (ii) there is a strict 1:1 relation be-
tween the tables, that is: they have the same cardinality and
the same values in their primary key. Joining two relations,
which fulfill these conditions, is equivalent to concatenating
the relations. Moreover, the cardinality of the join result will
be the same as the cardinality of the two joined relations.
Now, suppose that we want to block-partition the join result
of the two relations. The question we are going to answer
throughout the rest of this section is: Can we achieve joined
and block-partitioned results, without first materializing the
join result in a row-partitioned representation?

Blocking without materializing the join result. Given
our simplifying assumptions, we can safely treat the key
product no as the unique, sequential identifier of each tu-
ple. Hence, we can not only use it as join key, but but can
also define v.row-idx = v.product no, to uniquely iden-
tify the rows in the resulting matrix. Now, as we do not
need to materialize the join result to obtain the row-idx, we
discuss how we apply the blocking function on both relations
independently after the vectorization. The first component
of the block-idx function (v.row-idx

block size
) assigns the row index

of the block blk-row-idx, which the cells in a row belong
to. Due to our assumptions, matching tuples already share
the same row-idx. The second component of the block-idx
function (v.col-idx

block size
) defines the column index of the block

blk-col-idx, which the cells of a rows are split across. We can
use this part of the equation on the individual tables with-
out joining after we apply some small changes: the function
has to account for the fact that the blk-col-idx of the sec-
ond relation have to be offset by the number of columns in
the first relation (because the result concatenates the two
relations). Thus, we add the offset cols(pv) (i.e., the num-
ber of columns of the vectorized version of the first relation
p)2 to the column index of the second relation. Equation 1
shows the modified block-idx function that is applied on the
vectorized tuples of the individual input relations.

block-idxP (pv, col-idx) = { pv.row-idx
block size

, col-idx
block size

}
(1)

block-idxR(rv, col-idx) = { rv.row-idx
block size

, cols(pv) + col-idx
block size

}

2Section 4 details how we determine this value at runtime.

3.2 BlockJoin for the General Case
The simplifying assumption of an ordered, consecutive in-

dex on both relations from the previous section obviously
does not hold in reality. In real-world scenarios, we observe
primary-key (PK) – foreign-key (FK) or 1:N relationships,
such as users and items, items and reviews, or even M:N rela-
tions, as well as normalized database schemata [21]. There-
fore, we cannot use the keys of the individual relations to
determine the corresponding blocks of the tuples. More-
over, the size of the input relations may vary compared to
the join result. For instance, a Product can match arbitrar-
ily many Reviews. In the subsequent paragraphs, we show
how BlockJoin determines which tuple pairs are part of the
join result, and assigns a unique row-idx to each matching
tuple pair under general conditions without materialization
of the join result.

Assigning indexes to tuple pairs in the join result.
BlockJoin first obtains a unique surrogate key TID from
each tuple of both relations independently. The TID con-
sists of a <relation-id, partition-id, index-within-
partition> triple as depicted in the bottom left part of
Figure 3 (b). The triple uniquely identifies each row of the
relations. In the next step, we generate the unique identifier
row-idx for the rows in the resulting Matrix M. In order to as-
sign the identifier to the matching tuples of both relations,
we design a variant of the index-join [15, 25]. The main
idea of the index-join is to project the key and TID columns
of the two relations to determine matching tuples without
materializing the payload columns. As depicted in Figure 3,
step 1 projects and collects the <key, TID> pairs from both
relations on the driver. Therefore, we have all keys of the
two relations and execute an index-join 2 . Based on the re-
sult, we assign the row-idx to the matching tuples. We call
this phase join-kernel, following the nomenclature of [36].
In Step 3 , we make the block metadata, which contains the
matched <key, TID> pairs and row-idx ’s, available on all
nodes for the subsequent fetch-kernel phase. Based on the
information in the metadata, we prune all non-matching tu-
ples and apply the vectorization function to the remaining
tuples 4 on each relation separately. While we can use the
very same block-idx function, as described in Section 3.1,
Equation 1, we elaborate on two different strategies for effi-
cient blocking, enabled by applying the row-idx separately,
in the next section.

U

merge & materialize blocks

+

Late Materialization

6

split split5 range-part. range-part.5

Early Materialization

U

merge blocks

+

7

create blocks create blocks6

4 fetch kernelfetch kernel 4 fetch kernelfetch kernel

row-idx col-idx

0 1 2

1

2

3

00

0 1 2

2

1

3

0,0 0,1

1,0 1,1

0,0 0,1

1,0 1,1

0

0

1

1

0

1

0 1

Late Materialization Early Materialization

split

5

create blocks

6

0

0

1

1

0

1

0 1

range-partition

& local sort

5

4 fetch kernel

blk-row-idx

blk-col-idx

(a) (b)

6

merge &

 materialize blocks

Figure 4: Block-materialization strategies. We illustrate the materialization strategies for one relation (Products) in Figure
b. Late materialization breaks the tuples into multiple row-splits locally 5 and merges the splits of both relations after union
them 6 . Early materialization first range partitions the complete rows in order to group tuples belonging to the same blocks
and then performs a local sort on the row index to enable faster block creation 5 . After materializing the blocks per relations
6 , potentially partial blocks are merged.

3.3 Block Materialization Strategies
Figure 4 (a) sketches the two materialization strategies for

BlockJoin. Both approaches share the initial Steps 1 to 3

from Figure 3, explained in the previous section. The main
difference stems from the block materialization strategy we
use for the values emitted in Step 4 , the fetch-kernel.

Our goal now is to shuffle the row-splits3 of each row to
the nodes responsible for the splits’ destination blocks. A
very important consideration is that one row-split may need
to fill multiple rows in the same block and might be part of
multiple blocks. For instance, consider a row-split of a prod-
uct which matches multiple reviews. If there are 10 matches
and the block size is 5, that product’s row-split will have
to be duplicated 10 times and, therefore, contribute to at
least 2 different blocks. Duplicates can have a huge impact
on the runtime of the block materialization phase. For this
reason, we devise two materialization strategies which are
detailed below.

