Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI

Lucas Sakizloglou

"Evaluating Temporal Queries over History-aware Architectural Runtime Models"

In model-driven engineering, the adaptation of large software systems with dynamic structure is enabled by architectural runtime models. Such a model represents an abstract state of the system as a graph of interacting components. Every relevant change in the system is mirrored in the model and triggers an evaluation of model queries which search the model for structural patterns that should be adapted. This thesis focuses on a type of runtime models where the expressiveness of the model and model queries is extended to capture past changes and their timing. These history-aware models and temporal queries enable more informed decision-making during adaptation, as they support the formulation of requirements on the evolution of the pattern that should be adapted. However, evaluating temporal queries during adaptation poses significant challenges. First, it implies the capability to specify and evaluate requirements on the structure as well as the ordering and timing in which structural changes occur. Then, query answers have to reflect that the history-aware model represents the architecture of a system whose execution may be ongoing, and thus answers may depend on future changes. Finally, query evaluation needs to be adequately fast and memory-efficient despite the increasing size of the history---especially for models that are altered by numerous, rapid changes.

The thesis presents a query language and a querying approach for the specification and evaluation of temporal queries. These contributions aim to cope with the challenges of evaluating temporal queries at runtime, a prerequisite for history-aware architectural monitoring and adaptation which has not been systematically treated by prior model-based solutions. The distinguishing features of our contributions are: the specification of queries based on a temporal logic which encodes structural patterns as graphs; the provision of formally precise query answers which account for timing constraints and ongoing executions; the incremental evaluation which avoids the re-computation of query answers after each change; and the option to discard history that is no longer relevant to queries. The query evaluation searches the model for occurrences of a pattern whose evolution satisfies a temporal logic formula. Therefore, besides model-driven engineering, another related research community is runtime verification. The approach differs from prior logic-based runtime verification solutions by supporting the representation and querying of structure via graphs and graph queries respectively, which is more efficient for queries with complex patterns. We present a prototypical implementation of the approach and measure its speed and memory consumption in monitoring and adaptation scenarios from two application domains, with executions of an increasing size. We assess scalability by a comparison to the state-of-the-art from both related research communities. The implementation yields promising results, which pave the way for sophisticated history-aware self-adaptation solutions and indicate that the approach constitutes a highly effective technique for runtime monitoring on an architectural level.