Hasso-Plattner-Institut25 Jahre HPI
Hasso-Plattner-Institut25 Jahre HPI

Markus Dreseler

„Automatic Tiering for In-Memory Database Systems“

A decade ago, it became feasible to store multi-terabyte databases in main memory. These in-memory databases (IMDBs) profit from DRAM's low latency and high throughput as well as from the removal of costly abstractions used in disk-based systems, such as the buffer cache. However, as the DRAM technology approaches physical limits, scaling these databases becomes difficult. Non-volatile memory (NVM) addresses this challenge. This new type of memory is persistent, has more capacity than DRAM (4x), and does not suffer from its density-inhibiting limitations. Yet, as NVM has a higher latency (5-15x) and a lower throughput (.35x), it cannot fully replace DRAM.

IMDBs thus need to navigate the trade-off between the two memory tiers. We present a solution to this optimization problem. Leveraging information about access frequencies and patterns, our solution utilizes NVM's additional capacity while minimizing the associated access costs. Unlike buffer cache-based implementations, our tiering abstraction does not add any costs when reading data from DRAM. As such, it can act as a drop-in replacement for existing IMDBs. Our contributions are as follows:

(1) As the foundation for our research, we present Hyrise, an open-source, columnar IMDB that we re-engineered and re-wrote from scratch. Hyrise enables realistic end-to-end benchmarks of SQL workloads and offers query performance which is competitive with other research and commercial systems. At the same time, Hyrise is easy to understand and modify as repeatedly demonstrated by its uses in research and teaching.

(2) We present a novel memory management framework for different memory and storage tiers. By encapsulating the allocation and access methods of these tiers, we enable existing data structures to be stored on different tiers with no modifications to their implementation. Besides DRAM and NVM, we also support and evaluate SSDs and have made provisions for upcoming technologies such as disaggregated memory.

(3) To identify the parts of the data that can be moved to (s)lower tiers with little performance impact, we present a tracking method that identifies access skew both in the row and column dimensions and that detects patterns within consecutive accesses. Unlike existing methods that have substantial associated costs, our access counters exhibit no identifiable overhead in standard benchmarks despite their increased accuracy.

(4) Finally, we introduce a tiering algorithm that optimizes the data placement for a given memory budget. In the TPC-H benchmark, this allows us to move 90% of the data to NVM while the throughput is reduced by only 10.8% and the query latency is increased by 11.6%. With this, we outperform approaches that ignore the workload's access skew and access patterns and increase the query latency by 20% or more.

Individually, our contributions provide novel approaches to current challenges in systems engineering and database research. Combining them allows IMDBs to scale past the limits of DRAM while continuing to profit from the benefits of in-memory computing.