Late Materialization. The left side of Figure 4 (b) de-
picts the execution flow of late materialization. The key
idea behind late materialization is to reduce the number of
row-splits emitted, by sending each split only once per des-
tination block, even if the row-split occurs multiple times
in the respective block. The duplicates of each split are
materialized on the receiver side for each block. We can
apply receiver-side materialization, as we are not forced to
materialize the join result (like in the baseline), to obtain
the sequential row-idx. More specifically, each row emit-
ted from the fetch kernel 4 is split in multiple <blk-idx,
row-offset, duplicates, row-split> tuples 5 . Since there
might be multiple matches for a key, we store the number of
duplicates per block, instead of materializing them early.
The row-offset defines the first row index of the row-split
in the destination block. In the destination node, we merge
the row-splits of the same blk-idx, and create the complete
blocks by materializing their duplicates 6 . Note that we
create complete blocks even in the case they contain data

3Given a row r, a row-split is a tuple which contains a strict
subset of the columns or r. The purpose of a row-split is to
fit in a given block. For instance, given a block size of 2, a
row with 6 columns will be split into 3 row-splits.

from both relations in one pass (as can be seen for the green
cells from the Reviews table).

Early Materialization. The right side of Figure 4 (b) de-
picts the execution flow of early materialization. Instead of
separating the rows from the fetch kernel 4 into row splits
immediately, we emit a single <row-idx, duplicates, row>
tuple per row. Rows matching multiple times are not yet
materialized, and we emit one tuple for all duplicates within
a block again. In the next step, we range-partition the tu-
ples by their row-idx and sort within each partition 5 .
A custom partitioner ensures that tuples belonging to the
same block end up in the same partition. Next, we create
the blocks and materialize the duplicates for each relation
separately 6 . Note that we do not have to shuffle, but po-
tentially create partial blocks (as can be seen for the blocks
with column index 1). In the last step, we union the rela-
tions and merge the partial blocks.

Applicability to the baseline. While we can apply the
presented materialization strategies also in the baseline, we
do not gain any advantage. The main benefit of late mate-
rialization is the receiver-side materialization of duplicates
(e.g., PK matching multiple FKs). In the baseline though,
we materialize all duplicates during the distributed join phase.
As a result, we shuffle the same amount of data as in the
baseline, but with a much larger amount of tuples, as we split
the rows in late materialization. The advantage of early ma-
terialization yields from the custom partitioner, which en-
sures partitions that do not span over block boundaries. In
BlockJoin, we introduce the shuffle needed for this parti-
tioner, as we do not shuffle for the distributed join that is
required in the baseline. Therefore, applying the partitioner
on the baseline would introduce an additional shuffle step,
making it worse than the baseline.

3.4 Choosing a Materialization Strategy
To make these trade-offs between late and early material-

ization more concrete, we compare the two materialization
strategies against the baseline implementation described in
Section 2.2. We base our comparison on the cost model
shown below, using the symbols from Table 1. For brevity
and simplicity, we focus only on the amount of data ex-

Table 1: Cost model notation.

Symbol Meaning

|T | Number of rows in relation T

cols(T) Number of columns in relation T

bytes(T) Size (bytes) of a tuple in relation T

b Number of rows/columns per square block

P, R Input tables of the join

J Join result

change and the number of tuples during the shuffling phases,
and make the simplifying assumption that all the tuples of
the two input relations survive the join, which also reflects
the worst case for our materialization strategies. Late mate-
rialization emits multiple row-splits per row, thus increases
the number of tuples to be shuffled. On the other hand,
early materialization emits full (and materialized) blocks at
the expense of an extra range-partitioning on complete rows
and local sorting step. Since the blocks in the early materi-
alization schema are complete, apart from blocks containing
columns from both relations (which is equal to number of
row-wise blocks), only those have to be considered during
the merging process.

Size of Shuffled Data.

baseline → |P | · bytes(P) + |R| · bytes(R) join

+ |J | · bytes(J) merge blocks

early → |P | · bytes(P) + |R| · bytes(R) range-partition

+ |J | · bytes(J) merge blocks

late → |P | · bytes(P) + |R| · bytes(R) merge blocks

Deriving the size of shuffled data for the baseline imple-
mentation is straightforward: we execute a shuffle in or-
der to perform the join (|P | · bytes(P) + |R| · bytes(R))
and another shuffle of the join results for block-partitioning
them (|J | · bytes(J)). The early materialization strategy
has to shuffle the input data in order to range-partition it
(|P | · bytes(P) + |R| · bytes(R)) and shuffle the join result in
order to merge the blocks (|J | · bytes(J)), as we might have
partially filled blocks. Finally, the late materialization strat-
egy only needs to shuffle once to merge all row-splits in their
corresponding block (|P | · bytes(P) + |R| · bytes(R)). The
late materialization strategy is expected to have the least
amount of data shuffling. However, the amount of tuples
exchanged differs among the three implementations.

Number of Shuffled Tuples.

baseline → |P |+ |R| join

+
|J|
b
· cols(J)

b
merge blocks

early → |P |+ |R| range-partition

+ (
|J|
b
· cols(J)

b
) +

|J|
b

merge blocks

late → |J | · cols(J)
b

merge blocks

The number of tuples exchanged for the baseline imple-
mentation includes the relations themselves (|P |+ |R|), plus
the total number of blocks that form the final matrix. The
number of blocks is defined by the rows in the join result

divided by the block size (|J|
b

) and the number columns, di-

vided by the block-size (cols(J)
b

). The early materialization

strategy will require an extra |J|
b

for the partial blocks that
span both relations (detailed in the Block Materialization
paragraph of Section 4). In the late materialization strategy,
we emit each matching row of both relations (|J |) multiplied

by the number of splits per row (cols(J)
b

). Intuitively, late
materialization always emits more tuples than early materi-
alization and the baseline, because each row of the result is
split while the early materialization creates (partial) blocks
before shuffling.

Estimating Cost. Estimating the runtime of BlockJoin,
boils down to estimating a cost function which takes into
account the amount of shuffled data as well as the num-
ber of shuffled tuples as we have shown earlier in this sec-
tion. A straightforward implementation of a cost estima-
tion function would simply calculate a linear combination
of size and number of tuples and yield an estimated cost.
To this end, one can train two regression models based
on our previously presented formulas for computing data
size and number of shuffled tuples for both materializa-
tion strategies. For early materialization, the regression

re =
[
de(θ) te(θ) 1

]>
we predicts the runtime re. Here θ

denotes a vector that contains the data statistics from Ta-
ble 1 for a particular join input, de(θ) and te(θ) refer to
the previously presented functions for computing data size
and number of shuffled tuples for early materialization and
we denotes the learned regression coefficients. Analogously,

a regression model rl =
[
dl(θ) tl(θ) 1

]>
wl can be trained

for predicting the runtime rl for late materialization. The
obtained regression coefficients depend on the actual clus-
ter settings. Therefore, a couple of experiments must be
executed to obtain a sample of different runtimes for dif-
ferent data characteristics, before the model can be fitted.
Afterwards, the prediction model can be used to select the
best suited materialization strategy for subsequent runs. We
present such an instance of a trained model in our experi-
ments and showcase its accuracy.

Using this model requires statistics on the input tables
and the join result. We can integrate the model into an
optimizer, which creates an optimized plan statically before
job execution (e.g., Catalyst in Spark), but have to rely on
table statistics and estimations for the join result to select
the best strategy.

3.5 Extensibility
So far we have only considered equality-joins. However,

BlockJoin and the general idea of assigning unique iden-
tifiers without materializing the intermediate join result is
independent of the actual join algorithm that runs locally.
Thus, extending BlockJoin for theta and n-ary joins boils
down to implementing a variation of the index-join used to
define the matching tuples. Theta joins can be implemented
by a projection of the columns required for predicate eval-
uation and a modified version of the shared metadata, to
identify matching tuples and conduct row index assignment
in the fetch-kernel. Extending BlockJoin to n-ary joins is
also possible, once we identify the join results. However,

this extension requires further research regarding the choice
between multiple binary joins or a solution based on multi-
way join algorithms, which we leave to future work.

4. IMPLEMENTATION ASPECTS
In this section, we present important technical aspects to

consider when implementing BlockJoin in distributed data-
flow systems.

Row Index Assignment. In order to block partition the
join result, we need to assign consecutive row indexes to the
join result. In the baseline implementation, we conduct this
assignment on the distributed join result. For that, we lever-
age Spark’s zipWithIndex operation, which counts the num-
ber of elements of each partition in the distributed dataset,
and uses the result to assign consecutive indexes in a second
pass over the data. In BlockJoin, we create the unique row
indexes during the join-kernel based on the matching tuples
and make them available as part of the metadata. There-
fore, the assignment of row indexes to emitted tuples in the
fetch-kernel phase can be done on each relation individually,
without prior materialization of the join result.

0

1

2

0

1

2

3 3

0 1 2 3 4 5 6

+3 offset

Products Reviews

row-idx col-idx blk-col-idxblk-row-idx

0 1 1 2 3

0

0

1

0

0

1

1 1

Block partitioned rows

row-split

Figure 5: Tuples resulting from range-partitioning the vec-
torized tuples of Products and Reviews with block size 2×2.

Block Materialization. In the baseline implementation,
we create the blocks after assigning the row index. To reduce
the number of emitted partial blocks, the baseline uses a
mapPartitions function to create the matrix blocks. This
function provides an iterator over the whole partition inside
the UDF. Due to the sequential row index, all rows that
belong to a certain block come one after the other, which
allows us to create full blocks before emitting. Therefore, we
only have to combine blocks that are split row-wise between
two partitions in the succeeding merge step.

As discussed in Section 3, we create the correct block-idx
separately on both tables in the BlockJoin. Figure 5 shows
the assignment of the block index in detail. We create par-
tial blocks for the blk-col-idx 1 in both relations, as the
block is split across both relations. In the late material-
ization approach, we have to merge all individual tuples on
the receiver-side, which reduces the data that needs to be
shuffled but increases the number of tuples in certain sce-
narios (as discussed in Section 3.3). In the early material-
ization approach, we also use a mapPartitions function to
create full blocks on the sender-side. As we can not guar-
antee sorted row indexes for at least one of the relations,
we would risk emitting partially filled blocks, as consecu-
tive tuples might belong to different blocks. Therefore, we
provide a custom partitioner, which creates partitions that
do not cross block boundaries. Afterwards, we sort by the
row index within each partition to create consecutive blocks.
Thus, we only have to merge blocks that contain columns

Table 2: Size of dense data in GB.

Cols
Rows

10K 100K 200K 500K 1M

1K 0.2 1.7 3.4 8.5 16.9

5K 0.9 8.5 16.9 42.3 84.7

10K 1.7 16.9 33.9 84.7 169.3

25K 4.2 42.3 84.6 211.6 423.2

50K 8.5 84.7 169.3 423.3 846.7

100K 16.9 169.3 338.7 846.7 1700.0

from both relations, e.g., for blocks with column blk-col-idx
1 in Figure 5.

Determining Matrix Dimensions. In order to assign the
vectorized data to matrix blocks, it is necessary to know the
dimensionality of the vectors returned by the user-defined
vectorization functions upfront. One can either require the
user to specify this in the vectorization functions, or alter-
natively fetch a single random tuple from each relation once,
apply the vectorization function, and record the dimension-
ality of the resulting vector.

5. EXPERIMENTAL EVALUATION
In this section, we comprehensively evaluate experiments

comparing BlockJoin with late and early materialization
against a baseline approach on dense and sparse data. As
discussed before, the baseline represents the current state-
of-the-art: we use Spark to execute the join of the tables,
and then SystemML to create a blocked matrix representa-
tion from the join result without staging the intermediate
results on HDFS.

Sparsity mainly affects the data size and runtime, but not
the overall performance trend for the algorithms. For this
reason, we show the results for sparse and dense data for
each experiment in the same plot. Throughout the exper-
iments, sparse data is indicated with patched bars in the
front, whereas dense data is indicated with solid bars.

Setup. We used a local cluster with up to 20 worker nodes
connected with 1 GBit Ethernet connections. Each ma-
chine is equipped with a quad-core Intel Xeon X3450 2.67
GHz, and 16GB of RAM. We implemented BlockJoin on
Spark 1.6.2 (each Spark worker has 4 slots) and store the
initial data in HDFS 2.4.1. Every experiment is executed
seven times and we report the median execution time. For
the experiments on dense data we use 20 worker nodes, re-
sulting in a degree of parallelism (DOP) of 80, while we use
10 worker nodes (DOP = 40) for sparse data.

Dataset. In order to have full control of the shape, size
and content of the input tables we evaluate BlockJoin on
synthetic datasets. The simulated tables, called PK and
FK, have following schema: PK (key, r1, ..., rn) and
FK (fKey, s1, ..., sm). We use a vectorization function
that converts r1, ..., rn to an n-dimensional double preci-
sion vector, and analogously s1, ..., sm to an m-dimensional
double precision vector. We conducted the experiments for
dense and sparse (10% non zero values) vectors and vary
the number of rows and columns. If not stated otherwise in
the experiments, the tables have a 1:N primary key - foreign
key relation. We use squared blocks of 1000 × 1000 as it

was shown to make a good trade off between computational
efficiency and network traffic [17]. The corresponding sizes
of the tables are given in Table 2.

In addition, we provide experiments on the publicly avail-
able Reddit Comments4 dataset. It consists of line separated
JSON entries that represent comments on the news aggre-
gator website Reddit. Each JSON entry contains a single
comment with additional information such as the author,
votes, category, etc. We split the raw data into a comment
and author CSV file, by introducing a primary - foreign key
relation author id and use these as input to our experiments.
The final join input are ∼30 million comments (5.1 GB) and
∼1.5 million authors (29.9 MB).

Data Distribution. Many real-world datasets exhibit ex-
treme skew in the distribution of data points per object ob-
served (e.g., reviews per product), and it has been shown
that this skew increases over time in many datasets [23].
When joining with such datasets, a small number of tuples
from the skewed relation will produce a very large amount of
tuples in the join result. For this reason, we conduct experi-
ments with uniform as well as power-law distributed foreign
keys (with α = 0.01).

5.1 Effect of Table Shape and Size
In this experiment, we evaluate the scalability of Block-

Join for different numbers of columns. We fix the rows to
100K in the PK and 1M in the FK table. All rows in the
FK table match at least one key in the PK table. There-
fore, we concentrate on the effects of the block material-
ization strategies, as BlockJoin can not gain performance
by pruning non-matching tuples (an expected effect of the
fetch-kernel phase).

Scaling PK Columns. In this experiment we fix the num-
ber of columns in the FK table to 5K, while we scale the PK
table, from 5K to 50K columns, until it reaches the same
data size as the FK table.

Figure 6 (a) depicts the results for uniform distributed for-
eign keys. A first observation is that Late Materialization
scales much better and is up 2.5× faster than the baseline
for sparse and dense data. Late Materialization materializes
duplicates (primary keys matching multiple foreign keys) at
the receiver side. Thus, it only needs to shuffle data equal to
the size of the input tables. In contrast, both Early Material-
ization and the baseline approach, materialize the duplicates
(the baseline approach in the join and Early Materializa-
tion before merging partial matrix blocks). Therefore, they
shuffle up to 847GB + 84,7GB (for 50K dense columns);
roughly 10× more data compared to Late Materialization.
Even though the baseline and Early Materialization shuffle
the same amount of data, Early Materialization appears to
outperform the baseline by 10%. The faster execution of
Early Materialization is due to (i) the independent blocking
of the two relations without materializing the join result,
and (ii) our custom partitioner (see Section 4), which never
splits rows sharing the same blk-row-idx across different
partitions.

Figure 6 (b) shows the same experiment for power-law
distributed foreign keys. Note that the baseline approach
fails to perform the join for more than 5K columns of dense
data. We experienced an internal Spark error, while it tried
to read partitions to execute the join on the receiver side.

4http://files.pushshift.io/reddit/comments/

5000 25000 50000
columns in PK

0
100
200
300
400
500
600
700

tim
e
[s
]

Base Early Late

(a) Uniform

5000 25000 50000
columns in PK

0
100
200
300
400
500
600
700

tim
e
[s
]

Base Early Late

(b) Power-law

Figure 6: Effect of scaling the number of columns in the PK
table. The number of FK columns is fixed to 5K.

This is due to the heavily skewed data, which results in
almost all of the work ending up in one worker node, which
is unable to gather and sort the received partitions. For
Late Materialization, we can observe that the algorithm is
not affected by data skew and outperforms the baseline by
up to 4× for sparse data. The effect of skewed keys on Early
Materialization is not as severe as for the baseline, but the
heavily increased amount of duplicates, still decreases its
performance as the PK table holds the majority of the data.

Scaling FK Columns. Figure 7 (a) depicts the inverse
experiment with 5K in the PK table and scaling number
of columns in the FK table. This time, Early Materializa-
tion outperforms the Late Materialization for dense data
and performs up to 2× better than the baseline. Note that
in this experiment, (i) the FK table grows very large, up
to 846.7GB for dense data, in comparison to the previous
experiment, while (ii) the resulting matrix sizes are exactly
same. Thus, as the PK table accounts for the duplicates,
Late Materialization does not save much by late duplicate
materialization. However, the number of shuffled FK tu-
ples increases with the number of columns in the FK table.
Late Materialization emits up to 50M (1M rows split in 50K
columns divided by 1K block size) row-splits, while only 1M
rows are exchanged by Early Materialization and the base-
line.

5000 25000 50000
columns in FK

0
500

1000
1500
2000
2500
3000
3500

tim
e
[s
]

Base Early Late

(a) Uniform

5000 25000 50000
columns in FK

0
500

1000
1500
2000
2500
3000
3500

tim
e
[s
]

Base Early Late

(b) Power-law

Figure 7: Effect of scaling the number of columns in the FK
table. The number of PK columns is fixed to 5K.

Figure 7 (b) shows the experiment with a power-law dis-
tributed foreign keys. For the two versions of BlockJoin,
we can observe almost the same runtime as for the uniform
distributed keys, as the data size is dominated by the FK
table. Therefore, the impact of the skewed keys on Early
Materialization is minor and Late Materialization does not
save much data exchange. This time, the baseline approach
fails to finish the experiment in case of more than 25K sparse
columns due to the increased size of the FK table.

Experiment Conclusion. When the PK table size domi-
nates the data exchange, Late Materialization performs up
to 4× better than the baseline and outperforms Early Ma-
terialization. However, when the FK table dominates data
exchange and the duplication of row-splits is no longer an
issue, Early Materialization can be up to 1.8× faster than
Late Materialization and 2× faster than the baseline. Fi-
nally, we were unable to conduct all experiments for the
baseline in case of skewed data and the performance of Late
Materialization is generally less affected by the data distri-
bution.

Cost Model Evaluation. We trained the regression mod-
els, described in Section 3.3, based on the experiment re-
sults using dense input data. Figure 8 depicts the estimated
runtime in relation to the number of columns in the two
input relations. The number of rows is thereby the same
as in the experiments (100K for PK and 1M for FK). We
can observe that the model reflects the measured runtimes.
While the model can serve as binary classifier to select the
best suited strategy for other experiments, we are aware
that we need more data to fit the model thoroughly. An-
other interesting observation is that we can use the column
distribution as a simplified measure to select the strategies
(cols(PK) > cols(FK) favors Late Materialization and vise
versa). This ratio turns out to be a pretty good estimation
model and can be used as a fallback in an optimizer, as long
as not enough training data is available to fit the model.

cols(PK) >> cols(FK)

cols(PK) << cols(FK)

Figure 8: Estimated cost of the regression models, trained
on the experiment results from Section 5.1. The number of
rows correspond to the experiments. The data points rep-
resent the experiment results for Late Materialization and
Early Materialization.

Detailed runtimes of the different phases. In Figure 9
and 10, we show the runtime of each of the phases – vector-
ize, join, and blocking – for the experiments with dense data
in Figure 6 and 7 respectively. Due to operator chaining in
Spark, we had to measure the phases in separated jobs to
obtain their individual runtime.
Vectorize – We observe roughly equal run times, which is
expected, as the same vectorization function is performed
for both the baseline and BlockJoin.
Join – We observe different behavior depending on whether
we scale the PK or FK columns. Scaling the PK columns
(Figure 9), we see only a minor speedup for BlockJoin in case
of uniform distributed keys. For power-law distributed keys,
the baseline fails to execute the join after 5K columns. As
expected, BlockJoin is not sensitive to skewed keys and the
join times are equal to the cases with uniformly distributed

keys. Scaling the FK columns (Figure 10), we observe a
speedup of up to 3x. Compared to Figure 9, we have to
shuffle much more data, as we increase the FK columns.
BlockJoin degrades gracefully with increasing number of
columns, as we have to read the data to project the join keys.
Again, the baseline fails to execute the join for power-law
distributed keys, while BlockJoin is not affected by skew.
Blocking – We observe performance gains of up to 3x for the
best suited materialization strategy. This applies mainly
for late materialization, as the benefits are rather small in
cases early materialization is better. The gains in perfor-
mance for early materialization are due to the block-size
aware partitioning. Late materialization gains performance
due to the receiver-side materialization of duplicates. Thus,
we observe a huge performance gain when scaling the PK
columns. The behavior reflects the assumptions of our cost
model: When scaling the PK columns, Late Materialization
is superior as it avoids the materialization of the duplicates
in the PK table and thus, shuffles considerably less data.
When we scale the FK columns, Late Materialization can
not gain much from receiver-side materialization as the ma-
jority of data resides in the FK table, but has to shuffle way
more tuples. The experiments show that BlockJoin gains
performance with both, a efficient, skew resistant join and
the right choice of the materialization strategy.

Blocking

Join

Vectorize

(a) Uniform

Blocking

Join

Vectorize

(b) Power-law

Figure 9: Split up execution times for scaling the number of
columns in the PK table.

Blocking

Join

Vectorize

(a) Uniform

Blocking

Join

Vectorize

(b) Power-law

Figure 10: Split up execution times for scaling the number
of columns in the FK table.

5.2 1:1 and M:N Relations
In this experiment, we analyze the effects of 1:1 and M:N

relations between the keys in the two relations. Therefore,
we fix the number of rows in both tables to 100K and use se-
quential keys in both relations, but vary the range we draw
the keys from. Figure 11 (a) depicts a 1:1 relation; each key
appears once per table. Late Materialization and Early Ma-
terialization gain up to 2× speedup compared to the baseline

(both for sparse and dense data). As there are no duplicates,
Early Materialization is only slightly slower than Late Ma-
terialization. Figure 11 (b) – (d) illustrate M:N relations
with 2, 4, and 10 duplicates per key, and therefore, 200K,
400K, and 1M rows in the matrix. While the baseline has
the worst performance throughout the series, we can ob-
serve a declining performance of Early Materialization with
increasing number of duplicates for dense data. The run-
time of Late Materialization is almost not affected by the
number of duplicates and gains up to 4× speedup compared
to the baseline for dense and sparse data.

5000 25000 50000
columns in PK

0

100

200

300

400

500

600

tim
e
[s
]

Base Early Late

(a) Result rows: 100K

5000 25000 50000
columns in PK

0

100

200

300

400

500

600

tim
e
[s
]

Base Early Late

(b) Result rows: 200K

5000 25000 50000
columns in PK

0
100
200
300
400
500
600
700

tim
e
[s
]

Base Early Late

(c) Result rows: 400K

5000 25000 50000
columns in PK

0
100
200
300
400
500
600
700
800
900

tim
e
[s
]

Base Early Late

(d) Result rows: 1M

Figure 11: Effect of scaling the number of columns in PK
table for: (a) 1:1 relations and (b) – (d) M:N relations with
2, 4, and 10 duplicates per key.

5.3 Effect of Selectivity
In this experiment, we investigate the performance impli-

cations of the join selectivity. Therefore, we can observe the
impact of the semi-join reduction in the fetch-kernel. We
start with the same number of rows in the PK and FK table
as in the previous experiment (Section 5.1), but we restrict
the number of tuples in PK table. As a result, not all for-
eign keys match. This reflects a common use case, where
only certain values, e.g., products of a given category, are of
interest.

Scaling PK Columns. Figure 12 shows the experiment
with fixed FK columns (5K) and scaling PK columns. On
the x-axis, we increase the selectivity of the filter on the
PK table. The selectivity not only defines the number of
rows in the PK table (from 100K to 10K rows), but also
the number of matching foreign keys, and thereby the size
of the join result/matrix. Again, Late Materialization out-
performs Early Materialization, but the benefits of late du-
plicate materialization decrease with increasing selectivity.
Nevertheless, we achieve up to 4× speedups, due to pruning
non-matching tuples in the fetch-kernel. For power-law dis-
tributed keys (Figure 12 (b)), the baseline approach fails for
PK tables with more than 5K columns of dense data and the
skew resistant Late Materialization gains up to 6× speedups
for sparse data.

0.10.51.0
% range of PK

0

50

100

150

200

250

tim
e
[s
]

Base Early Late

0.10.51.0
% range of PK

0

50

100

150

200

250

tim
e
[s
]

Base Early Late

5.000 PK columns

0.10.51.0
% range of PK

0
50

100
150
200
250
300
350

tim
e
[s
]

Base Early Late

0.10.51.0
% range of PK

0
50

100
150
200
250
300
350

tim
e
[s
]

Base Early Late

25.000 PK columns

0.10.51.0
% range of PK

0
100
200
300
400
500
600
700

tim
e
[s
]

Base Early Late

(a) Uniform

0.10.51.0
% range of PK

0
100
200
300
400
500
600
700

tim
e
[s
]

Base Early Late

(b) Power-law

50.000 PK columns

Figure 12: Effect of selectivity for varying number of
columns in the PK table. The number of FK columns is
fixed to 5K.

Scaling FK Columns. Figure 13 depicts the experiments
with scaling number of columns in the FK table. Again, we
can observe the performance degradation of Late Material-
ization, compared to the experiments in Figure 12, as the
number of FK columns increases. Note that increasing selec-
tivity mitigates the performance impact of row splitting for
Late Materialization due to pruning in the the fetch-kernel
and we see almost equal performance for Early Materializa-
tion and Late Materialization in case of 0.1 selectivity. The
semi-join reduction thereby increases the speedups from 2×
for 1.0 up to 6× for 0.1 selectivity. Figure 13 (b) shows the
experiment with power-law distributed keys. While Late
Materialization can outperform Early Materialization in the
smallest configuration, pruning cannot mitigate the explod-
ing number of tuples for larger number of columns in the
dense case.

Experiment Conclusion. Restricting the primary key ta-
ble to certain categories or values is a common use case.
We showed that the impact of pruning in BlockJoin further
increases its performance benefits compared to the baseline
up to 6×.

5.4 Reddit Comments Dataset
In this experiment, we evaluate our join algorithms on

the Reddit Comments dataset, described in the beginning
of this section. In order to obtain the full feature set, we

0.10.51.0
% range of PK

0

50

100

150

200

250
tim

e
[s
]

Base Early Late

0.10.51.0
% range of PK

0

50

100

150

200

250

tim
e
[s
]

Base Early Late

5.000 FK columns

0.10.51.0
% range of PK

0
200
400
600
800

1000
1200
1400
1600
1800

tim
e
[s
]

Base Early Late

0.10.51.0
% range of PK

0
200
400
600
800

1000
1200
1400
1600
1800

tim
e
[s
]

Base Early Late

25.000 FK columns

0.10.51.0
% range of PK

0
500

1000
1500
2000
2500
3000
3500

tim
e
[s
]

Base Early Late

(a) Uniform

0.10.51.0
% range of PK

0
500

1000
1500
2000
2500
3000
3500

tim
e
[s
]

Base Early Late

(b) Power-law

50.000 FK columns

Figure 13: Effect of selectivity for varying number of
columns in the FK table. The number of PK columns is
fixed to 5K.

join the comments and authors CSV input files. To create
a vector representation, we apply feature hashing to the au-
thors name and the comments text. We split the name by
camel case, white space, and other delimiters and hash the
words to a fixed size feature space. For the comments, we
split the text into words and hash them as described before.

1000 5000 10000 25000 50000
columns in comment (FK)

0

50

100

150

200

250

300

tim
e
[s
]

Base Early Late

(a) User vector dim. = 1000

5000 10000 25000 50000
columns in comment (FK)

0

50

100

150

200

250

300

tim
e
[s
]

Base Early Late

(b) User vector dim. = 5000

Figure 14: Effect of scaling the number of columns for the
comment relation.

Figure 14 depicts the results of the experiment. We fix
the dimensions of the author name feature vector to 1000
and 5000 and increase the dimensions of the comments vec-
tor. The first observation is that the baseline implementa-
tion fails after the first scaling factor. This is due to an
out of memory exception in the blocking phase. The large

amount of comments (∼30 million tuples) exceed the avail-
able memory in the mapPartitions operators that create
partial blocks within each partition. While we also create
partial blocks in the early materialization approach, we ex-
ecute the blocking on the two relations separately, without
prior joining. This leads to less memory pressure, compared
to the baseline. Late materialization is not affected by mem-
ory pressure. This leads, in combination with the huge dif-
ference in the relations sizes (1 : 30) and the relatively small
sparse feature vectors, to an almost equal runtime for Late
Materialization and Early Materialization.

6. RELATED WORK
Join Optimization. Optimized join algorithms have been
well studied in the area of distributed database systems [27,
31, 35, 30, 3] and parallel dataflow systems [29, 37, 2, 28,
40] like Hadoop [5] and Spark [38], with the aim of reduc-
ing network traffic and dealing with skewed data. Efficient
join implementations in main-memory databases are based
on TID-joins [25, 15] and late materialization [36, 24] to
achieve cache efficiency up to the latest possible point. In
BlockJoin, we apply and enhance these techniques for the
domain of distributed matrix computation by using index-
joins to create the matching tuples without re-partitioning
the tables. More specifically, we apply a semi-join reduction
to prune tuples before creating the blocks and we introduce
late materialization to avoid sending rows resulting from du-
plicated join keys.

Array Databases. RasDaMan [6] is an array DBMS for
multidimensional discrete data with an extended SQL query
language. It stores its data as tiles, i.e., possibly non-aligned
sub arrays, as blobs in an external DBMS. While their opti-
mizer provides a rich set of heuristic-based rewrites, to the
best of our knowledge, RasDaMan does not perform joint op-
timization over relational and array backed data. SciDB [11]
is another array database that, in contrast to RasDaMan,
provides its own shared-nothing storage layer. This allows
SciDB to store and query tiles more efficiently. It provides
a variety of optimizations, like overlapping chunks and com-
pression. We see BlockJoin as complementary to the re-
search in array databases and its ideas could be implemented
to enhance their data loading and/or transformation.

Algebra Unifying Approaches. Kumar et al. [21] intro-
duce learning generalized linear models over data residing in
a relational database. The authors push parts of the com-
putation of the ML model into joins over normalized data,
similar to [12]. These works target generalized linear models
only, while our approach subsumes a more generic optimiza-
tion that can be used in arbitrary machine learning pipelines
over normalized data. MLBase [20] provides high-level ab-
stractions for ML tasks with basic support for relational
operators. Their DSL allows the optimizer to choose differ-
ent ML algorithm implementations, but does not take the
relational operators into account nor does it optimize the
physical representation of the data among different opera-
tors. Cohen et al. [14] execute linear algebra operations in
a relational database, but do not present optimizations for
block-partitioning the operands.

ML Libraries & Languages. SystemML’s DML [7, 32,
8, 16], Mahout’s Samsara [33], provide R-like linear alge-
bra abstractions. SystemML executes locally or distributed
on Hadoop and Spark, while Samsara targets Spark, Flink

and H20. As there is no dedicated support for relational
operators, ETL has to be executed using a different set of
abstractions, and both systems lose potential for holistic
optimization. MLlib [26, 10], MLI [34], Cumulon [18] and
Pegasus [19] employ different strategies to efficiently exe-
cute matrix operations on distributed dataflow systems, but
again do not target holistic optimization over relational and
linear algebra operators. We presented recently the poten-
tial for optimizations across relational and linear algebra in
the context of the Lara [22] language, based on Emma [4].

7. CONCLUSION & FUTURE WORK
In this paper, we introduce a scalable join algorithm for

analytics which mix relational and linear algebra operations.
Our technique reduces the re-partitioning overheads which
stem from the different physical representations of relations
and matrices. To this end, we propose BlockJoin, an opti-
mized join algorithm, which fuses relational joins with blocked
matrix partitioning, avoiding costly re-partitioning steps.
We discuss different block materialization strategies of this
join operator and their cost-model driven application, de-
pending on the shape of the input data. In an extensive ex-
perimental evaluation, we show that BlockJoin outperforms
the current state of the art implementation for dataflow sys-
tems up to a factor of six, and demonstrated that BlockJoin
is scalable and robust on highly skewed data.

Future work. We plan to integrate BlockJoin and other
physical operators into a common intermediate representa-
tion and optimizer which will be able to reason on mixed
linear and relational algebra programs [4, 22]. Moreover, we
plan to explore extensions of BlockJoin, to generate a variety
of block-partitioned matrices for model selection workloads
that are commonly employed to find well-working features
and hyperparameters for machine learning models [32]. Fur-
thermore, we plan future research to overcome the current
limitation of BlockJoin to vectorization functions that can
be executed separately on both relations.

Acknowledgments. This work has been supported through
grants by the German Science Foundation (DFG) as FOR
1306 Stratosphere, by the German Ministry for Education
and Research as Berlin Big Data Center BBDC (funding
mark 01IS14013A), and by the European Union as Horizon
2020 projects Streamline (688191) and Proteus (687691).

8. REFERENCES
[1] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs.

row-stores: How different are they really? In SIGMOD, pages
967–980. ACM, 2008.

[2] F. N. Afrati and J. D. Ullman. Optimizing joins in a
map-reduce environment. In EDBT. ACM, 2010.

[3] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively
parallel sort-merge joins in main memory multi-core database
systems. PVLDB, 5(10):1064–1075, 2012.

[4] A. Alexandrov et al. Implicit parallelism through deep language
embedding. In SIGMOD, 2015.

[5] Apache Hadoop, http://hadoop.apache.org.

[6] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and
N. Widmann. The multidimensional database system
rasdaman. In Sigmod Record, volume 27. ACM, 1998.

[7] M. Boehm et al. SystemML’s optimizer: Plan generation for
large-scale machine learning programs. IEEE Data Eng. Bull.,
37(3):52–62, 2014.

[8] M. Boehm et al. SystemML: Declarative machine learning on
spark. VLDB, 9(13):1425–1436, 2016.

[9] P. A. Boncz, S. Manegold, M. L. Kersten, et al. Database
architecture optimized for the new bottleneck: Memory access.
In VLDB, 1999.

[10] R. Bosagh Zadeh et al. Matrix computations and optimization
in apache spark. In KDD, pages 31–38. ACM, 2016.

[11] P. G. Brown. Overview of SciDB: large scale array storage,
processing and analysis. In SIGMOD, pages 963–968. ACM,
2010.

[12] S. Chaudhuri and K. Shim. Including group-by in query
optimization. In VLDB, 1994.

[13] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker. Scalapack:
A scalable linear algebra library for distributed memory
concurrent computers. In FMPC, pages 120–127. IEEE, 1992.

[14] J. Cohen, , et al. Mad skills: new analysis practices for big
data. PVLDB, 2(2):1481–1492, 2009.

[15] D. J. DeWitt et al. Implementation techniques for main
memory database systems, volume 14. ACM, 1984.

[16] A. Elgohary et al. Compressed linear algebra for large-scale
machine learning. PVLDB, 9(12):960–971, 2016.

[17] A. Ghoting et al. SystemML: Declarative machine learning on
mapreduce. In ICDE, pages 231–242. IEEE, 2011.

[18] B. Huang, S. Babu, and J. Yang. Cumulon: optimizing
statistical data analysis in the cloud. In SIGMOD. ACM, 2013.

[19] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: A
peta-scale graph mining system implementation and
observations. In ICDM, 2009.

[20] T. Kraska et al. Mlbase: A distributed machine-learning
system. In CIDR, volume 1, pages 2–1, 2013.

[21] A. Kumar, J. Naughton, and J. M. Patel. Learning generalized
linear models over normalized data. In SIGMOD, pages
1969–1984. ACM, 2015.

[22] A. Kunft, A. Alexandrov, A. Katsifodimos, and V. Markl.
Bridging the gap: Towards optimization across linear and
relational algebra. BeyondMR, pages 1:1–1:4, 2016.

[23] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time:
densification laws, shrinking diameters and possible
explanations. In ACM KDD, 2005.

[24] Z. Li and K. A. Ross. Fast joins using join indices. VLDB,
8(1):1–24, 1999.

[25] R. Marek and E. Rahm. Tid hash joins. In CIKM, pages 42–49.
ACM, 1994.

[26] X. Meng et al. Mllib: Machine learning in apache spark.
JMLR, 17(34):1–7, 2016.

[27] J. K. Mullin. Optimal semijoins for distributed database
systems. IEEE Trans. Softw. Eng, 16(5):558–560, 1990.

[28] A. Okcan and M. Riedewald. Processing theta-joins using
mapreduce. In SIGMOD. ACM, 2011.

[29] O. Polychroniou, R. Sen, and K. A. Ross. Track join:
distributed joins with minimal network traffic. In SIGMOD,
pages 1483–1494. ACM, 2014.

[30] W. Rödiger, S. Idicula, A. Kemper, and T. Neumann.
Flow-join: Adaptive skew handling for distributed joins over
high-speed networks. In ICDE, pages 1194–1205. IEEE, 2016.

[31] N. Roussopoulos and H. Kang. A pipeline n-way join algorithm
based on the 2-way semijoin program. IEEE Trans. Knowl.
Data Eng, 3(4):486–495, 1991.

[32] S. Schelter et al. Efficient sample generation for scalable meta
learning. In ICDE, 2015.

[33] S. Schelter et al. Samsara: Declarative machine learning on
distributed dataflow systems. In NIPS Workshop MLSystems,
2016.

[34] E. R. Sparks et al. Mli: An api for distributed machine
learning. In ICDM, pages 1187–1192. IEEE, 2013.

[35] J. W. Stamos and H. C. Young. A symmetric fragment and
replicate algorithm for distributed joins. IEEE Trans. Parallel
Distrib. Syst, 4(12):1345–1354, 1993.

[36] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener,
and G. Graefe. Query processing techniques for solid state
drives. In SIGMOD. ACM, 2009.

[37] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query optimization
for massively parallel data processing. In ACM SoCC, 2011.

[38] M. Zaharia et al. Spark: Cluster computing with working sets.
HotCloud, 10(10-10):95, 2010.

[39] C. Zhang, A. Kumar, and C. Ré. Materialization optimizations
for feature selection workloads. TODS, 41(1):2, 2016.

[40] J. Zhou, P.-A. Larson, and R. Chaiken. Incorporating
partitioning and parallel plans into the scope optimizer. In
ICDE, pages 1060–1071. IEEE, 2010.

	Introduction
	Background
	Block-Partitioned Matrix Representation
	Motivating Example

	Blocking Through Joins
	BlockJoin under Simplifying Assumptions
	BlockJoin for the General Case
	Block Materialization Strategies
	Choosing a Materialization Strategy
	Extensibility

	Implementation Aspects
	Experimental Evaluation
	Effect of Table Shape and Size
	1:1 and M:N Relations
	Effect of Selectivity
	Reddit Comments Dataset

	Related Work
	Conclusion & Future Work
	References

